Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

# *МЕТОДИЧЕСКИЕ УКАЗАНИЯ*

по выполнению практических работ по дисциплине «Химико-термическая обработка материалов» для студентов направления подготовки 15.03.02 Технологические машины и оборудование

Методические указания разработаны в соответствии с требованиями ФГОС ВО и рабочей программы дисциплины «Химико-термическая обработка материалов». Указания предназначены для студентов направления подготовки 15.03.02 Технологические машины и оборудование.

Содержат основные разделы изучаемого теоретического материала, перечень вопросов необходимых для проработки, а также список рекомендуемой литературы.

Составители Е.В. Вернигорова, ст. преподаватель

Отв. редактор Павленко Е.Н., канд. техн. наук, доцент.

# СОДЕРЖАНИЕ

|     |                                                                                                                           | Стр. |
|-----|---------------------------------------------------------------------------------------------------------------------------|------|
| 1.  | Практическое занятие №1 Закалка<br>углеродистой стали без полиморфных                                                     | 4    |
| 2.  | превращений Практическое занятие №2. Отпуск закаленной углеродистой стали                                                 | 13   |
| 3.  | Практическое занятие №3. Описание назначения и устройства основных частей машины для поверхностного упрочнения материалов | 19   |
| 4.  | Практическое занятие №4. Определение состава и группы стали                                                               | 21   |
| 5.  | Практическое занятие №5. Наклеп и рекристаллизация металлов.                                                              | 23   |
| 6.  | Практическое занятие № 6. Закалка углеродистой<br>стали с полиморфными превращениями                                      | 30   |
| 7.  | Практическое занятие №7. Изучение микроструктуры металлов и сплавов.                                                      | 41   |
| 8.  | Практическое занятие №8 Цементация стали                                                                                  | 45   |
| 9.  | Практическое занятие №9. Прокаливаемость стали и ее определение.                                                          | 52   |
| 10. | Практическое занятие № 10. Термическая обработка легированной инструментальной стали                                      | 59   |
| 11. | Практическое занятие №11. Классификация и микроисследование легированных сталей                                           | 72   |
| 12. | Практическое занятие №12 Анализ диаграммы состояния железоуглеродистых сплавов                                            | 81   |
| 13. | Практическое занятие № 13 Изучение строения<br>углеродистых сталей и чугунов в равновесном<br>состоянии                   | 89   |
| 14. | Практическое занятие № 14 Обоснование выбора марок сталей, применяемых для инструментов                                   | 96   |
| 15. | Практическое занятие № 15 Построение и анализ графика термической обработки                                               | 101  |
| 16. | Практическое занятие № 16 Построение графика химико-термической обработки и последующей обработки детали                  | 110  |
| 17. | Практическое занятие № 17 Сравнение эксплуатационных свойств алюминиевых сплавов.                                         | 116  |
| 18. | Практическое занятие № 18 Изучение микроструктуры сплавов цветных металлов                                                | 122  |

| 19. | Практическое занятие № 19 Азотирование,         |     |
|-----|-------------------------------------------------|-----|
|     | борирование, силицирование и другие             |     |
|     | виды химико-термической обработки               |     |
| 20. | Практическое занятие № 20. Разработка           |     |
|     | технологии термообработки для инструментальной  |     |
|     | стали, рессорно- пружинной стали,               |     |
|     | конструкционной стали.                          |     |
| 21. | Практическое занятие № 21. Особенности          |     |
|     | термообработки быстрорежущей стали.             |     |
| 22. | Практическое занятие № 22. Исправление дефектов |     |
|     | термообработки.                                 |     |
| 23. | Практическое занятие № 23. Газовая цементация.  |     |
| 24. | Список использованных источников                | 128 |
|     |                                                 |     |

Целью освоения дисциплины «Химико-термическая обработка материалов» является формирование у обучающихся способности обеспечивать контроль технологических процессов изготовления машиностроительных изделий средней сложности и управления ими.

Задачи освоения дисциплины:

– сформировать способность осуществляет обеспечивать контроль технологических процессов изготовления машиностроительных изделий средней сложности и управления ими.

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесённых с планируемыми результатами освоения образовательной программы

| Код, формулировка компетенции  ПК-3 Способен                                                                               | Код, формулировка индикатора  ИД-1 ПК-3 использует данные                                                                                                             | Планируемые результаты обучения по дисциплине (модулю), характеризующие этапы формирования компетенций, индикаторов Пороговый уровень                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| обеспечивать контроль технологических процессов изготовления машиностроительных изделий средней сложности и управления ими | ИД-1 ПК-3 использует данные SKADA-систем для анализа производственной ситуации и выявления причин брака для изготовления машиностроительных изделий средней сложности | понимает: методы выбора основных и вспомогательных материалов, способов реализации технологических процессов, прогрессивных методов эксплуатации технологического оборудования при изготовлении технологических машин; Повышенный уровень понимает: на профессиональном уровне методы стандартных |

|                | испытаний по определению                      |
|----------------|-----------------------------------------------|
|                | физико-механических                           |
|                | свойств и технологических                     |
|                | показателей используемых                      |
|                | материалов и готовых                          |
|                | изделий                                       |
| ИД-2 ПК-       | 3 осуществляет Пороговый уровень              |
| , ,            | е эксперименты по выбирает: основные и        |
|                | икам с обработкой и вспомогательные           |
| анализом       | DADVIII TOTOR                                 |
| применением    | систем материалы, спосооы                     |
| автоматизирова | ного реализации                               |
| проектирования | технопогических                               |
| npoekimpobumbi | процессов, применять                          |
|                | прогрессивные методы                          |
|                | эксплуатации                                  |
|                | технологического                              |
|                | оборудования при                              |
|                | изготовлении                                  |
|                | технологических машин;                        |
|                | Повышенный уровень                            |
|                | осуществляет: стандартные                     |
|                | испытания по определению                      |
|                | физико-механических свойств                   |
|                | и технологических                             |
|                | показателей используемых                      |
|                | материалов и готовых                          |
|                | изделий                                       |
| ИД-3 ПК-3 испо | льзует САD и САРР- Пороговый уровень          |
| системы для    |                                               |
| физических явл | ений, возникающих выбора основных и           |
| при реализаци  | и технологических вспомогательных материалов, |
| процессов      | изготовления способов реализации              |
| машиностроител | пыных изделий технологических процессов,      |
| средней сложно | сти применения прогрессивных                  |
|                | методов эксплуатации                          |
|                | технологического                              |
|                | оборудования при                              |
|                | изготовлении                                  |
|                | технологических машин;                        |
|                | Повышенный уровень                            |
|                | применяет: навыки                             |
|                | применения методов                            |
|                | стандартных испытаний по                      |
|                | определению физико-                           |
|                | механических свойств и                        |
|                |                                               |
|                | технологических показателей                   |
|                |                                               |

Практическое занятие №1. Закалка углеродистой стали без полиморфных превращений

**Цель:** Изучить процесс закалки стали без полиморфных превращений; исследовать влияние массовой доли углерода на закаливаемость стали.

Организационная форма занятия – традиционная

#### Вопросы для обсуждения

- 1. Основные виды конструкционных сталей.
- 2. Основные легирующие элементы для сталей.
- 3. Области применения конструкционных сталей.
- 4. Способы улучшения свойств конструкционных сталей.
- 5. Принципы маркировки конструкционных сталей.

#### Методические рекомендации

Для подготовки к проведению лабораторной работы необходимы знания теоретических материалов, связанных с термической обработкой сталей (закалкой), используемых в химическом машиностроении.

Мартенситное превращение в стали. Распад аустенита на ферритокарбидную смесь — диффузионный процесс, связанный с перераспределением углерода и железа, т.е. с диффузионным перемещением атомов на значительные расстояния, намного превышающие период решетки аустенита.

При охлаждении углеродистой стали с достаточно большой скоростью (сотни градусов в секунду) аустенит настолько сильно переохлаждается, что не распадается на смесь двух фаз, так как подвижность атомов при сильном охлаждении ниже точки  $A_1$  слишком мала. Но фиксации аустенита при комнатной температуре не происходит, так как в углеродистой стали, начиная с некоторой температуры, может существовать железоуглеродистая фаза, обладающая свободной энергией меньше, чем аустенит. Эта фаза называется мартенситом.

Мартенситное превращение не связано с диффузионным перераспределением углерода и железа в решетке аустенита. Химический состав кристаллов мартенсита и исходного аустенита одинаков. Мартенсит отличается от аустенита только кристаллической решеткой; у аустенита

гранецентрированная решетка  $\gamma$  -железа, а у мартенсита — тетрагональная, близкая объемно центрированной кубической решетке  $\alpha$  -железа.

Таким образом, *мартенсит* является пересыщенным твердым раствором внедрения углерода в α -железе.

Превращение аустенита в мартенсит при охлаждении начинается и заканчивается при определенных для каждой марки стали температурах — температуре начала  $(M_H)$  и конца  $(M_K)$  мартенситного превращения (рисунок 1.1).

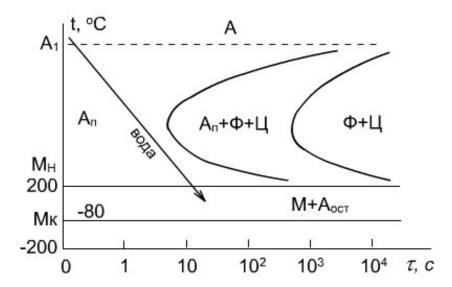



Рисунок 1.1 - Диаграмма изотермического распада переохлажденного аустенита эвтектоидной стали: A – устойчивый аустенит,  $A_{\text{п}}$  – переохлажденный аустенит,  $A_{\text{ост}}$  – остаточный аустенит, M – мартенсит,  $\Phi$  – феррит,  $\Pi$  – цементит.

Температура начала мартенситного превращения отличие температуры начала перлитного превращения, не зависит охлаждения. На положение мартенситной точки (М<sub>н</sub>) влияет содержание углерода в стали, с увеличением которого снижается М<sub>н</sub>. При температуре мартенситной точки М<sub>н</sub> превращение только начинается, появляются первые мартенсита. Чтобы мартенситное превращение развивалось, кристаллы необходимо непрерывно охлаждать сталь ниже мартенситной точки. Если охлаждение приостановить и выдерживать углеродистую сталь при постоянной температуре ниже мартенситной точки М<sub>н,</sub> то образование мартенсита почти сейчас же прекращается. Эта особенность наиболее ярко отличает кинетику

мартенситного превращения от перлитного, которое всегда доходит до конца при постоянной температуре ниже точки  $A_1$  т.е., оканчивается полным исчезновением аустенита.

Мартенситный кристалл (пластина) образуется только в пределах аустенитного зерна и не переходит границу между его зернами. В плоскости шлифа мартенситные пластины, как правило, попадают поперечным сечением и наблюдаются под микроскопом в виде игл. Так как размеры первых пластин мартенсита определяются размерами аустенитного зерна, то все факторы, приводящие к его укрупнению, делают более грубоигольчатым сам мартенсит. Поэтому сильный перегрев стали при закалке дает крупноигольчатый мартенсит.

При закалке на мартенсит углеродистой стали резко возрастает ее твердость и снижается пластичность. Например, твердость эвтектоидной стали в отожженном состоянии равна НВ180, а в закаленном – НВ650, т.е. примерно в 3,5 раза выше. Высокая твердость углеродистых сталей, закаленных на мартенсит, обусловлена, в первую очередь, возникновением сильных искажений решетки пересыщенного раствора за счет внедрения атомов углерода.

Структура и зависящие от нее механические свойства, металлических сплавов изменяются в результате термической обработки. Существуют различные виды термической обработки, к одному из которых относится закалка, приводящая к существенному изменению структуры и свойств сплавов. Применительно к углеродистым сталям закалка обеспечивает значительное повышение твердости и прочностных характеристик (пределов прочности и текучести).

Закалкой называется вид термической обработки, заключающийся в нагреве стали до температуры выше критической точки, выдержке и последующем быстром охлаждении со скоростью не ниже критической.

*Критические точки* – это температуры фазовых превращений. Различают равновесные (теоретические) и фактические критические точки. Равновесные

критические точки лежат на линиях диаграмм состояния и показывают температуры фазовых переходов в условиях чрезвычайно медленного изменения температур (нагрева или охлаждения).

Равновесные критические точки углеродистых сталей можно определять по метастабильной диаграмме "железо - цементит". На этой диаграмме равновесные точки, лежащие на линии PSK, обозначаются  $A_1$  и показывают температуру превращения перлита в аустенит при нагреве и обратного превращения при охлаждении. Равновесные точки, находящиеся на линии GS, обозначаются  $A_3$  и показывают температуры окончания растворения феррита в аустените при нагреве и начала его выделения из аустенита при охлаждении. Равновесные точки линии SE обозначаются  $A_{\rm cm}$  и показывают температуры окончания растворения цементита (вторичного) в аустените при нагреве и начала его выделения из аустените при нагреве и начала его выделения из аустенита при охлаждении.

Фактические критические точки при нагреве смешаются вверх по температурной шкале и обозначаются аналогично равновесным точкам с добавлением буквы "с", например,  $A_{\text{C1}}\text{-}A_{\text{C3}}$ .

При охлаждении происходит смещение фактических критических точек относительно равновесных в сторону уменьшения температуры, это смещение отмечается буквой "r"  $(A_{rl}-A_{r3})$ 

Нагрев при закалке производится для перевода всей исходной структуры или определенной ее части в аустенит, который является исходной фазой для получения конечной структуры закаленной стали.

Выдержка необходима для выравнивания температуры по сечению детали и для полного установления необходимого фазового состояния.

Охлаждение при закалке должно производиться со скоростью не меньше критической для того, чтобы предотвратить протекание диффузионных процессов и переохладить весь исходный аустенит до температурного интервала мартенситного превращения.

Критическая скорость охлаждения (закалки) — это минимальная скорость охлаждения, при которой предотвращается диффузионный распад переохлажденного аустенита.

Выбор технологических параметров закалки. Фактическая скорость печного нагрева определяется температурой, до которой нагрето печное пространство, и массой помещенной в него детали.

Температура закалки определяется исходя из массовой доли углерода в стали и соответствующего ей значения критической точки. Практически критические точки выбирают по справочникам или по диаграмме состояния "железо - цементит".

Температура нагрева при закалке **доэвтектоидных сталей** определяется следующим образом:

$$t_{3ak} = Ac_3 + (30 - 50), ^{\circ}C$$

Заэвтектоидные и эвтектоидную стали нагреваются при закалке до температуры:

$$t_{3ak} = Ac_1 + (30 - 50), \, ^{\circ}C$$

Исходя из этого определяется положение оптимального интервала температур закалки углеродистых сталей на диаграмме состояния  $Fe - Fe_3C$  (рисунок 1.2).

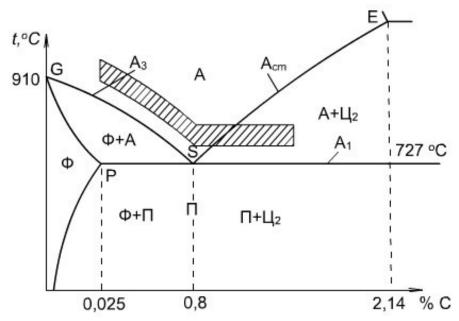



Рисунок 1.2 - Фрагмент диаграммы состояния Fe – Fe<sub>3</sub>C с нанесенным оптимальным интервалом температур закалки

Продолжительность нагрева и выдержки определяется размерами и конфигурацией деталей и способом их укладки в печи. Она должна быть такой, чтобы прошло выравнивание концентрации углерода в аустените. Обычно общее время нагрева и изотермической выдержки составляет 1 - 1,5 мин на мм наибольшего поперечного сечения.

Охлаждение при закалке должно производиться в такой охлаждающей среде, которая обеспечивает скорость охлаждения не менее критической.

Закалочные напряжения складываются из термических и структурных напряжений. При закалке всегда возникает перепад температуры по сечению изделия. Разная величина термического сжатия наружных и внутренних слоев в период охлаждения обуславливает возникновение термических напряжений.

Мартенситное превращение связано с увеличением объема на несколько процентов. Поверхностные слои раньше достигают мартенситной точки, чем сердцевина изделия. Мартенситное превращение и связанное с ним увеличение объема около 1%, происходит в разных точках сечения изделия не одновременно, что приводит к возникновению структурных напряжений.

Суммарные закалочные напряжения растут с увеличением температуры нагрева под закалку и с повышением скорости охлаждения, так как в обоих этих случаях увеличивается перепад температур по сечению изделия. Наиболее опасным в отношении закалочных напряжений является интервал температур ниже мартенситной точки (М<sub>Н</sub>), так как в этом интервале возникают структурные напряжения и образуется хрупкая фаза мартенсит. Выше мартенситной точки возникают только термические напряжения, причем сталь находится в аустенитном состоянии, а аустенит пластичен. Охлаждающая способность наиболее распространенных закалочных сред увеличивается в следующей последовательности: минеральное масло, вода, водные растворы солей и шелочей.

Углеродистые стали обладают большой критической скоростью охлаждения (закалки) и поэтому для них, как правило, в качестве охлаждающей среды выбирают воду при нормальной температуре.

Закалочное охлаждение эвтектоидной и доэвтектоидных сталей происходит из однофазной аустенитной области, поэтому структура этих сталей после закалки будет представлять мартенсит с небольшим количеством остаточного аустенита.

Заэвтектоидные стали охлаждаются из двухфазной аустенитоцементитной области и структура этих сталей после закалки представляет собой мартенсит с небольшим количеством остаточного аустенита и цементит вторичный.

Температуры критических точек при нагреве сталей и их твердость после закалки

| Марка                               | Массовая   | Темпер   | атура, °С | Твердость  |
|-------------------------------------|------------|----------|-----------|------------|
| стали                               | доля       | $A_{C1}$ | $A_{C3}$  | правильно  |
|                                     | углерода,  |          |           | закаленной |
|                                     | %          |          |           | стали, HRC |
| У                                   | глеродисты | е констр | укционнь  | іе стали   |
| 20                                  | 0,17-0,24  | 735      | 850       | 34 - 40    |
| 25                                  | 0,22-0,30  | 735      | 835       | 42 - 48    |
| 30                                  | 0,27-0,35  | 730      | 820       | 48 - 51    |
| 35                                  | 0,32-0,40  | 730      | 810       | 54 – 60    |
| 40                                  | 0,37-0,45  | 730      | 790       | 60 - 62    |
| 45                                  | 0,42-0,50  | 730      | 770       |            |
| 50                                  | 0,47-0,55  | 725      | 760       |            |
| 55                                  | 0,52-0,60  | 725      | 755       |            |
| 60                                  | 0,57 –0,65 | 725      | 750       |            |
| Углеродистые инструментальные стали |            |          |           |            |
| У7                                  | _          | 725      | 765       | 62 - 64    |
| У8 – У13                            | _          | 730      | _         | 63 - 65    |

#### Приборы и материалы

Прибор для определения твердости, муфельные лабораторные печи, оснащенные приборами для контроля температур, закалочные баки с охлаждающими средами, шлифовальный станок, образцы стали в отожженном состоянии.

# Методика выполнения работы

Проведите внешний осмотр образцов, определите их твердость и

загрузите в муфельные лабораторные печи. После достижения необходимого температурного режима образцы необходимо опустить в закалочный бак. Охлажденный образец зачищают при помощи шлифовального станка и повторно определяют его твердость.

#### Указания по технике безопасности

Для безопасного проведения лабораторной работы необходимо:

- соблюдать осторожность при работе с печью, шлифовальным станком, твердометром;
  - проводить работу только в присутствии преподавателя;
  - выполнять работу в строгом соответствии с методическими указаниями.

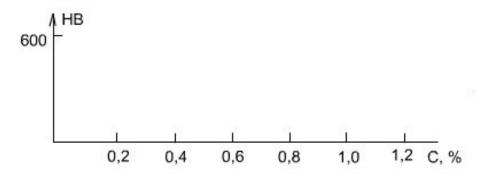
#### Порядок проведения работы

- 1. Получите задание для выполнения работы от преподавателя.
- 2. Выполните задание в соответствии с методикой (см. выше).
- 3. Составьте отчет о выполненной работе.

# Содержание отчета

В отчете о выполненной лабораторной работе должны содержаться следующие данные:

- 1. Дата проведения работы.
- 2. Цель работы.
- 3. Выбор технологических параметров закалки заданных образцов углеродистых сталей в виде таблицы, представленной ниже.


| Исходн         | ые данные        | ые Режим закалки |      |    |                |                  |                        |
|----------------|------------------|------------------|------|----|----------------|------------------|------------------------|
| Марка<br>стали | Массовая<br>доля | Тверд            | ость | 53 | ические<br>чки | Выдержка,<br>мин | Охлаждаю-<br>щая среда |
| 6              | углерода,<br>%   | HRB              | HB   |    |                |                  | •                      |
| 3              |                  |                  |      |    |                |                  |                        |

4. Результаты закалки.

| Марка стали | Массовая доля углерода, | Твердость | Структура |
|-------------|-------------------------|-----------|-----------|
|-------------|-------------------------|-----------|-----------|

| % | HRC | НВ |  |
|---|-----|----|--|
|   |     |    |  |
|   |     |    |  |
|   |     |    |  |
|   |     |    |  |

5. Зависимость твердости закаленной стали от массовой доли углерода.



6. Выводы.

#### Контрольные вопросы

- 1. Что такое закалка?
- 2. Как изменяются механические свойства в результате закалки?
- 3. Равновесные критические точки, их смысл и обозначение.
- 4. Обозначение и отличие фактических критических точек от равновесных.
- 5. Назначение нагрева, выдержки и охлаждения при закалке.
- 6. Что такое критическая скорость закалки?
- 7. От чего зависит и как практически определяется общее время выдержки при закалке?
- 8. Структура доэвтектоидной закаленной стали.
- 9. Структура заэвтектоидной закаленной стали.
- 10. Что такое мартенсит?
- 11. От чего зависят свойства мартенсита?
- 12. Основная структурная составляющая закаленной стали.
- 13. Влияние массовой доли углерода на закаливаемость стали.
- 14. В чем сущность мартенситного превращения?
- 15. Почему размер аустенитных зерен влияет на размер пластин мартенсита?

- 16. Каковы условия получения крупноигольчатого и мелкоигольчатого мартенсита?
- 17. Чем отличается мартенситное превращение от перлитного?
- 18. Чем вызывается образование закалочных напряжении?
- 19. До каких температур нагревают до- и заэвтектоидные стали под закалку?

#### Практическое занятие № 2. Отпуск закаленной стали

**Цель:** Практически освоить технологию проведения отпуска и исследовать влияние температуры отпуска на твердость стали.

Организационная форма занятия – традиционная

#### Методические рекомендации

Закаленная сталь характеризуется по сравнению с другими состояниями максимальными значениями твердости и прочности и минимальными значениями пластичности и вязкости. Кроме того, в результате закалки в стали возникают большие остаточные закалочные напряжения, которые сами по себе, без приложения внешних нагрузок, могут приводить к трещинообразованию и разрушению детали. Поэтому для уменьшения хрупкости и снятия закалочных напряжений закаленные детали подвергают отпуску.

**Отпуском** называется термическая обработка, заключающаяся в нагреве закаленной стали до температуры ниже критической точки  $Ac_{I}$ , выдержке и последующем охлаждении.

В зависимости от температуры нагрева различают три вида отпуска: низкий отпуск  $150-250~^{\circ}\mathrm{C}$ , средний отпуск  $350-450~^{\circ}\mathrm{C}$ , высокий отпуск  $500-650~^{\circ}\mathrm{C}$ .

Выбор температуры отпуска зависит от того, в каких условиях будет работать изделие и, следовательно, какими свойствами оно должно обладать.

Превращения при отпуске, структура и свойства отпущенной стали

Основным превращением, происходящим при отпуске является распад мартенсита закалки на феррито-карбидную смесь.

С повышением температуры отпуска увеличивается диффузионная подвижность атомов и, как следствие этого, увеличивается скорость и полнота процесса распада мартенсита. Кроме температуры на превращения при отпуске оказывает влияние время выдержки при температуре нагрева. Однако определяющее воздействие оказывает температура отпуска.

При низком отпуске в результате частичного распада мартенсита закалки образуется мартенсит отпуска, в котором наблюдается перераспределение углерода с начальным образованием карбидов. При этом практически не снижается твердость и износостойкость, но снимается часть закалочных напряжений и снижается хрупкость. Низкий отпуск применяется для режущих инструментов и деталей, подвергнутых поверхностной закалке, а также цементированных деталей.

Средний отпуск приводит к завершению распада мартенсита на мелкодисперсную феррито-цементитную смесь, называемую **трооститом отпуска**. Твердость его в пределах HRC40 – 50 для сталей, содержащих 0,45 – 0,8 %С. При этом сохраняются высокие упругие свойства и происходит дальнейшее (относительно низкого отпуска) снятие закалочных напряжений. Средний отпуск применяется для пружин и рессор.

В результате высокого отпуска происходит коагуляция (укрупнение) цементитных частиц и, образующаяся при этом феррито-цементитная смесь с более крупными, чем у троостита отпуска цементитными частицами, называется сорбитом отпуска. Твердость его находится в пределах HRC15 – 25 для сталей, содержащих 0,40 – 0,60 %С. Эта структура обладает хорошим сочетанием прочности и пластичности. Поэтому высокий отпуск применяется для многих деталей машин (коленчатые и распределительные валы, шестерни и т.п.), работающих в условиях циклических знакопеременных и динамических нагрузок.

Комплекс термической обработки, состоящей из полной закалки и высокого отпуска конструкционных сталей, называется улучшением. Таким образом, отпуск является заключительной термической обработкой, формирующей конечную структуру и придающей изделиям требуемые условиями эксплуатации свойства.

Для достижения этих свойств температуру отпуска необходимо назначать исходя из следующих закономерностей: при повышении температуры отпуска понижаются твердость и прочность и повышаются пластичность и ударная вязкость сталей.

Технология проведения отпуска состоит из нагрева образца до температуры соответствующего отпуска и выдержки при этой температуре. Таким образом, общее время нахождения образца в печи  $(\tau_{\text{общ}})$ 

$$\tau_{\text{общ}}$$
. =  $\tau_H + \tau_B$ 

Данные  $\tau_H$  (время нагрева)и  $\tau_B$  (время выдержки) берутся из табл. 2.

#### Приборы и материалы

Прибор для определения твердости, муфельные печи, оснащенные приборами для контроля температур, закалочные баки с охлаждающими средами, закаленные образцы из среднеуглеродистой стали.

#### Методика выполнения работы

Проведите внешний осмотр образцов, определите их твердость и загрузите в муфельные лабораторные печи. После достижения необходимого температурного режима и выдержки печи отключают. Охлажденный образец зачищают при помощи шлифовального станка и повторно определяют его твердость.

#### Указания по технике безопасности

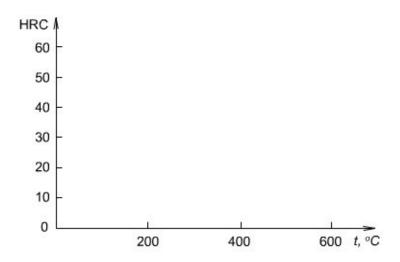
Для безопасного проведения лабораторной работы необходимо:

- соблюдать осторожность при работе с печью, шлифовальным станком, твердомером;
  - проводить работу только в присутствии преподавателя;
  - выполнять работу в строгом соответствии с методическими указаниями.

### Порядок проведения работы

- 1. Получите задание для выполнения работы от преподавателя.
- 2. Выполните задание в соответствии с методикой (см. выше).
- 3. Составьте отчет о выполненной работе.

#### Содержание отчета


- 1. Дата проведения работы.
- 2. Цель работы.
- 3. Исходные данные образцов и результаты закалки представить в форме таблицы, приведенной ниже.

|                |            |                           |      | Режим зака                      | лки                       | Результат             | ы закалки      |
|----------------|------------|---------------------------|------|---------------------------------|---------------------------|-----------------------|----------------|
| Марка<br>стали | 1.02242000 | Диаметр<br>образца,<br>мм | t,°C | Время<br>нагрева<br><i>мин.</i> | Охлаж-<br>дающая<br>среда | Твер-<br>дость<br>HRC | Струк-<br>тура |
|                |            |                           |      |                                 |                           |                       |                |

4. Режим и результаты отпуска закаленной стали.

|                | Pe                         | жим отпуска                       | Результаты отпуска        |                  |           |
|----------------|----------------------------|-----------------------------------|---------------------------|------------------|-----------|
| Вид<br>отпуска | Температура<br>нагрева, °С | Общее<br>время на-<br>грева, мин. | Охлаж-<br>дающая<br>среда | Твердость<br>HRC | Структура |
|                |                            | 5 25.0 F                          |                           |                  |           |

5. Зависимость твердости от температуры отпуска стали.



6. Выводы.

#### Контрольные вопросы для самопроверки

- 1. Что такое отпуск?
- 2. Какие причины обусловливают необходимость проведения отпуска?
- 3. Виды отпуска?
- 4. Чем определяется выбор температуры отпуска?
- 5. Основное превращение, протекающее при отпуске?
- 6. От каких факторов зависят скорость и полнота превращений при отпуске?
- 7. Структура после низкого, среднего и высокого отпуска?
- 8. Отличие сорбита отпуска от троостита отпуска?
- 9. Влияние температуры отпуска на уровень закалочных напряжений?
- 10. Особенности свойств стали после каждого вида отпуска?
- 11. Практическое назначение видов отпуска.
- 12. Влияние температуры отпуска на механические свойства стали.
- 13. Какие процессы проходят в закаленной стали при ее последующем нагреве до температуры 200 °C?
- 14. Какие процессы проходят в закаленной стали при ее последующем нагреве до температуры 400 °C?
- 15. Какие процессы проходят в закаленной стали при ее последующем нагреве до температуры 600 °C?
- 16. Какой комплекс термической обработки называют улучшением?
- 17. Для какой группы деталей целесообразно проводить улучшение? Таблица 1-Температура закалки и твердость закаленных сталей

| Марка стали | Массовая доля<br>углерода, % | Температура<br>закалки, °С | Твердость HRC  |
|-------------|------------------------------|----------------------------|----------------|
| 20          | 0,17 - 0,24                  | 900 – 920                  | 35-40          |
| 25          | 0,22 - 0,30                  | 890 - 910                  | 40 – 42        |
| 30          | 0,27 - 0,35                  | 870 - 890                  | 43 – 45        |
| 35          | 0,32 - 0,40                  | 850 - 870                  | 46 – 48        |
| 40          | 0,37 - 0,45                  | 840 - 860                  | 52 – 54        |
| 45          | 0,42 - 0,50                  | 830 - 850                  | 56 <b>–</b> 58 |
| 50          | 0,47 - 0,55                  | 820 - 840                  | 58 – 60        |
| 55          | 0,52 - 0,60                  | 810 - 830                  | 60 - 62        |
| 60          | 0,57 - 0,65                  | 800 - 820                  | 62 - 64        |

Таблица 2-Продолжительность нагрева и выдержки при термической обработке

|             | Форма нагреваемых образцов                                             |     |  |  |
|-------------|------------------------------------------------------------------------|-----|--|--|
| Температура | 0                                                                      |     |  |  |
| печи, °С    | Продолжительность (мин.) нагрева и<br>выдержки на 1 мм размера d или a |     |  |  |
| 900         | 1,3                                                                    | 1,8 |  |  |
| 800         | 1,5                                                                    | 2,0 |  |  |
| 700         | 0,7                                                                    | 0,9 |  |  |
| 600         | 0,9                                                                    | 1,1 |  |  |
| 500         | 1,0                                                                    | 1,2 |  |  |
| 400         | 1,1                                                                    | 1,3 |  |  |
| 300         | 1,3                                                                    | 1,6 |  |  |
| 200         | 1,5                                                                    | 1,8 |  |  |

# Примечание:

- 1. Продолжительность нагрева до температур 200 700 °C указана без времени выдержки.
- 2. Ориентировочно время выдержки при температуре отпуска составляет 0,5 времени нагрева.

# Практическое занятие №3. Описание назначения и устройства основных частей машины для поверхностного упрочнения материалов

**Цель:** приобретение знаний и умений по анализу назначения и конструкции машин для обработки материалов химической техники.

Организационная форма занятия – традиционная.

Исходя из результатов анализа сущности машин, можно утверждать, что любая машина имеет вполне определенный набор основных функциональных частей (блоков). В данном случае под термином блок понимается часть машины, представляющая собой группу функционально объединенных элементов. Структура — это общее, качественно определенное и относительно устойчивое строение рассматриваемого объекта (в данном рассмотрении — машины).

Современные наиболее распространенные машины, выполняющие механическую работу, включают следующие структурные составляющие.

1. Важной частью машины является рабочий (исполнительный) *орган*, которым машина выполняет полезную работу. Утверждается, что все остальные части машины — двигатель, передаточный механизм и устройства управления работой — второстепенны, так как предназначены для того, чтобы рабочий орган мог выполнять необходимые движения и передавать нужные усилия.

Понятие рабочий орган имеет больший объем и содержание, чем понятие орудие. Так, например, рабочим органом токарного станка является шпиндель, на котором установлен патрон для крепления детали, и суппорт, перемещающий резец во время работы. В данном случае орудием работы машины (токарного станка), входящим в состав рабочего органа и непосредственно воздействующим на обрабатываемое тело, является резец.

- 2. Двигатель, приводящий в движение рабочий орган.
- 3. Передаточный механизм (трансмиссия) служит для преобразования и передачи движения от двигателя к рабочему органу в машинах механического действия.
  - 4. Управляющие устройства, служащие для управления работой машины.

5. Наконец, все вышеперечисленные части машины соединяются воедино. Для этого у каждой машины имеется *рама* (станина или корпус).

Следовательно, в общем, структура любой машины может быть показана в виде блочной схемы (рисунок 2.1).

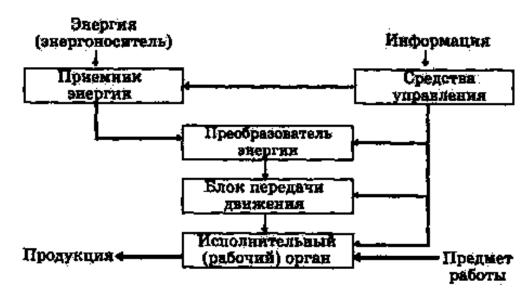



Рисунок 2.1 - Общая структура машины

# ЗАДАНИЕ ДЛЯ САМОСТОЯТЕЛЬНОГО ВЫПОЛНЕНИЯ

Задание выполняется по вариантам, задаваемым преподавателем (машины для поверхностного упрочнения материалов).

- 1. Привести эскиз машины с расшифровкой основных частей в соответствии с ее структурой.
- 2. Привести описание назначения и конструкции машины для поверхностного упрочнения материалов.

#### Контрольные вопросы

- 1. Каково функциональное назначение рассматриваемой машины?
- 2.Из каких структурных частей состоит машина?
- 3. Какой вид энергии используется для привода машины в действие?
- 4. Какой вид передаточного устройства использован в машине?
- 5.Выполнение каких технологических операций предусмотрено в машине?
- 6. Что можно было бы улучшить в конструкции рассматриваемой машины?

#### Практическое занятие №4. Определение состава и группы стали

Цель: приобретение знаний и умений по определению состава и группы стали.

Организационная форма занятия – традиционная.

Из углеродистых качественных конструкционных сталей (ГОСТ 1050–74\*) производят прокат, поковки, калиброванную сталь, сталь серебрянку, сортовую сталь, штамповки и слитки. Эти стали являются основным материалом для изготовления таких деталей машин, как валы, шпиндели, оси, зубчатые колеса, шпонки, муфты, фланцы, фрикционные диски, винты, гайки, упоры, тяги, цилиндры гидроприводов, эксцентрики, звездочки цепных передач, т.е. деталей различной степени нагружения. Они хорошо обрабатываются давлением и резанием, льются и свариваются, подвергаются термической, термомеханической и химико-термической обработке. Различные специальные виды обработки обеспечивают вязкость, упругость и твердость сталей, позволяют делать из них детали, вязкие в сердцевине и твердые снаружи, что резко увеличивает их износостойкость и надежность.

Качественные конструкционные стали обладают более высокими механическими свойствами, чем стали обыкновенного качества, за счет меньшего содержания в них фосфора, серы и неметаллических включений. Но они на 10–15% дороже сталей обыкновенного качества, поэтому используются преимущественно для изготовления более нагруженных деталей. По видам обработки их делят на горячекатаную, кованую, калиброванную и серебрянку (со специальной отделкой поверхности). По требованиям к испытанию механических свойств различают пять категорий качественных конструкционных сталей:

- 1-я без испытания механических свойств;
- 2-я с испытанием механических свойств нормализованных образцов на растяжение и ударную вязкость;
- 3-я с испытанием механических свойств нормализованных образцов на растяжение;
- 4- я с испытанием механических свойств термически обработанных образцов (закалка с отпуском) на растяжение и ударную вязкость;
  - 5- я с испытанием механических свойств нагартованных и термически

обработанных образцов (отжиг или высокий отпуск) на растяжение.

Механические свойства рассматриваемых сталей регламентированы ГОСТ 1050—74\*. В зависимости от состояния материала стали выпускаются без термической обработки, термически обработанные (Т) и нагартованные (Н). В соответствии с назначением горячекатаная и кованая стали делятся на подгруппы:

- a для горячей обработки давлением;
- $\delta$  для механической обработки резанием на станках;
- в для холодного волочения.

Перечисленные сведения указываются в заказе на получение стали от заводаизготовителя.

ΓΟCΤ 1050-74\* предусматривает следующие марки качественных конструкционных сталей; 05кп, 08кп,08пс, 08, 10кп, 10пс, 10, 11кп, 15кп, 15пс, 15, 18кп, 20кп, 20пс, 20, 25, 30, 35, 40, 45, 50, 55, 58 (55пп), 60. В обозначении марки стали цифра указывает на среднее содержание углерода в сотых долях процента. Например, сталь 25 содержит 0.25% углерода (допустимое количество углерода -0.22-0.30%), сталь 60-0.60% (допустимое количество -0.57-0.65%). В стали 58 (55пп) буквы означают повышенную прокаливаемость. Степень раскисления в марках спокойных сталей не отражается, а в марках полуспокойных и кипящих сталей, сталей обыкновенного качества, обозначается буквами «пс» как **«КП»** соответственно. В качественных конструкционных сталях всех марок допускается содержание серы не более 0,040% и фосфора – не более 0,035%. На чертежах марку стали обозначают в штампе, например: Сталь 15пс ГОСТ 1050-74\* ИЛИ Сталь 45 ГОСТ 1050-74\*.

# ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО ВЫПОЛНЕНИЯ

Задания выполняются по вариантам, задаваемым преподавателем.

- 1. Для 2-3 марок конструкционных сталей приведите расшифровку химического состава и определите групповую принадлежность.
- 2. Назначьте возможные варианты изделий для изготовления из рассматриваемых марок сталей.

3. Назначьте возможные варианты упрочняющей обработки изделий из рассматриваемых марок сталей.

#### Контрольные вопросы

- 1. Что собой представляет сталь как материал химической техники?
- 2. Какие разновидности сталей известны?
- 3. Чем отличается конструкционная сталь от других разновидностей?
- 4. Как установить состав стали?
- 5. Как установить групповую принадлежность стали?
- 6. Какие виды упрочняющей обработки конструкционных сталей используют на практике?

#### Практическое занятие №5. Наклеп и рекристаллизация металлов.

*Цель работы*: овладеть теоретическими и практическими знаниями о процессах, изменениях структуры и свойств при пластической деформации и разупрочнении наклепанного металла при рекристаллизации.

# ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

# Пластическая деформация металлов и сплавов

Под воздействием внешних сил металлические тела изменяют свою форму, т.е. деформируются. При этом общая деформация может подразделяться на упругую и пластическую.

Часть общей деформации, которая полностью устраняется после снятия вызывающих ее сил, называется упругой. Под пластической деформацией подразумевается та часть общей деформации, которая остается после снятия нагрузки. Пластическая деформация объясняется необратимым смещением атомов в кристаллической решетке путем скольжения или двойникования. Атомы при этом смещаются из одних положений устойчивого равновесия в другие, что приводит к сдвигу одной части кристалла по отношению к другой.

Поверхность, по которой идет сдвиг под действием касательных напряжений, называется плоскостью скольжения. Такими плоскостями являются плоскости, наиболее плотно упакованные атомами. По этим плоскостям сдвиг идет обычно в направлении, густо усеянном атомами. Совокупность плоскостей и направлений скольжения определяет количество возможных систем скольжения. Монокристаллы с различными типами кристаллической решетки имеют разное число возможных систем скольжения. Различия в системах скольжения ГЦК и ГПУ решеток иллюстрируются на рис.1. Пластическая деформация вызывает генерацию и накопление в металле новых дислокаций. В недеформированном металле их плотность составляет  $10^6$  -  $10^8$  дислокаций на см², после деформации она может достигнуть  $10^{10}$ — $10^{12}$  дислокаций на 1 см².

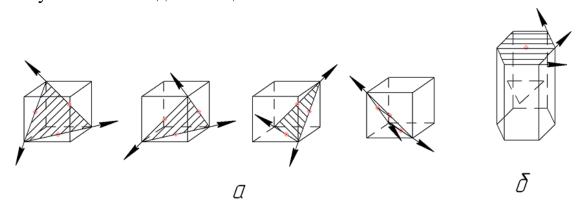



Рис. 1. Системы скольжения в решетках ГЦК (а) и ГПУ (б)

С возрастанием плотности дислокации взаимодействуют друг с другом и с другими видами несовершенств решетки и начинают испытывать ния при своем перемещении по кристаллу. Это вызывает увеличение сопротивления деформации со стороны металла, т. е. упрочнение (предел текучести и твердость - возрастают, удлинение при разрыве, ударное сопротивление - падают). Процесс упрочнения под действием пластической деформации принято называть наклепом или нагартовкой . Основные отличия в условиях деформации монокристаллов от поликристаллов заключаются в том, что в поликристалле очень много различно ориентированных зерен, которые мешают деформироваться друг другу. Зерна, у которых плоскости скольжения расположены под углом 45° к направлению усилия, наиболее склонны к деформированию, так как в этих плоскостях создаются максимальные касательные напряжения. Зерна, у которых плоскости скольжения перпендикулярны или параллельны направлению усилия, неспособны деформироваться, так как на этих плоскостях касательные напряжения равны нулю. Остальные зерна имеют промежуточную склонность к деформации. Ввиду этого в поликристаллическом теле под действием усилий зёрна деформируются неодинаково. Поликристаллическое тело не только деформируется неравномерно, но и находится в неоднородном напряженном состоянии после снятия нагрузки.

При пластической деформации в структуре происходят изменения: формы и размеров зерна; кристаллографической пространственной ориентировки зерен; степени совершенства решетки зерен.

Изменение формы и размеров зерен состоит в том, что они вытягиваются в направлении главной деформации растяжения и дробятся. С повышением степени деформации увеличивается степень вытягивания зерен, структура становится волокнистой. Изменение кристаллографической ориентации внутри зерен объясняется превалированием в процессе деформации одной или двух систем скольжения, закономерно ориентирующихся к осям деформации. В результате формируется определенная кристаллографическая ориентированность, получившая назва- ние *текстуры деформации*. Характер текстуры деформации зависит от вида и условий обработки давлением и от природы материала.

Изменение степени совершенства решетки заключается в резком увеличении плотности линейных, точечных и поверхностных дефектов. Так, плотность линейных дефектов - дислокаций - может возрасти на несколько порядков.

Общий запас энергии металла в результате пластической деформации возрастает, его состояние становится неравновесным.

Изменение структуры в результате пластической деформации приводит к изменению не только механических, но и физических свойств. Электропроводность падает. У ферромагнитных металлов пластическое деформирование ведет к понижению магнитной проницаемости и возрастанию коэрцитивной силы. Нарушение правильности кристаллического строения приводит к менее плотной упаковке атомов, то есть уменьшению плотности. В результате неравновесного состояния деформированный металл более химически активен. Он быстрее коррозирует, а также быстрее растворяется в агрессивных средах, чем недеформированный металл.

#### Возврат и рекристаллизация металлов и сплавов

Структурное состояние деформированного металла термодинамически неустойчиво, хотя при комнатной температуре для большинства металлов может сохраняться весьма долго. Однако с повышением температуры пластически деформированный металл постепенно переходит в устойчивое состояние. Этот переход можно разбить на несколько стадий.

- 1. Возврат:
- а) отдых, или возврат первого рода;
- б) полигонизация, или возврат второго рода.
- 2. Рекристаллизация:

- а) первичная рекристаллизация;
- б) собирательная рекристаллизация;
- в) вторичная рекристаллизация.

Принципиальное отличие возврата от рекристаллизации заключается в том, что при возврате форма и размер зерен не изменяются и все структурные превращения происходят внутри зерна. При рекристаллизации наблюдается изменение как внутризеренного строения, так и формы и размера зерен. При отдыхе происходит уменьшение плотности точечных и линейных дефектов. При полигонизации происходит перераспределение дислокаций, приводящее к образованию дислокационных стенок, которые разбивают кристаллы на отдельные блоки, то есть образуются «субзерна». Возврат ведет к частичному возвращению свойств недеформированного металла, упрочнение снижается на 20—30%.

Возврат происходит при нагреве до 0,2—0,3 от температуры плавления по абсолютной шкале. Нагрев при более высоких температурах приводит к рекристаллизации.

Минимальная температура рекристаллизации технически чистых, сильно деформированных металлов, по А. А. Бочвару, приблизительно равна 0,4 от абсолютной температуры плавления. Эта температура называется порогом рекристаллизации. Порог рекристаллизации для железа равен 450°C, меди – 200°C, алюминия – 150°C.

Сущность первичной рекристаллизации заключается в образовании и росте в деформированной матрице новых зерен с неискаженной решеткой. Этот процесс является типичным кристаллизационным процессом, характеризующимся возникновением центров кристаллизации и их ростом. При рекристаллизации металла полностью снимается наклеп и восстанавливаются первоначальные свойства.

При собирательной рекристаллизации, которая является продолжением первичной рекристаллизации, происходит рост одних рекристаллизованных зерен за счет других рекристаллизованных зерен. Крупные зерна растут, поглощая мелкие, что приводит к уменьшению свободной энергии и делает структуру термодинамически более устойчивой. Этот процесс идет при более высоких температурах, чем процесс первичной рекристаллизации, либо при тех же температурах, но при большей выдержке.

В результате собирательной рекристаллизации структура имеет примерно равнозеренное строение.

В определенных условиях после прохождения собирательной рекристаллиза-

ции идет процесс вторичной рекристаллизации, заключающийся в неоднородном, то есть не по всей структуре, росте отдельных зерен за счет других. Структура после вторичной рекристаллизации состоит из отдельных «гигантских» зерен, окруженных мелкими зернами.

При рекристаллизационном отжиге обычно идут первичная и собирательная рекристаллизации.

Основной структурной характеристикой рекристаллизированного металла является величина зерна, которая определяется, в основном, двумя факторами: температурой отжига и степенью деформации отжигаемого металла. Величина зерна монотонно растет с ростом температуры отжига. Зависимость величины зерна от степени деформации имеет вид кривой с максимумом, деформация, соответствующая этому максимуму, называется критической степенью деформации. Критическая степень деформации для железа равна 6 - 10 %, для алюминия - 2 - 3 %, для меди - 5 - 7 %.

#### Горячая пластическая деформация

Наряду с деформацией, проводимой ниже температуры порога рекристаллизации, часто деформацию проводят при температурах выше порога рекристаллизации. В этом случае деформация называется горячей. При горячей деформации эффект наклепа частично или полностью снимается вследствие прохождения одновременно с деформацией процесса рекристаллизации. Степень прохождения рекристаллизации определяется режимом деформации. Снятие наклепа позволяет значительно снизить усилие деформации и увеличить степень последней. Кроме того, горячая пластическая деформация может уплотнить металл, так как завариваются внутренние пустоты, если они были до деформации.

Размер зерна после горячей пластической деформации в основном определяется степенью обжатия и температурой деформации. Чем больше степень обжатия и чем ниже температура горячей деформации, тем мельче зерно в горячедеформированном металле. При горячей обработке давлением ликвирующие примеси и неметаллические включения вытягиваются в направлении деформирования и располагаются рядами между измельченными зернами сплава, образуя волокна, которые при травлении микроструктуры быстрее разъедаются и темнеют. Наилучшие механические свойства у горячедеформированных сплавов получаются вдоль направления волокнистой структуры. При горячей обработке давлением на образование структуры и свойств большое влияние оказывает температура деформации. Перегрев ведет к получению нежелательной крупнозернистой структуры, а недогрев — к повышению усилий деформирования, об-

разованию наклепа и даже трещин.

Для стали температуру начала горячей обработки принимают на 100-200°C ниже линии солидуса, а температуру конца обработки - на 30-50°C выше линии  $A_3$  для доэвтектоидных и заэвтектоидных сталей.

#### Контрольные вопросы.

- 1. Определение упругой и пластической деформаций.
- 2. Влияние холодной пластической деформации на структуру и свойства металлов.
- 3. Определение понятия «наклеп».
- 4. Сущность явления возврата. Изменение в структуре при отдыхе и полигонизации.
- 5. Сущность явления рекристаллизации. Изменение структуры и свойств при первичной, собирательной, вторичной рекристаллизациях.
- 6. Определение понятия температуры порога рекристаллизации.
- 7. Влияние на структуру, формирующуюся при рекристаллизации, температуры рекристаллизации и степени пластической деформации отжигаемого металла.
- 8. Критическая степень деформации и ее технологическое значение.
- 9. Определение горячей обработки металлов.
- 10. Сходство и различие между холодной и горячей обработкой давлением.

#### ПРАКТИЧЕСКАЯ ЧАСТЬ РАБОТЫ

#### Задачи работы

- 1. Закрепление знаний по теории явлений наклепа и рекристаллизации, их значение в практике обработки металлов давлением и последующей термообработки.
- 2. Освоение методики исследования влияния деформации и рекристаллизационного отжига на структуру и свойства металла.
- 3. Установление влияния наклепа и последующего рекристаллизационного отжига на структуру и свойства металлов.

# Материальное оснащение

- 1. Методическая разработка (инструкция).
- 2. Приспособление для растяжения листов алюминия.
- 3. Игла для нанесения меток.
- 4. Пресс для обжатия стальных образцов.

- 5. Муфельная печь.
- 6. Твердомер «Роквелл».
- 7. Образцы из листового алюминия и прутковой стали.
- 8. Травитель для выявления микроструктуры.
- 9. Микроскоп МИМ-7.

#### Содержание отчета

- 1. Основные понятия о наклепе и рекристаллизации металлов.
- 2. Описание методов пластического деформирования алюминия и стали с изображением схемы специального приспособления.
  - 3. Результаты экспериментальной части работы:
- а) таблицы с данными по размерам зерен алюминия и твердости стали для каждого деформированного и отожженного образца;
- б) графики зависимости величины зерна после рекристаллизации от степени растяжения листового алюминия и твердости цилиндрических образцов стали с учетом степени их обжатия до и после рекристаллизационного отжига;
- в) схемы микроструктур образцов алюминия и микроструктур образцов стали после деформирования и рекристаллизации.
  - 4. Анализ результатов, их объяснение.

# Порядок выполнения работы

- 1. Ознакомиться с теорией, изложить основные положения в отчете.
- 2. Ознакомиться с приспособлением для растяжения, подвергнуть образцы растяжению на 5, 7, 9, 12 % и поставить на них клеймо.
- 3. Провести рекристаллизационный отжиг деформированных образцов в течение 30 мин при 500°С (температура берется заведомо завышенной в целях ускорения процесса).
- 4. Протравить отожженные образцы в 20% водном растворе едкого натрия или едкого калия 1-2 *мин* для выявления макроструктуры.
- 5. На каждом из травленных и промытых водой образцов разметить участок величиной в  $1~{\rm cm}^2$  и на нем подсчитать количество зерен.
  - 6. Вычислить среднюю площадь сечения зерна в мм<sup>2</sup>.
  - 7. Полученные данные свести в таблицу.
- 8. Построить кривую зависимости величины зерна (его площади сечения) после рекристаллизации от степени деформации.
  - 9. Для всех взятых степеней деформации зарисовать макроструктуру.
  - 10. Дать объяснения.

- 11. Измерить высоту и твердость 4 образцов из армко железа.
- 12. Обжать образцы на прессе на четыре разные высоты.
- 13. Замерить высоту осаженных образцов и рассчитать степень деформации каждого образца.
  - 14. Замерить твердость деформированных образцов.
- 15. Отжечь деформированные образцы при 800°C 40 мин с охлаждением до 600°C в печи и далее на воздухе.
  - 16. Замерить твердость рекристаллизованных образцов.
  - 17. Полученные данные свести в таблицу.
- 18. Построить кривые зависимости твердости деформированных образцов до и после рекристаллизации от степени пластической деформации.
- 19. Зарисовать микроструктуру образцов в исходном и отожженном состояниях после пластической деформации при различных степенях осадки, и после рекристаллизации различно деформированных образцов.
- 20. Описать влияние степени осадки на структуру и твердость стали до и после рекристаллизации. Пункты 11-20 выполняются только при четырехчасовой работе.

# Практическое занятие №6. Закалка углеродистой стали с полиморфными превращениями

*Цель работы:* овладение теоретическими знаниями и практическое изучение разновидностей термической обработки, являющейся важнейшей задачей в технологическом цикле изготовления современных деталей машин и инструмента.

# ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

#### Основные положения

Термическая обработка определяет качество и стойкость изделий в работе. Чем ответственнее конструкция, тем больше в ней термически обработанных деталей. *Термическая обработка* — это эффективный метод теплового воздействия по заданным режимам с целью изменения в желаемом направлении механических, физических свойств и структуры сплавов.

Например, подвергая сталь 40 различным режимам термообработки, можно изменять предел прочности  $\sigma_{\it s}$  в 2 раза (от 60 до 135  $\kappa \it{rc/mm}$ ), твердость  $\it{HB}$  - в 5 раз (от 30 до 130  $\it{eduhuu}$ ), относительное удлинение  $\delta$  - в 10  $\it{pas}$  (от 30 до 3 %).

Научные основы термической обработки заложены русским ученым Дмитрием

Константиновичем Черновым, открывшим в 1868 году структурные превращения в сталях. Температуры, при которых эти превращения протекают, называются критическими точками и указываются на диаграмме железо — цементит. Нижние критические точки  $A_1$  соответствуют линии PSK и равны 727°C для всех углеродистых сталей. Верхние критические точки  $A_3$  для доэвтектоидных сталей лежат на линии GS и понижаются с увеличением содержания углерода. Для заэвтектоидных сталей верхние критические точки лежат на лини SE и повышаются с увеличением содержания углерода.

На практике широко применяются следующие основные виды термической обработки углеродистых сталей: отжиг, нормализация, закалка с полиморфным превращением, отпуск.

Важнейшими параметрами режимов термической обработки являются температура и скорость нагрева, длительность выдержки при заданной температуре и скорость охлаждения стали.

Температура нагрева сталей выбирается согласно диаграмме железо - цементит в зависимости от их химического состава, положения критических точек и вида термической обработки. Если температура должна быть выше критических точек, то во избежание перегрева она не должна превышать  $A_1$  или  $A_3$  более,

чем на 20-50°C. Скорость нагрева углеродистых сталей лимитируется возможностями нагревательных устройств. Чем выше температура нагрева стали под термообработку, тем меньше требуется времени выдержки при заданной температуре для ее выравнивания по объему детали и завершения фазовых превращений в сплаве, приводящих к образованию аустенита.

Скорость охлаждения зависит от структуры, которую необходимо получить при распаде аустенита, и обеспечивается подбором соответствующих охладителей: вода, минеральное масло, воздух, печь. Кинетика процесса, свойства и строение продуктов распада аустенита тесно связаны со степенью переохлаждения ниже  $A_1$  или  $A_3$  (т. е. с температурой, при которой протекает превращение аустенита); степенью устойчивости переохлажденного аустенита и разностью его более высокой свободной энергии и энергии продуктов распада. Указанную зависимость представляют в виде диаграммы изотермического превращения аустенита данной стали (С - образных кривых), которая позволяет проследить превращение переохлажденного (неустойчивого) аустенита в интервале температур от  $A_1$  до  $M_{\scriptscriptstyle H}$ , а также его превращение при непрерывном охлаждении с большими скоростями в интервале температур  $M_{\scriptscriptstyle H}$  —  $M_{\scriptscriptstyle K}$  (рис. 1).

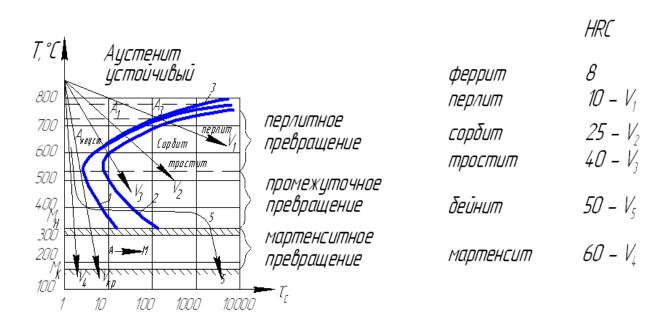



Рис.1 Диаграмма изотермического распада переохлажденного аустенита стали с 0,45 % С

Кривая *1* соответствует началу изотермического превращения аустенита, а кривая *2* – концу его превращения в физико-химическую смесь феррита и цементита. Пространство между кривыми *1* и *2* отвечает области частичного превращения аустенита. Чем правее от оси температур расположены С – образные кривые, тем устойчивее переохлажденный аустенит. Вблизи температуры 727°С и линии М<sub>н</sub> скорость превращения приближается к нулевому значению, а при температуре 550° С она максимальна. С увеличением скорости охлаждения превращение неустойчивого аустенита происходит при более низких температурах, за счет чего феррито-цементитная смесь измельчается, становится более дисперсной, а ее прочность и твердость повышаются.

Из сказанного следует, что в верхнем интервале температур продуктом изотермического превращения аустенита при температуре 720 — 657°С и скоростиохлаждения в печи  $V_1$ является грубая феррито-цементитная смесь, называемая перлитом (HB = 100 - 180), при 657 — 600°С и скорости охлаждения на воздухе  $V_2$ 

— более мелкодисперсная феррито-цементитная смесь - сорбит (HB=250). При температуре 600-550°C и скорости охлаждения в минеральном масле  $V_3$  смесь феррита и цементита становится еще дисперснее, приобретая твердость HB=350-400. Такая смесь носит название тростит.

Таким образом, перлит, сорбит, тростит имеют одну и ту же природу (феррито – цементитная смесь), но отличаются друг от друга дисперсностью, т. е.

межпластинчатым расстоянием. Чем меньше расстояние между пластинками цементита и тоньше ферритные прослойки в этой смеси, тем дисперснее эта смесь, тем выше ее твердость и прочность. Дисперсность нельзя путать с размером зерна перлита (сорбита, тростита), который зависит в основном от размера зерна аустенита.

В доэвтектоидных сталях между кривыми 3 и I (рис. 1) идет выделение избыточного феррита; при охлаждении, со скоростью  $V_1$ в структуре стали будут выделяться феррит и перлит. В заэвтектоидных сталях между кривыми 3 и I выделяется избыточный вторичный цементит. С увеличением скорости охлаждения доля выделившегося избыточного феррита или цементита уменьшается и при  $V_3$  равна нулю.

В интервале температур от 550°C до температуры начала мартенситного превращения М<sub>н</sub> продуктом распада аустенита является бейнит (игольчатый тростит) - высокодисперсная смесь слегка пересыщенного углеродом феррита и цементита пластинчатого строения (HB = 450 - 500). Дисперсность бейнита зависит от степени его пересыщения. Бейнитное превращение носит название промежуточного, частицы этой смеси можно разглядеть с помощью электронного микроскопа при увеличении в 10000 раз и более. В углеродистых сталях бейнит можно получить только по ступенчатому режиму охлаждения 5. При очень больших скоростях охлаждения в воде  $V_4$  диффузионные процессы образования ферритоцементитной смеси полностью подавляются, а весь аусте- нит, переохлаждаясь ниже М<sub>н</sub>, претерпевает бездиффузионное превращение в структуру мартенсит путем мгновенного массового сдвига атомов. Мартенсит является метастабильной фазой, представляющей собой пересыщенный твердый раствор внедрения углерода в  $\alpha$  – Fe. Для мартенсита типична игольчатая струк- тура, высокая твердость (НВ = 600), малая вязкость разрушения по сравнению с другими продуктами распада аустенита. Твердость мартенсита зависит от содер- жания в нем углерода, а оно такое же, как в исходном аустените из-за отсутствия диффузионных процессов. Скорость образования игл мартенсита велика: одна пластина возникает за 0.02 c.

Минимальная скорость охлаждения (касательная к первой С — образной кривой), при которой в структуре образуется один мартенсит, называется критической  $V_{\kappa p}$  скоростью закалки. Чем больше устойчивость переохлажденного аустенита, тем меньше  $V_{\kappa p}$ .

Превращение аустенита в мартенсит заканчивается при  $M_{\mbox{\tiny K}}$  (температура конца мартенситного превращения). При охлаждении до  $20^{\circ}$ С наряду с мартенситом возможно сохранение остаточного аустенита. Чем больше в стали содержание углерода, тем ниже и шире температурный интервал  $M_{\mbox{\tiny H}}-M_{\mbox{\tiny K}}$ , тем больше в ней

после закалки остаточного аустенита, снижающего механические свойства стали. Так как мартенситное превращение высокоуглеродистых сталей заканчивается при отрицательных температурах, то от остаточного аустенита избавляются обработкой холодом при температурах 60-80 °C.

#### Испытания на твердость

Испытания на твердость производятся различными способами на приборах типа Бринелля, Роквелла, Виккерса.

*Твердость* — это способность материала сопротивляться внедрению в него другого, более твердого тела в виде стального закаленного шарика или алмазного конуса, пирамиды. Значения твердости и ее размерность для одного и того же конструкционного материала зависят от применяемого метода.

Твердость по Бринеллю определяется по величине поверхности отпечатка, оставляемого стальным закаленным шариком Ø 2,5; 5; 10 *мм* при нагрузке на него от 15,6 до 3000 кгс. Чем больше диаметр лунки, тем мягче материал. Диаметр отпечатка (лунки) замеряют лупой и по таблицам находят НВ. Метод точен до значений HB450. так как при больших значениях HBдеформируется. Твердость по Роквеллу замеряют двумя разными инденторами. Твердость зака- ленной или низкоотпущенной стали определяется алмазным конусом с углом при его вершине  $120^{\circ}$  при нагрузке P = 150 кгс. Значение твердости характеризуется цифрой, указываемой стрелкой на черной шкале лимба с делениями, и обознача- ется HRC. По шкале  $HR_B$  измеряют среднюю твердость (меньше HB = 230) для мягкой (отожженной) стали при нагрузке  $P = 100 \ \kappa cc$ стальным закаленным шари- ком Ø 1/16 дюйма.

Замер твердости по шкале HRA производится алмазным конусом при нагрузке  $P=60~\kappa zc$  для образцов малых толщин (пластины) или для очень твердых материалов (HB=700) и тонких поверхностных слоев (0,3-0,5~mm).

Твердость по Роквеллу определяется в условных единицах по разности глубин от основной и предварительной ( $P=10~\kappa zc$ ) нагрузок. Замер твердости производится не менее трех раз на одном образце. Толщина образцов должна быть больше десятикратной глубины отпечатка. Преимущество метода Роквелла в быстроте замера (30—60~c) и меньших следах отпечатков на исследуемой поверхности. По специальным таблицам производится сравнение твердости, определенной разными способами.

# Разновидности термообработки стали

*Отжиг* – это термическая обработка, переводящая сталь в равновесное состояние. Отжиг стали подразделяется на полный, неполный, диффузионный, рекри-

сталлизационный. Цель отжига – устранение пороков структуры, возникающих при литье, деформации и сварке.

Полному отжигу подвергают преимущественно доэвтектоидные стали. При полном отжиге сталь нагревают выше точки  $A_3$  на 20— $50^{\circ}$ С и выдерживают определенное время при заданной температуре, после чего медленно охлаждают с печью со скоростью 50— $100^{\circ}$ С/ч. В результате фазовой перекристаллизации структура отожженной стали состоит из перлита и феррита, которые различимы в оптический микроскоп МИМ-7 при увеличении в 200 раз. Образование перлита связано с небольшой степенью переохлаждения аустенита (до 650— $700^{\circ}$ С). Полный отжиг устраняет внутренние напряжения. Сталь становится мягкой и вязкой. Кроме того, он позволяет исправить крупнозернистую структуру.

Неполный отжиг применяют чаще всего для заэвтектоидных сталей. В них нагрев несколько выше точки  $A_1$  (на 20—30°C) вызывает практически полную перекристаллизацию и, главное, позволяет получить зернистый перлит вместо пластинчатого. В зернистом перлите цементит имеет сферическую форму и четко просматривается под микроскопом на ферритном фоне. Поэтому такой отжигчасто называют сфероидизирующим. Он повышает вязкость разрушения стали, снижает твердость и улучшает обрабатываемость резанием. Если в заэвтектоид- ной стали избыточный вторичный цементит находится в виде грубой сетки, окру- жающей зерна пластинчатого перлита, то перед сфероидизирующим отжигом проводят нормализацию с температуры выше  $A_3$ . Охлаждение на воздухе или в воздушной струе с этой температуры подавляет выделение цементитной сетки.

Диффузионный отжиг (гомогенизация) устраняет химическую ликвацию по объему кристалла в крупных отливках. Устранение дендритной ликвации происходит при температурах, намного превышающих критические точки  $A_3$  и при более длительных выдержках (10-18 часов).

Рекристаллизационный отжиг снимает наклеп и внутренние напряжения в стали после холодной обработки давлением (штамповка, вытяжка и т. д.), что приводит к снижению твердости и росту пластичности. Он проводится при температуре 650-690°C.

*Нормализация стали* — операция термической обработки, заключающаяся в нагреве выше точек  $A_3$  на 30-50°C, выдержке и последующем охлаждении на спокойном воздухе. Цель нормализации — измельчение зерна, повышение механических свойств стали, подготовка структуры для окончательной обработки, а для заэвтектоидных сталей — уничтожение карбидной ликвации. Охлаждение на воздухе со скоростью 8-10 град/с приводит к большему переохлаждению аустенита, чем при отжиге (температура переохлаждения при нормализации равна 600 —

650°С), и к образованию более дисперсной и мелкозернистой структуры перлит + феррит или сорбит — для доэвтектоидных сталей; перлит — для заэвтектоидных сталей; сорбит образуется при ускоренном охлаждении в струе воздуха. При данной скорости охлаждения избыточный феррит не успевает полностью структурно освободиться. По механическим свойствам сорбит сочетает удовлетворительную ударную вязкость  $a_{\rm H}$  с достаточной твердостью:  $a_{\rm H} \approx 8 \ \kappa c \cdot m/cm^2$ , HB = 250 – 300.

В малоуглеродистых сталях ( %  $C \le 0.3$ ), где аустенит малоустойчив, слабо переохлаждается, отжиг заменяют процессом нормализации, так как охлаждение на воздухе проводить технологически легче, чем в печи, а твердость нормализованной стали несколько выше, чем у отожженной (табл. 1).

Таблица 1

| Марка | Твердость<br>НВ<br>после отжи<br>га | Твердость<br>НВ после<br>нор-<br>мализации |
|-------|-------------------------------------|--------------------------------------------|
| 20    | 120                                 | 130                                        |
| 45    | 160                                 | 190                                        |
| У8    | 180                                 | 240                                        |

Закалка с полиморфным превращением — основная упрочняющая операция термообработки стали, так как только в процессе закалки удается получить максимальную твердость, прочность и износостойкость стали за счет формирования в ней неравновесных структур (в отличие от отжига, в процессе которого формируется равновесная структура). Основная структурная составляющая закаленней стали — мартенсит. Для ее получения деталь необходимо охладить со скоростью выше критической скорости закалки.

Наиболее распространенными закалочными средами являются вода и минеральное масло. Быстрое охлаждение в воде со скоростью 200—600 cpad/c (больше  $V_{\kappa p}$ ) повышает твердость и прочность стали, снижая показатели пластичности. Это связано с бездиффузионной перестройкой ГЦК - решетки аустенита, полученного при нагреве стали под закалку, в тетрагональную решетку мартенсита. Тетрагональность определяется отношением параметров решетки c/a. Мартенситное превращение связано с увеличением объема стали на несколько процентов. Мартенсит закалки — слабо травящаяся структурная составляющая. В средне- и высокоуглеродистых сталях мартенсит образуется в виде ориентированных пластин, дающих в плоскости шлифа иглы, расположенные под углами 60 и  $120^{\circ}$  друг к другу.

Твердость и вязкость мартенсита равны HB = 600 - 650,  $a_{\rm H} = 1 \ \kappa c \cdot m/c M^2$ . В пра- вильно закаленной на мартенсит стали при среднем светового игольчатое строение микроскопа его не всегда четко просматривается. Та- кой мартенсит называется мелкоигольчатым ИЛИ бесструктурным. Но чем выше температура нагрева под закалку, тем крупнее будут зерна аустени- та при нагреве, а при охлаждении в воде соответственно и иглы мартенси- та. Это ведет к охрупчиванию стали. Поэтому интервал закалочных темпе- ратур, указанных на диаграмме железоцементит, должен строго выдержи- ваться (рис. 2).

Охлаждающая способность минерального масла в 3 – 4 раза ниже, чем у воды. Это приводит к переохлаждению неустойчивого аустенита до температуры  $500-600^{\circ}$ С и образованию после полной закалки в масле (скорость охлаждения 50-70~cpad/c) мелкодисперсной структурной составляющей тростита закалки, которая легко травится. Частицы этой смеси различимы только в электронном микроскопе при увеличении в 5000 раз и больше. В оптическом микроскопе просматривается лишь общий вид структуры тростита как сплошное серое поле. Твердость и вязкость тростита HB = 350-400,  $a_{\rm H} = 2-3~\kappa z c \cdot M$   $/cm^2$ .

По температуре нагрева различают закалку полную, применяемую на практике для доэвтектоидных сталей, и неполную — только для заэвтектоидных сталей (см. рис. 2).

Полная закалка заключается в нагреве доэвтектоидной стали выше точки  $A_3$  на 20—50°C, выдержке и последующем быстром охлаждении в воде или масле. Такой режим, основанный на полной перекристаллизации структурных составляющих, приводит к образованию структуры мартенсита при охлаждении в воде и структуры тростита — при охлаждении в масле.

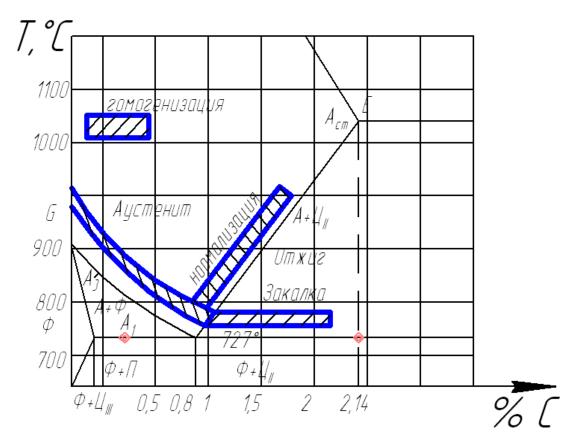



Рис. 2. Диаграмма железо—цементит (Области температур нагрева при отжиге, закалке и нормализации)

Неполная закалка доэвтектоидных сталей заключается в нагреве выше точки  $A_1$ , но ниже  $A_3$ , выдержке и последующем быстром охлаждении. Так как такой нагрев сопровождается неполной перекристаллизацией структурных составляющих, то после охлаждения в воде наряду с мартенситом в структуре присутствует избыточный мягкий феррит в виде светлых включений, снижающих твердость и прочность стали. Это брак при термической обработке, его исправляют повторной закалкой при температуре  $A_3 + (20 - 50^{\circ}\text{C})$ . По этой причине неполная закалка для доэвтектоидных сталей не используется на практике.

Неполная же закалка заэвтектоидных сталей с нагревом выше точки  $A_1$ , но ниже  $A_3$  и охлаждением в воде наряду с мартенситом закалки сохраняет избыточный вторичный цементит, дополнительно упрочняющий инструментальные стали, увеличивая их износостойкость, особенно при его равномерном распределении в виде округлых включений.

Применение легированных сталей вместо простых углеродистых позволяет прокаливать насквозь гораздо большие сечения. Это объясняется тем, что все легирующие элементы, за исключением кобальта, при растворении в аустените затрудняют его распад, уменьшая тем самым  $V_{\mathit{KP}}$ . Особенно эффективно влияет комплексное легирование, усиливая полезное влияние отдельных элементов. Для изделий небольшого сечения замена углеродистой стали на легированную позволяет перейти к менее резкому охладителю: эмульсии, маслу, воздуху.

# Контролируемый минимум знаний

- 1. Образование аустенита при нагреве стали.
- 2. Размер аустенитного зерна.
- 3. Диффузионный распад переохлажденного аустенита, структуры распада.
- 4. Диаграммы распада переохлажденного аустенита.
- 5. Критическая скорость закалки.
- 6. Бездиффузионное мартенситное превращение аустенита, природа, структура и свойства мартенсита.
  - 7. Отжиг стали, его разновидности.
  - 8. Нормализация стали.
  - 9. Закалка стали, ее разновидности.
  - 10. Выбор температуры нагрева под закалку для разных марок стали.
  - 11. Выбор закалочных сред, их характеристика.

#### ПРАКТИЧЕСКАЯ ЧАСТЬ РАБОТЫ

#### Задачи работы

- 1. Овладение теоретическими знаниями по термической обработке.
- 2. Освоение методики проведения различных видов термической обработки.
- 3. Освоение методики измерения твердости термически обработанных образцов на приборе типа Роквелл (HRC,  $HR_B$ ) и сравнение ее по таблицам с твердостью по Бринеллю.
- 4. Определение влияния температуры нагрева и скорости охлаждения на механические свойства и микроструктуру стали 45.
- 5. Практическое изучение микроструктуры стали 45 в разных состояниях.

#### Материальное оснащение

- 1. Методическая разработка.
- 2. Муфельные печи.
- 3. Твердомер «Роквелл».
- 4. Образцы стали 45.
- 5. Микроскопы МИМ-7.
- 6. Альбом микроструктур.
- 7. Таблица сравнения чисел твердости *HRC*, *HR*<sub>B</sub>, *HB*.
- 8. Наждачная бумага.

# Содержание отчета

- 1.Основные понятия о разных видах термической обработки.
- 2.Описание термообработки, проводимой на образцах стали 45.
- 3. Результаты экспериментальной части.
- 4. Построение графиков зависимости твердости от температуры закалки и от скорости охлаждения.
  - 5. Выводы по работе.

# Порядок выполнения работы

- 1. Ознакомление с теорией и краткое изложение основных ее положений в отчете.
- 2. Ознакомление с оборудованием и приемами работы на нем (печи, твердомер, микроскопы).
- 3. Выбор режимов термообработки с учетом марки сталей.
- 4. Практическое проведение различных режимов термообработки (время выдержки образцов стали 45 в печи 20—30 *мин*):
  - а) полная закалка стали 45 с температуры 860°C с охлаждением одного образца в воде, другого в масле;

- б) неполная закалка стали 45 с температуры 750°С при охлаждении в воде;
  - в) нормализация стали 45 с температуры 850°С;
- г) нагрев одного образца стали 45 до 700°C с последующим охлаждением в воде.
- 5. Зачистка термически обработанных образцов на наждачной бумаге.
- 6.Замер твердости (HRC и  $HR_B$ ) термически обработанных образцов, сравнение с числами твердости по Бринеллю (HB) по таблицам.
  - 7. Заполнение свободной таблицы по результатам термообработки.
- 8. Зарисовка микроструктур стали 45 после различных видов термообработки с указанием режима и структурных составляющих: отжиг, закалка полная, закалка неполная.
- 9. Построение графиков зависимости твердости *HB* от температуры нагрева и скорости охлаждения.

# Практическое занятие №7. Изучение микроструктуры металлов и сплавов .

Цель занятия: изучить методы исследования строения металлов.

#### Теоретическая часть

Различают макроструктуру, микроструктуру и тонкую структуру.

*Макроструктурный анализ* — изучение строения металлов и сплавов невооруженным глазом или при небольшом увеличении, с помощью лупы.

Осуществляется после предварительной подготовки исследуемой поверхности (шлифование и травление специальными реактивами).

Позволяет выявить и определить дефекты, возникшие на различных этапах производства литых, кованных, штампованных и катанных заготовок, а также причины разрушения деталей.

Устанавливают: вид излома (вязкий, хрупкий); величину, форму и расположение зерен и дендритов литого металла; дефекты, нарушающие сплошность металла (усадочную пористость, газовые пузыри, раковины, трещины); химическую неоднородность металла, вызванную процессами кристаллизации или созданную термической и химико-термической обработкой; волокна в деформированном металле.

Mикростируктурный анализ — изучение поверхности при помощи световых микроскопов. Увеличение — 50...2000 раз. Позволяет обнаружить элементы структуры размером до 0,2 мкм.

Образцы – микрошлифы с блестящей полированной поверхностью, так как структура рассматривается в отраженном свете. Наблюдаются микротрещины и неметаллические включения.

Для выявления микроструктуры поверхность травят реактивами, зависящими от состава сплава. Различные фазы протравливаются неодинаково

и окрашиваются по разному. Можно выявить форму, размеры и ориентировку зерен, отдельные фазы и структурные составляющие.

Кроме световых микроскопов используют электронные микроскопы с большой разрешающей способностью.

Изображение формируется при помощи потока быстро летящих электронов. Электронные лучи с длиной волны  $(0,04...0,12) \cdot 10^{-8}$  см дают возможность различать детали объекта, по своим размерам соответствующе межатомным расстояниям.

Просвечивающие микроскопы. Поток электронов проходит через изучаемый объект. Изображение является результатом неодинаковогорассеяния электронов на объекте. Различают косвенные и прямые методы исследования.

При косвенном методе изучают не сам объект, а его отпечаток – кварцевый или угольный слепок (реплику), отображающую рельеф микрошлифа, для предупреждения вторичного излучения, искажающего картину.

При прямом методе изучают тонкие металлические фольги, толщиной до 300 нм, на просвет. Фольги получают непосредственно из изучаемого металла.

Растровые микроскопы. Изображение создается за счет вторичной эмиссии электронов, излучаемых поверхностью, на которую падает непрерывно перемещающийся по этой поверхности поток первичных электронов. Изучается непосредственно поверхность металла. Разрешающая способность несколько ниже, чем у просвечивающих микроскопов.

Для изучения атомно-кристаллического строения твердых тел (тонкое строение) используются *рентгенографические методы*, позволяющие устанавливать связь между химическим составом, структурой и свойствами тела, тип твердых растворов, микронапряжения, концентрацию дефектов, плотность дислокаций.

*Микроскопический анализ* заключается в исследовании структуры специально подготовленных образцов (микрошлифов) при увеличениях от 30–50 до 1500–1800 крат.

Микроанализ проводят с целью определения:

- 1. Количества, размеров и типа структурных составляющих;
- 2. Фазового состава сталей и сплавов;
- 3. Связи химического состава, условий производства и обработки сплава с его микроструктурой и свойствами.

Для проведения высококвалифицированного микроанализа необходимы знания не только в области металлографии, но и в методике приготовления микрошлифов, в устройстве микроскопов и методах микроскопического анализа.

Приготовление микрошлифа обычно включает следующие основные операции.

- 1. Вырезку образцов и подготовку поверхности.
- 2. Шлифование.
- 3. Полирование.
- 4. Травление.

Выбор числа образцов, места вырезки и сечения материала, по которому проходит плоскость микрошлифа, определяется целью металлографического исследования, размерами, формой и особенностями структуры изучаемого объекта.

Наиболее удобны простые формы образцов следующих размеров: цилиндр или параллепипед с диаметром или стороной основания 10–20 мм и высотой 10–15 мм. Образцы малых размеров (лента, проволока) или сложной конфигурации после вырезки для изготовления шлифов помещают в

пластмассы или легкоплавкие сплавы, используя заливку или запрессовку в цилиндрические обоймы. Наиболее часто для холодной заделки шлифов используют эпоксидные смолы. Они обладают достаточной твердостью, малой объемной усадкой при отверждении и хорошо соединяются с большинством металлических образцов.

Обработку шлифа на плоскость производят с помощью напильника или наждачного круга. Затем производят шлифовку вручную шлифовальных Шлифование осуществляют на 4-5 станках. номерах наждачной бумаги, последовательно уменьшая абразива. размер Направление движения образца по наждачной бумаге при смене номера бумаги следует изменять на 90°, а шлифование на одном номере вести до исчезновения рисок от предыдущей шлифовальной бумаги. При смене номера бумаги следует удалять со шлифа частички абразива. После шлифования на последней бумаге шлиф тщательно промывают в воде, чтобы частички абразива не попали на полировальный круг.

При шлифовании очень мягких металлов в ряде случаев шкурку предварительно смачивают в керосине или натирают парафином (например, при изготовлении микрошлифов из алюминия), чтобы свести к минимуму вдавливание абразивных частиц в поверхность шлифов.

Полирование служит для удаления мелких рисок, оставшихся после шлифования, и получения гладкой зеркальной поверхности шлифа. Применяют механическое или электрохимическое полирование.

Механическое полирование производят на вращающемся круге с натянутым полировальным материалом (фетр, сукно, драп), на который непрерывно или периодически наносят очень мелкий абразив в виде суспензии в воде. В качестве абразивов применяют оксид хрома, оксид алюминия и оксид железа. Все более широкое использование находят полировальные алмазные пасты, которые наносят на специальную ткань или бумагу.

Полирование ведут до получения зеркальной поверхности, и оно считается законченным, когда на поверхности шлифа под микроскопом не наблюдаются риски или царапины. После полировки шлиф промывают в воде или спирте и сушат полированную поверхность фильтровальной бумагой.

Электрохимическое полирование основано на использовании процесса анодного растворения металла, который при определенных условиях протекает с образованием гладкой блестящей поверхности. Образец после механического шлифования погружают в качестве анода в электролизную

ванну и выдерживают при заданном режиме (напряжении, плотности тока и температуре электролита) определенное время. Катодом обычно служит пластинка, изготовленная из нержавеющей стали.

Преимуществом электрополировки является отсутствие на поверхности шлифа деформированного слоя, образующегося при шлифовании или механическом полировании.

Работоспособность (качество) металла зависит от размеров природного зерна, а также от вида рабочей нагрузки на деталь

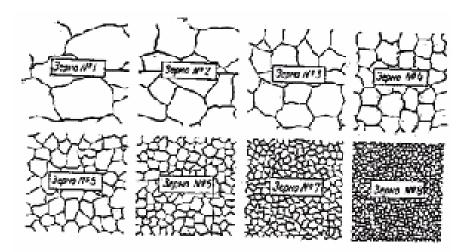



Рисунок - Стандартная шкала размеров зерна

#### Контрольные вопросы:

- 1. Какова цель исследования металлов?
- 2. Что такое микроструктура металлов?
- 3. Как приготовить образец металла для микроанализа?
- 4. Что такое макроструктура металлов?
- 5. Как подготовить образец для макроанализа?
- 6. Каким образом размер зерна влияет на механическую прочность металла или сплава?

#### Порядок выполнения работы:

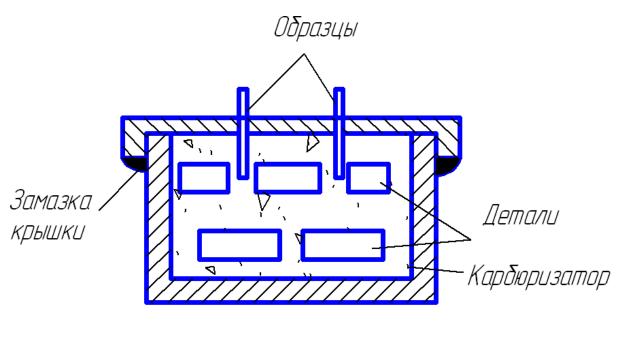
- 1. Изучить методы металлографического анализа.
- 2. Дать описание экспериментальной части микроанализа.
- 3. Провести анализ микроструктуры образцов
- 4. Изобразить схему макроструктуры стального слитка.
- 5. Оформить отчет

#### Практическое занятие №8 Цементация стали

*Цель работы:* ознакомление с процессом цементации стали, изучение микроструктуры и твердости стали в исходном состоянии, после цементации, после цементации и последующей закалки.

#### ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

#### Основные положения


*Цементацией* называется процесс насыщения поверхностного слоя стальных деталей углеродом с целью увеличения твердости и износостойкости при работе в условиях трения. Сердцевина детали должна обладать достаточной прочностью и высокой вязкостью разрушения, чтобы противостоять действию динамических и знакопеременных нагрузок. В таких условиях работает много деталей авиационных конструкций, особенно двигателей, например, валы, распределительные валики, оси, ролики, шестерни и т. п.

Цементацию применяют для малоуглеродистых сталей, содержащих не более 0,25% С, так как в сталях с большим содержанием углерода нельзя получить сердцевину с нужной вязкостью разрушения. Цементации подвергают углеродистые стали марок 10, 15, 20. В авиастроении обычно цементируют легированные стали марок 12ХНЗА, 12Х2Н4А, 18ХГТА, ШХ2Н4ВА и др.

Цементация — диффузионный процесс, представляющий собой проникновение атомов углерода в кристаллическую решетку железа. Цементация производится при температуре выше точки  $A_3$  (обычно 920—950°С), т. е. когда сталь находится в аустенитном состоянии и способна растворять в себе значительное количество углерода. Так, например, в соответствии с диаграммой железо - углерод при температуре 930°С в  $\gamma$  - железе может раствориться до 1,3 % углерода (это видно по линии SE диаграммы).

Различают два вида цементации: твердую и газовую.

При твердой цементации детали запаковывают в ящик, наполненный карбюризатором — науглероживающим веществом. Схема расположения деталей в цементационном ящике приведена на рис. 1. Цементационный ящик с деталями нагревают до температуры 920 – 950°С. Выдержка при этой температуре длится от 4 до 10 часов в зависимости от требуемой глубины цементированного слоя.



Цементационный ящик

Рис. 1. Схема расположения деталей в цементационном ящике

Карбюризатор обычно состоит из 75—80 % древесного угля и 25—20% углекислых солей BaCO<sub>3</sub> и Na<sub>2</sub>CO<sub>3</sub>, играющих роль ускорителей (катализаторов). При высокой температуре углерод, содержащийся в карбюризаторе, соединяясь с кислородом, который присутствует в ящике в очень небольшом количестве, образует окись углерода:

$$2C + O_2 = 2CO$$
.

На поверхности детали окись углерода разлагается с образованием активного атомарного углерода, который растворяется в  $\gamma$  - железе и образует аустенит:

$$2CO \rightarrow CO_2 + C,\, C + Fe \rightarrow Fe_{\gamma}\,(C).$$

Углекислый газ CO<sub>2</sub> соприкасаясь с углем карбюризатора, снова образует CO:

$$CO_2 + C \leftrightarrow 2CO$$
.

Действие ускорителей основано на их диссоциации при высокой температуре и взаимодействии газообразного продукта диссоциации с углеродом, в связи с чем увеличивается концентрация активной газовой среды:

$$BaCO_3 \leftrightarrow BaO + CO_2$$
,  $CO_2 + C \rightarrow 2CO$ .

При газовой цементации герметически закрывается камера печи, наполненная цементирующим газом. Цементирующими газами являются окись углерода и газообразные углеводороды — метан, этан, пропан, бутан. Наиболееширокое применение для газовой цементации получил естественный газ (92— 96% СН<sub>4</sub>), а также пиробензол, который в виде капель подается в

цементацион- ную реторту, где образуется газ, состоящий в основном из метана, окиси углеро- да и свободного водорода. Разложение этих соединений приводит к образованию активного атомарного углерода:

$$2CO \rightarrow CO_2 + C$$

$$CH_4 \rightarrow 2H_2 + C$$
.

Атомарный углерод адсорбируется на поверхности деталей, затем диффундирует в кристаллическую решетку  $\gamma$  - железа, науглероживая сталь с поверхности. Расход цементирующего газа должен регламентироваться так, чтобы количество образующегося свободного углерода равнялось адсорбирующей способности поверхности изделий. Если поверхность стали не поглощает весь выделяющийся углерод (адсорбция отстает от диссоциации), то свободный углерод, кристаллизуясь из газовой фазы, откладывается в виде плотной пленки сажи на детали, затрудняя процесс цементации.

Практически цементацию проводят при  $910-930^{\circ}$ С, но имеется тенденция повышения температуры цементации до  $950-970^{\circ}$ С и выше, т. к. при этом активнее происходит диффузия углерода и резко увеличивается глубина цементированного слоя.

Газовая цементация имеет ряд преимуществ перед твердой:

- 1) продолжительность процесса сокращается в 2 3 раза за счет исключения времени прогрева ящика и малотеплопроводного твердого карбюризатора;
  - 2) возможность регулирования процесса цементации;
- 3) гигиеничность производства отсутствие грязных операций, таких как упаковка и распаковка ящика.

Благодаря этим преимуществам газовая цементация полностью вытеснила цементацию в твердом карбюризаторе в массовом и серийном производствах. Особенно эффективна цементация при нагреве токами высокой частоты (т.в.ч.). Высокая температура (до 1100°С) позволяет резко сократить продолжительность процесса. Например, продолжительность цементации деталей из стали 15ХНТРА для образования слоя толщиной в 1 *мм* оказалась при цементации в твердом карбюризаторе (920°С) — 8 часов; при газовой цементации (920°С) — 4 часа; при газовой цементации с нагревом т.в.ч. (1050°С) — менее 1 часа.

Результаты процесса цементации оцениваются по степени цементации и по глубине цементированного слоя. Степенью цементации называется среднее содержание углерода в поверх- ностном слое. Авиационные детали обычно цементируются до степени 1,0 - 1,2%.

Глубиной цементации условно называют расстояние от поверхности вглубь, до появления в структуре первых зерен феррита. Для авиационных деталей глубина

цементации составляет от 0,5 мм до нескольких миллиметров и зависит от величины удельных нагрузок в эксплуатации.

В микроструктуре стали после цементации обнаруживаются четыре характерные зоны, располагающиеся последовательно от поверхности образца к центру:

- 1 заэвтектоидная зона, в которой наблюдается пластинчатый перлит с крупной сеткой вторичного цементита;
  - 2 эвтектоидная, занятая исключительно зернами перлита;
- 3 переходная зона, в которой в большом количестве наблюдаются ферритные зерна;
- 4 внутренняя зона, соответствующая структуре исходного материала. Характерной особенностью микроструктуры стали, прошедшей цементацию, является крупнозернистость как следствие высокой температуры нагрева и длительной выдержки при этой температуре.

После цементации сталь обязательно подвергается упрочняющей термической обработке (закалке и низкому отпуску), которая повышает твердость поверхности, а также устраняет последствия перегрева (крупнозернистость) и грубую цементитную сетку. При назначении режима термообработки цементированных деталей надо учитывать, что они являются как бы двухслойными, состоящими из высокоуглеродистой (1,0—1,2 % C) поверхности и низкоуглеродистой (0,1 - 0,2% C) сердцевины.

В зависимости от назначения детали применяют один из следующих вариантов термической обработки.

1. Для деталей, от которых требуется только поверхностная твердость, а другие механические свойства не имеют большого значения, применяют непосредственную закалку с цементационного нагрева (от 920 - 950°С). В результате на поверхности получается крупноигольчатый мартенсит, а в сердцевине — крупнозернистая структура исходной стали.

Преимуществом этого варианта является более высокая экономичность. В последнее время закалку с цементационного нагрева с подстуживанием стали применять и для достаточно ответственных деталей из наследственно мелкозернистых сталей после газовой цементации и скоростной цементации с нагрева т.в.ч., приводящей к меньшему росту зерна ввиду небольшой продолжительности. После закалки применяют обработку холодом для устранения остаточного аустенита в поверхностном слое, в результате чего твердость поверхности повышается до *HRC* 58 – 64.

2. При повышенных требованиях к структуре и свойствам изделия последние после цементации охлаждаются на воздухе или в ящике до 20°С и затем подвергаются закалке от 850—900°С (в зависимости от марки стали). Такая температура

закалки лежит выше критической точки  $A_3$  для сердцевины и поверхности и позволяет за счет перекристаллизации устранить крупнозернистость. Однако для высокоуглеродистой поверхности такой нагрев приводит к некоторому перегреву и получению крупноигольчатого мартенсита.

3. Для удовлетворения особо высоких требований к структуре и свойствам цементированных изделий применяют двойную закалку. Первая закалка (или нормализация) проводится с температуры 850 – 900°С. Целью первой закалки являются уничтожение сетки цементита в поверхностном слое и измельчение структуры сердцевины. В результате такой закалки в поверхностном слое получается структура крупноигольчатого мартенсита, а в сердцевине – мелкозернистого феррита, несколько пересыщенного углеродом. Вторая закалка необходима для окончательного исправления строения поверхностного слоя и проводится при более низких температурах (760—800°С). После второй закалки в сердцевине образуется мелкозернистый феррит с небольшими участками переходных структур, а в поверхностном слое - структура мелкоигольчатого мартенсита и тонкая сетка вторичного цементита.

Заключительной операцией термической обработки цементированных и закаленных изделий является низкий отпуск при 160 – 180°C, необходимый для уменьшения внутренних напряжений, возникающих при закалке.

## Контрольные вопросы

- 1. Виды химико-термической обработки, их назначение.
- 2. Цементация стали. Виды цементации. Стали, подвергаемые цементации.
- 3. Химические реакции процесса цементации в газовой среде и в твердом карбюризаторе.
- 4. Преимущество газовой цементации и цементации при нагреве токами высокой частоты.
  - 5. Режимы газовой и твердой цементации для наследственно крупнозернистых и наследственно мелкозернистых сталей. Анализ микроструктуры цементированного образца в направлении от по- верхности к сердцевине.
    - 6. Варианты термической обработки изделий после цементации.
  - 7. Анализ микроструктуры цементированного закаленного образца в зависимо- сти от принятого варианта закалки.
    - 8. Привести примеры цементированных деталей авиационных изделий.

#### ПРАКТИЧЕСКАЯ ЧАСТЬ РАБОТЫ

#### Задачи работы

- 1. Овладение теоретическими знаниями о химико-термической обработке вообще и о цементации в частности, ее значение в практике термообработки.
  - 2. Освоение методов цементации.
- 3. Изучение изменения структуры и свойств стали в процессе цементации и термической обработки,
- 4. Развитие навыков при выборе материала и режима цементации для изготовления деталей авиационного назначения.

#### Материальное оснащение

- 1. Методическая разработка.
- 2. Образцы из цементируемой стали в исходном, цементированном состояниях.
- 3. Микрошлифы цементируемой стали в исходном, цементированном и закаленном состоянии.
  - 4. Твердомер «Роквелл».
  - 5. Муфельные электрические печи.
  - 6. Металлографические микроскопы МИМ-7.

# Содержание отчета

- 1. Основные понятия о цементации стали.
- 2. Описание методов твердой цементации с изображением схе- мы цементационного ящика.
- 3. Основные химические реакции при цементации в твердом карбюризаторе.
- 4. Результаты экспериментальной части: значение твердости стали до и после цементации, после закалки на поверхности и в сердцевине образца.
  - 5. Микроструктура стали до и после цементации и после закалки.
  - 6. Сводные данные. Анализ результатов и их объяснение.

# Порядок выполнения работы

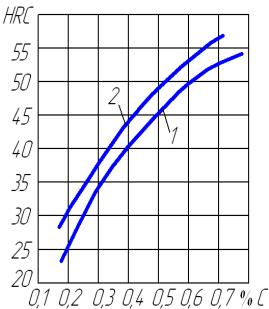
- 1. Ознакомиться с теорией, изложить основные положения в отчете.
- 2. Выбрать температуру нагрева под закалку цементированных образцов с учетом марки стали и требований, предъявляемых к детали.
  - 3. Провести закалку образцов.
- 4. Произвести измерение твердости образцов до и после цементации и после закалки. У цементированных и закаленных образцов измерить твердость на поверхности и в сердцевине.

- 5. Исследовать микроструктуру стали до цементации, после цементации и после закалки. Микроструктуры зарисовать в отчете.
- 6. Данные по измерению твердости, по определению степени и глубины цементации занести в отчет.
  - 7. Дать объяснения полученным результатам.

#### Практическое занятие №9. Прокаливаемость стали и ее определение.

*Цель работы:* овладение теоретическими и практическими знаниями по одной из основных технологических характеристик сталей — прокаливаемости.

#### ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ


#### Основные положения

Под прокаливаемостью понимают способность стали закаливаться на определенную глубину, то есть приобретать в результате закалки структуру мартенсита или тростита - мартенсита с высокой твердостью. Известно, что при закалке стали на структуру мартенсита ее необходимо охладить с температуры закалки скоростью равной или больше критической. При этом поверхность охлаждается быстрее, она непосредственно соприкасается так как охлаждающей средой. Сердцевина изделия охлаждается гораздо медленнее, так как тепло от сердце- вины отводится путем передачи через массу металла к поверхности. Следова- тельно, скорость охлаждения в центре детали может быть поверхности детали критической. В этом случае аустенит на превращается в мартенсит, а в центре детали зависимости OT действительной скорости охлаждения — в тростит, сорбит и даже перлит.

За глубину прокаливаемости конструкционных сталей принимают расстояния от поверхности стали до слоя с полумартенситной структурой, состоящей из 50% мартенсита и 50% тростита. Экспериментально установлено, что резкое падение твердости в конструкционных сталях происходит, когда количество тростита в закаленной структуре около 50%. Твердость полумартенситной структуры зависит в основном от содержания углерода и в значительно меньшей степени - от содержания легирующих элементов. Она может быть определена по графику рис. 1. Прокаливаемость инструментальных сталей (заэвтектоидных, высокоуглеродистых) характеризуют по толщине закаленного слоя мартенситной структурой (содержание мартенсита не менее 90 - 95%), обеспечивающей у этих сталей высокую твердость – более 60 HRC. В этих сталях при закалке наряду с мартенситом сохраняется также остаточный аустенит, количество которого может значительно изменяться в зависимости от состава стали и условий проведения закалки. Присутствие более мягкой составляющей – аустенита – при наличии даже небольших количеств тростита заметно снижает твердость (что ниже пределов, допускаемых у многих инструментов). Кроме того, содержание углерода в мартенсите (аустените) сталей, сохраняющих избыточные карбиды, меньше

его общего содержания. Поэтому ни структура полумартенситной зоны, ни ее твердость не определяются содержанием углерода и не могут характеризовать прокаливаемость заэвтектоидных сталей.

Прокаливаемость зависит от соотношения скорости охлаждения по сечению детали и критической скорости закалки данной стали. Чем выше скорость охлаждения в сечениях и чем ниже критическая скорость закалки стали, тем на большую глубину прокалится изделие. Скорость охлаждения по сечению детали определяется



охлаждающей способностью закалочной среды, размерами и формой детали.

повышают прокаливаемость сталей. К таким факторам относятся:

мерами и формой детали. Рис.1. Твердость полу-Критическая скорость закалки зависит от факторов, определяющих устойчивость и скорость распада аустенита. Факторы, увеличивающие стойкость переохлажденного аустенита, понижают критическую скорость закалки и тем самым

- 1. Химический состав: все легирующие элементы, кроме кобальта, а также углерод (до 0,9%) понижают критическую скорость закалки и повышают прокаливаемость стали. Прокаливаемость особенно возрастает при одновременном введении нескольких легирующих элементов. Устойчивость аустенита повышается, критическая скорость закалки уменьшается только при том условии, если легирующие элементы (в том числе и углерод) растворены в аустените. Если же они находятся в виде избыточных фаз (цементита, карбидов, нитридов и т. п.), то служат готовыми зародышами и облегчают распад аустенита.
- 2. Сильно влияет на прокаливаемость величина действительного зерна аустенита стали: крупное зерно увеличивает прокаливаемость. Так, в углеродистой стали при укрупнении зерна от 8 до 1-2 баллов глубина закаленного слоя возрастает в 2-3 раза.
- 3. Нерастворимые частицы карбидов (карбонитридов) титана, ниобия, ванадия и других неметаллических включений (оксидов, нитридов и др.) понижают прокаливаемость стали.
- 4. С понижением однородности аустенита его устойчивость и прокаливаемость понижаются.

В современном машиностроении прокаливаемость является одним из основных критериев при выборе стали для изготовления изделий и при назначении режимов термической обработки. Особенно это важно для деталей, работающих в условиях повышенных напряжений и значительных динамических нагрузок, где необходима максимальная однородность структуры.

Существует несколько методов определения прокаливаемости.

Метод пробных закалок, основанный на измерении твердости по сечению закаленного образца. Для определения прокаливаемости этим методом необходимо закалить заготовку, у которой  $L/D \ge 3-4$  (где L- длина заготовки, D- ее диаметр). Охлаждение проводят в воде или иной среде, влияние которой на прокаливаемость требуется изучить. Затем из середины заготовки осторожно, чтобы не вызвать отпуск, вырезают поперечный диск и измеряют твердость по диаметру через каждые 2~mm. На основании полученных данных строят зависимость в координатах твердость по HRC - расстояние от поверхности образца Д. На этой зависимости твердость на поверхности максимальна и понижается к центру образца. Если в этих координатах провести горизонтальную линию на уровне минимально допустимой твердости мартенситной или полумартенситной структуры, то она отсечет на зависимости HRC-Д отрезок h, характеризующий глубину прокаливаемости.

Даже для одной марки стали величина h непостоянна, она зависит от размера детали и скорости охлаждения при закалке.

Этот метод рекомендуется применять для углеродистых, главным образом инструментальных сталей, прокаливаемость которых определяется в небольших сечениях диаметром или стороной до  $\sim 25$ —30 мм.

Метод торцевой закалки (ГОСТ 5657-68) используют для более глубоко прокаливающихся легированных сталей. Прокаливаемость по этому методу определяют на стандартных образцах диаметром 25 *мм*, длиной 100 *мм*, с заплечиком или торцевой выточкой на одном конце для установки образцов в приспособление при закалке с торца.

Образцы под закалку, чтобы избежать окисления и обезуглероживания, нагревают в горячих ваннах, в печах с защитной атмосферой или в патронах с углем.

Продолжительность нагрева зависит от марки стали и для низко- и среднелегированных сталей составляет 30—35 *мин*. После выдержки образцы быстро переносят из печи в специальную установку для торцевой закалки (рис. 2), время переноса не более 5 c. Затем включают подачу воды для охлаждения образца с торца, причем струя должна омывать только торец образца. Образец выдержива-

ют под водяной струей до полного его охлаждения. Время охлаждения не менее 10 *мин*, температура воды должна быть в пределах 10—25°C.

В этих условиях скорость охлаждения закаливаемого торца соответствует скорости охлаждения в воде (до  $1000 \ epad/c$ ), скорость охлаждения другого (верхнего) торца соответствует скорости охлаждения на воздухе (3—4  $\ epad/c$ ). Остальные участки образца между торцами охлаждаются с промежуточной скоростью.

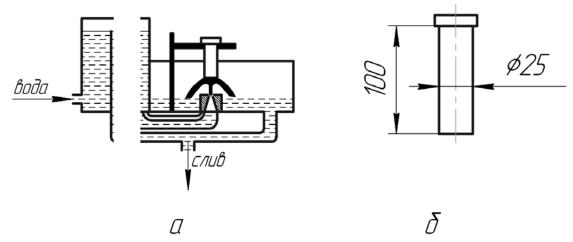



Рис. 2. Установка (а) и образец (б) для торцевой закалки

После закалки образец подвергается испытанию на твердость. Для этого по длине образца сошлифовывают (с двух противоположных сторон по диаметру) слой толщиной 0,5 мм. Шлифуют при интенсивном охлаждении. На шлифованной полосе проводят среднюю линию и делают разметку для замера. Определение твердости производится по Роквеллу по средней линии через 2 мм (по разметке).

Результаты испытаний выражают графически в координатах твердость — расстояние от охлаждаемого торца, то есть строят кривую прокаливаемости (диаграмму прокаливаемости). Если прокаливаемость определяют на нескольких образцах различных плавок, то строят полосу прокаливаемости. По кривым прокаливаемости находят расстояния — от закаливаемого торца до слоя с полумартенситной структурой, а по этим расстояниям определяют критическое сечение тела, которое прокаливается насквозь с получением в сердцевине полумартенситной структуры. Для этого используется специальная номограмма М. Е. Блантера (рис. 3), которая позволяет определить критический диаметр в зависимости от формы тела (шар, цилиндр, квадратный брусок) и вида охлаждающей среды (вода, масло, воздух). Данные торцевой закалки, кроме критических диаметров, позволяют решать и такие важные задачи, как распределение скорости охлаждения, структуры в телах сложной формы.

Методы, основанные на тепловом моделировании, которое достигается применением теплоизоляционных слоев термостатов, нагревателей с программным изменением температуры и т. п., применяют для определения прокаливаемости сталей, принимающих закалку с охлаждением на воздухе, то есть прокаливающихся полностью в крупных сечениях (диаметром более 100 мм).

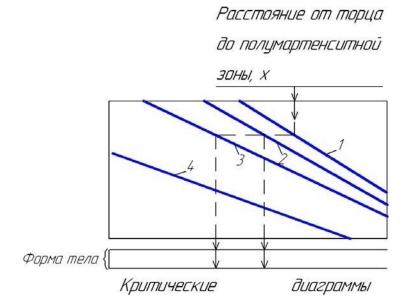



Рис. 3. Схема расчета прокаливаемости по номограмме Блантера. Охлаждение: I — идеальное, 2—в воде  $20^{\circ}$ С, 3 — в масле, 4 — на воздухе

#### Контролируемый минимум знаний

- 1. Понятие о прокаливаемости стали.
- 2. Глубина прокаливаемости конструкционных и инструментальных сталей.
- 3. Зависимость прокаливаемости от критической скорости закалки данной стали и действительной скорости охлаждения.
  - 4. Полумартенситная структура.
  - 5. Факторы, влияющие на прокаливаемость стали.
  - 6. Метод пробных закалок.
  - 7. Метод торцевой закалки.
  - 8. Кривые (диаграммы) прокаливаемости, полосы прокаливаемости.
- 9. Номограмма для определения прокаливаемости по результатам торцевой закалки и использование ее.
  - 10. Критический диаметр закалки.

#### ПРАКТИЧЕСКАЯ ЧАСТЬ РАБОТЫ

#### Задачи работы

- 1. Овладение теоретическими знаниями о прокаливаемости и ее значении в практике термической обработки.
- 2. Ознакомление с методами определения прокаливаемости по результатам пробных закалок и торцевой закалки.
- 3. Определение прокаливаемости некоторых сталей и ее зависимости от химического состава сталей.

#### Материальное оснащение

- 1. Методическая разработка.
- 2. Темплеты сталей У8, 25, 40Х, 40ХНМ, изготовленные методом пробных закалок.
  - 3. Установка для определения прокаливаемости методом торцевой закалки.
  - 4. Муфельные печи.
  - 5. Образцы из сталей 20, 40, 40Х, ЗОХГСА, 40ХНМ и др.
  - 6. Твердомер типа «Роквелл».
- 7. Приспособление для замера твердости на образцах, подвергнутых торцевой закалке.

#### Содержание отчета

- 1. Основные понятия о прокаливаемости.
- 2. Описание методов пробных закалок и торцевой закалки с изображением схемы установки.
- 3. Результаты экспериментальной части работы:
- а) результаты испытания на твердость образцов после пробных закалок и торцевой закалки;
- б) кривые распределения твердости (диаграммы прокаливаемости) в координатах твердость диаметр образца и твердость расстояние от торца;
- в) значения критического диаметра сталей различного состава, найденные по номограмме М. Е. Блантера, и значения глубины прокаливаемости, определенные на образцах пробных закалок, для разных сталей.
  - 4. Анализ результатов, их объяснение.

#### Порядок выполнения работы

- 1. Ознакомиться с теорией, изложить основные положения в отчете.
- 2. Ознакомиться с установкой и приемами работы на ней.
- 3. Выбрать температуру нагрева под закалку соответственно марке стали.
- 4. Провести торцевую закалку образцов.
- 5. Замерить твердость через 2 мм по двум взаимно перпендикулярным диаметрам на образцах, изготовленных по методу пробных закалок.
- 6. Подготовить (шлифовать две полосы) образцы после торцевой закалки для замера твердости.
- 7. Замерить твердость на торце и на шлифованных плоскостях через 2 *мм* от торца до твердости, немного меньшей твердости полумартенситной зоны.
- 8. Построить кривые распределения твердости (диаграммы прокаливаемости) в координатах твердость диаметр образцов и твердость расстояние от торца.
- 9. По диаграммам прокаливаемости твердость диаметр образца и значениям твердости мартенситной или полумартенситной структуры определить глубину прокаливаемости на образцах пробных закалок.
- 10. Используя номограмму М. Е. Блантера, по расстояниям от торца до твердости полумартенситной зоны определить критические диаметры при охлаждении в трех средах (вода, масло, воздух) и для трех форм тела (шар, цилиндр, брусок) по прилагаемой форме (таблица).
  - 11. Установить влияние состава стали на ее прокаливаемость.
  - 12. Дать объяснение полученным результатам.

#### Критические диаметры испытуемых сталей

| Твердость полу- | Расстояние<br>от торца | Форма                 | Критические диаметры для охла-<br>ждающих сред |                         |      |       |        |
|-----------------|------------------------|-----------------------|------------------------------------------------|-------------------------|------|-------|--------|
| Марка           |                        | полумар-<br>тенситной | Форма<br>тела                                  | Идеальное<br>охлаждение | вода | масло | воздух |
|                 |                        |                       |                                                |                         |      |       |        |

# Практическое занятие № 10. Термическая обработка легированной инструментальной стали

*Цель работы:* изучение особенностей фазовых превращений и режима окончательной термической обработки среднелегированной инструментальной стали.

#### ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

# Структурные превращения при отпуске легированных сталей

Инструментальные стали обладают высокой твердостью, прочностью и износостойкостью, что достигается высоким содержанием углерода и закалкой на мартенсит с последующим отпуском. Инструменты, разогреваемые в работе до достаточно высоких температур, должны обладать этими свойствами и при повышенных (400—600°С) температурах, т. е. быть достаточно теплостойкими (красностойкими).

Теплостойкость связана с отпускоупорностью, которая зависит от уровня и характера легирования стали. Легирующие элементы, растворенные в мартенсите, повышают прочность межатомных связей, замедляют диффузию и тем самым сдерживают выделение углерода из пересыщенного  $\alpha$  — твердого раствора, повышают устойчивость остаточного аустенита против превращения его в мартенсит отпуска, замедляют процессы возврата фазонаклепанной  $\alpha$  — фазы и коагуляции карбидов. Смещение указанных превращений при отпуске к более высоким температурам обеспечивает сохранение более высокой твердости и прочности легированной стали по сравнению с углеродистой при отпуске до данной (достаточно высокой температуры (сравните кривые I и I на рис. 1). В принципе, чем сильнее легирована сталь, тем она отпускоупорнее и теплоустойчивее.

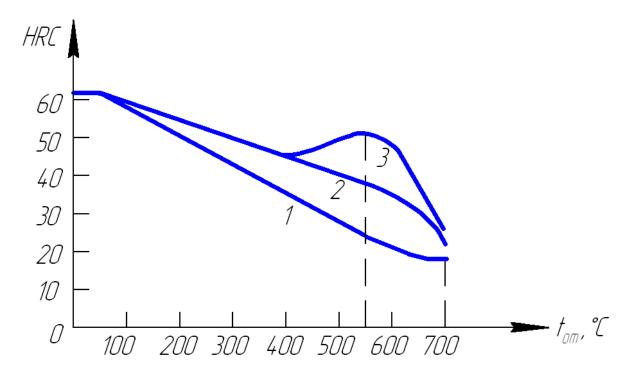



Рис. 1. Схема изменения твердости с повышением температуры отпуска инструментальных ста- лей: 1 — углеродистые стали; 2 — стали, среднелегированные Mn, Cr, Si и другими элемента- ми; 3 — вторично твердеющие стали, легированные сильными карбидообразователями (V, Ti, Nb, Zr),

#### а также Сг, Мо, W

При отпуске до 400—450°C выделяющиеся из раствора (мартенсита) промежуточные карбиды (Fe, Me) 2,4С и легированный цементит (FeMe)3С имеют ту же концентрацию легирующих элементов (Ме), что и в мартенсите, а до закалки – в аустените. В высоко- и среднелегированных сталях легированный цементит термодинамически неустойчив. При более высоких температурах отпуска происходит перераспределение легирующих элементов между твердым раствором и карбидами с образованием промежуточных и стабильных специальных карбидов типа  $Me_{23}C_6$ ;  $Me_7C_3$   $Me_6C$ ;  $Me_2C$ ; MeC. Для практики важно, что выделения таких карбидов, как Me<sub>2</sub>C (Mo<sub>2</sub>C, W<sub>2</sub>C) и особенно MeC (VC, TiC, ZrC, NbC) намного дисперснее растворяющихся частиц цементита, так как они более устойчивы против коагуляции. В связи с этим в сталях, легированных в достаточном количестве одним из сильных карбидообразователей Zr, Nb) или их комбинацией, а также Cr, Mo, W, при повышении температуры отпуска после обычного разупрочнения, вызванного распадом мартенсита и коагуляцией частиц цементита, твердость возрастает или падение ее приостанавливается до температуры 670—600°С (кривая 3 рис. 1). Это явление, обнаруженное после отпуска при 450 – 600°C, называют вторичным твердением, а дисперсионно-твердеющими. Вторичное твердение вождается ростом предела текучести и почти не сказывается на снижении

ударной вязкости стали.

Эффект вторичного твердения в дисперсионно-твердеющих сталях зависит не только от уровня легирования сильными карбидообразователями (V, Ti, Zr, Nb), но и от содержания углерода и других легирующих элементов. Однако механизм и эффект влияния отдельных легирующих элементов в присутствии других на повышение твердости при отпуске 450— 600°С изучены еще недостаточно. Для получения такой же твердости после высокого отпуска в недостаточно твердеющих сталях требуется высокий уровень легирования Сr, Мо или W.

Вторичное твердение широко используется в новых комплекснолегированных теплостойких штамповых сталях, содержащих меньше дефицитных элементов W, Mo. Например, вместо дорогостоящей труднообрабатываемой штамповой стали 3X2B8 сейчас используют более дешевые, технологичные и не уступающие по комплексу эксплуатационных свойств дисперсионно-твердеющие стали 4X2B5MФ, 5X2B3MФ1С, 4X3B3MФС и пр. К числу дисперсионно-твердеющих относятся и новые полутеплостойкие стали для валков горячей прокатки алюминиевых сплавов типа X2МФБ и X2ГСФБ с содержанием углерода от 0,55 до 0,7%.

## Особенности термообработки дисперсионнотвердеющих сталей

Термическая обработка легированных инструментальных сталей, в том числе дисперсионно-твердеющих, имеет ряд специфических особенностей. Легирование их повышают критические точки  $A_1$  и  $A_3$ . Кроме того, стали, легированные сильными карбидообразователями, требуют повышенных температур нагрева под закалку (950 — 1200°C) и продолжительных выдержек при этих температурах для растворения термически стойких карбидов типа МеС, Ме<sub>2</sub>С, так как высокая их теплостойкость будет реализована только в том случае, если эти легирующие элементы будут переведены в твердый раствор (аустенит - при нагреве, мартенсит после закалки). Чем выше температура нагрева под закалку, тем больше углерода и легирующих элементов (в том числе V, Ti, Zr, Nb, Mo, W) переходит в твердый раствор, тем больше количество дисперсных карбидов типа МеС и Ме2С выделяется при отпуске 450 — 600°C и тем самым сильнее эффект вторичного твердения. Однако чрезмерно высокие температуры закалки могут привести к полному растворению всех карбидов, после чего начнется быстрый рост зерна аустенита? и после закалки получится крупноигольчатый мартенсит вязкостьюразрушения. Оптимальные температуры и выдержки при нагреве под

закалку оп- ределяются экспериментально и приводятся в справочниках.

Повышенные температуры нагрева под закалку требуют принятия мер против обезуглероживания поверхностного слоя, особенно в сталях, содержащих Мо и Si. Для предотвращения образования трещин при закалке с высоких температур нагрева закалочное охлаждение должно быть достаточно «мягким» (обычно в масле, но не в воде), целесообразно применение подстуживания до 700°С.

#### Состав и режимы термообработки исследуемых сталей

В данной работе изучается термическая обработка трех инструментальных сталей: У8 (У7), 75ХМ и одной из полутеплостойких дисперсионнотвердеющих сталей типа  $70X2M\Phi E$  — для изготовления валков «теплой» прокатки (табл. 1).

Таблица 1 **Химический состав дисперсионно-твердеющих сталей** 

| Марка стали | Номе<br>р<br>плавк | Содержание элементов, % |      |      |      |      |      |        |  |
|-------------|--------------------|-------------------------|------|------|------|------|------|--------|--|
|             |                    | C                       | Mn   | Si   | Cr   | Мо   | V    | Nb     |  |
| 70Х2МФБ     | _                  | 0,74                    | 0,57 | 0,26 | 2,08 | 0,47 | 0,55 | 0,18   |  |
| МХ2МФБ      | 37                 | 0,52                    | 0,62 | 0,28 | 1,82 | 0,51 | 0,44 | 0,09   |  |
| 55Х2СМФБ    | 5                  | 0,53                    | 0,29 | 0,89 | 1,91 | 0,25 | 0,55 | 0,12   |  |
| 55Х2ГСФБ    | 4                  | 0,54                    | 0,91 | 0,89 | 2,05 | _    | 0,46 | 0, 105 |  |

Эти стали близки к эвтектоидным и в отожженном состоянии (830°С, 1 ч, охл.  $60^{\circ}$  C/4 до  $600^{\circ}$  далее на воздухе) имеют перлитную структуру со сфероидизированными карбидами. Фазовый состав сталей: феррит, легированный Mn, Si, Cr, Mo, карбид цементитного типа  $Me_3C$ , где Me = Fe, Cr, Mo и небольшое количество специальных карбидов (Cr,MO) $_7C_3$ ; VC и NbC. Кинетика растворения карбидов и насыщения твердого раствора легирующими элементами с повышением температуры закалки показана на примере стали  $70X2M\Phi E$  на рис. 2. Основную роль в дисперсионном твердении при отпуске данной стали играет V. Присутствие Cr и Mo в твердом растворе усиливает эффект твердения. Наибольшая твердость этой стали после отпуска

при 500—600°C наблюдается при закалке с температур почти полного рас-

творения карбида VC. Закалка с  $t < 900^{\circ}$ C не вызывает вторичного твердения и в этом случае сталь имеет пониженную твердость после отпуска в указанном интервале температур.

Особенно трудно растворим карбид NbC, который частично сохраняется вплоть до плавления и препятствует сильному росту зерна аустенита. Сдерживанию роста зерна способствуют и не растворившиеся карбиды VC. Укрупнение зерна в данной стали начинается при закалке с температур выше  $1050^{\circ}$ C. Закалка с  $t \le 1050^{\circ}$ C обеспечивает сохранение мелкого зерна (номер 9 — 10, d = 7— 17  $m\kappa m$ ), что предопределяет повышенный предел текучести и ударную вязкость.

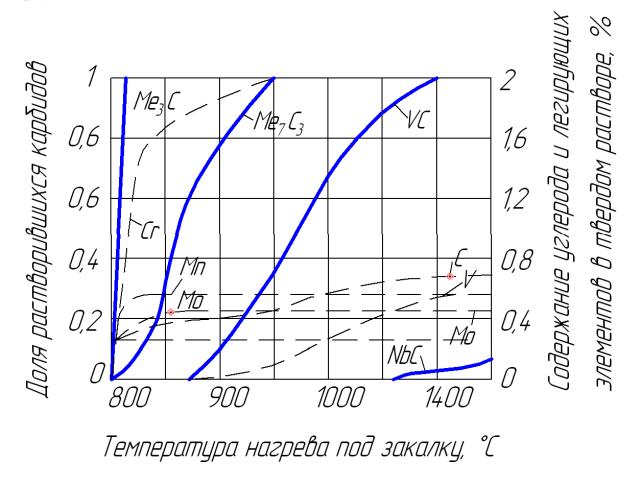



Рис. 2. Растворение карбидных фаз и насыщение аустенита легирующими элементами в стали 70X2MФБ

Аналогичные превращения при нагреве под закалку и отпуске имеют и другие стали из табл. 1. В сталях с содержанием углерода 0,55% интервал температур растворения карбида VC несколько снижается, но это не меняет в принципе положения о необходимости высоких температур закалки этих сталей. Рассмотренные стали предназначены для изготовления рабочих валков станов горячей листовой прокатки алюминиевых и других цветных сплавов, поверхност- ный слой которых

в процессе эксплуатации нагревается до 400—450°С и твер- дость поверхности бочки которых должна быть не ниже 47 HRC при глубине зака- ленного слоя не менее 15 мм. Исходя из рабочих температур валков, температура их отпуска должна быть не ниже 500°С.

Сталь 75ХМ (-0.75% С, -1.5% Сг,  $\sim 0.3\%$  Мо) не является дисперсионнотвердеющей, так как имеет карбид только цементитного типа Me3C, предназначена для изготовления крупных опорных валков. Отпускоупорность ее ниже, чем сталей типа X2МФБ, но выше, чем простой углеродистой, У7, У8. Ее критическая точка A1 равна 750—770°С.

#### Контрольные вопросы

- 1. Сущность закалки, структура и свойства закаленной стали.
- 2. Выбор температуры нагрева под закалку сталей с разным содержанием углерода, в т. ч. заэвтектоидных.
  - 3. Превращения мартенсита при отпуске закаленной углеродистой стали.
- 4. Влияние температуры отпуска на структуру и свойства углеродистой стали.
- 5. Основные требования к инструментальным сталям, предназначенным для работы при повышенных температурах.
- 6. Влияние легирования на превращения при отпуске, структуру и свойства стали.
  - 7. Сущность вторичного твердения.
  - 8. Дисперсионнотвердеющие стали и области их применения.
  - 9. Влияние легирования на критические точки стали.
- 10. Особенности кинетики растворения карбидных фаз и выбора температуры нагрева под закалку легированных сталей, в том числе сильными карбидообразователями.
  - 11. Особенности технологии проведения высокотемпературной закалки.

#### ПРАКТИЧЕСКАЯ ЧАСТЬ РАБОТЫ

Данная работа наряду с учебными решает и некоторые исследовательские задачи. Исследовательский характер лабораторной работы требует тщательной подготовки и проведения эксперимента.

Основные задачи работы

- 1. Изучить влияние уровня и характера легирования на режимы аустенизации и закалки, на отпускоупорность (теплостойкость) инструментальных сталей.
- 2. Обосновать и выбрать параметры режима окончательной термообработки дисперсионно-твердеющей стали типа X2MФБ (X2ГСФБ), обеспечивающей твердость не менее 47 HRC при максимально возможной температуре отпуска не ниже 450°C.

Из-за недостатка времени и оборудования (печи, твердомеры) силами одной подгруппы полное исследование режимов закалки и отпуска трех сталей невыполнимо. Поэтому работа состоит из двух частей (вариантов), выполняемых разными группами (подгруппами) в различное время с обменом информацией о результатах исследования между ними (через преподавателя).

#### Задание на первый вариант работы:

- 1. Исследовать влияние температуры нагрева под закалку (выдержка 40 мин) на твердость закаленных и отпущенных при 550°C в течение 1 ч сталей тапа Х2МФБ (Х2ГСФБ), 75ХМ и У7 (У8).
- 2. Проанализировать и объяснить полученные зависимости для каждой стали и в сопоставлении их друг с другом.
- 3. Выбрать оптимальный температурный интервал нагрева под закалку сталей 70X2MФБ (X2ГСФБ) и 75XM.

# Задание на второй вариант работы:

- 1. Исследовать влияние температуры отпуска (т 1 ч) на твердость сталей  $70X2M\Phi E$  ( $X2\Gamma C\Phi E$ ) и Y7 (Y8), закаленных по оптимальному режиму (предположительно: для первой  $1000^{\circ}C$ , для второй  $900^{\circ}C$ , для третьей  $800^{\circ}C$ , но можно для сокращения количества печей брать  $900^{\circ}C$ ).
- 2. Проанализировать и объяснить полученные зависимости твердости от температуры отпуска для всех трех сталей и в сопоставлении их друг с другом.
- 3. Выбрать температурный интервал отпуска стали  $X2M\Phi F$  ( $X2\Gamma C\Phi F$ ), обеспечивающий после закалки с оптимальной температуры твердость не менее 47 HRC.

# Материальное оснащение работы

- 1. Инструкция к работе.
- 2. Подготовленные под термообработку образцы трех сталей по 1 2 шт. на точку.
- 3. Печи 4 шт. для первого варианта и 5 шт. для второго

варианта работы, в т. ч. шахтная на температуру более 1000°C.

- 4. Закалочные среды вода и масло.
- 5. Твердомеры, проверенные по эталонным плиткам.
- 6. Наждаки (2 шт.) для снятия обезуглероженного слоя.
- 7. Штангенциркули.
- 8. Готовые микрошлифы сталей после закалки с разных температур.

## Порядок выполнения работы по первому варианту

- 1. Исходя из данных о критических точках и фазовом составе сталей, выбрать ориентировочно не менее трех температур нагрева под закалку для каждой стали и согласовать с преподавателем, выбрать также охлаждающие среды и способ охлаждения при закалке.
- 2. Снять фаски на наждаке и нанести метки выбранных температур закалки на образцах сталей. Связать образцы, предназначенные для нагрева под закалку в шахтной печи.
  - 3. Провести закалку образцов по выбранным режимам.
- 4. Подготовить образцы к замеру твердости после закалки. На образцах стали  $X2M\Phi E$  ( $X2\Gamma C\Phi E$ ), особенно закаленных с 900 и  $1000^{\circ}C$ , на наждаке зачищается одна поверхность, а на второй снимается обезуглероженный слой 0,5 ( $900^{\circ}C$ ) и  $\sim 0,7$  ( $1000^{\circ}C$ ), а затем повторно на глубину 0,1 мм после замера твердости до достижения стабильного значения.
- 5. Замерить твердость HRC. Она должна быть на образцах из стали  $X2M\Phi E$  ( $X2\Gamma C\Phi E$ ) не менее 58 HRC, 75XM не менее 60 HRC и Y7 (Y8) не менее 61 HRC.
  - 6. Отпустить образцы при t = 550°С 1 ч.
  - 7. Зачистить на наждачной бумаге.
  - 8. Замерить твердость отпущенных образцов.
- 9. Построить графики зависимости твердости от температуры закалки отпущенных образцов трех сталей (три кривые).
  - 10. Просмотреть и зарисовать микроструктуры закаленных сталей
- 11. Анализ результатов и выводы по оптимальным температурам закалки. Рассчитать  $\sigma_{e}$  и  $\sigma_{0,2}$  для стали Х2МФБ, как указано в п. 2 второго варианта.

*Примечание*. Для стали У7 (У8) может быть выбрана только одна или две температуры закалки.

# Порядок выполнения работы по второму варианту

- 1. Исходя из теоретических предпосылок о вторичном твердении, выбрать не менее трех температур отпуска стали типа X2MФБ (X2ГСФБ) и назначить также температуру отпуска двух других сталей (75XM, У7), согласовав их с преподавателем.
- 2. Снять фаски 1,5х45° на наждаке и нанести метки выбранных температур отпуска на образцах всех трех сталей. Связать проволокой образцы, предназначенные для закалки в шахтной печи.
- 3. Провести закалку образцов по оптимальным режимам для каждой марки, информация о которых представляется преподавателем по результатам исследования другими подгруппами, выполнившими работу по первому варианту.
- 4. Подготовить образцы к замеру твердости после закалки, как указано в п. 4 для первого варианта.
- 5. Замерить твердость закаленных образцов: ориентировочные ее значения указаны в п. 5 первого варианта.
- 6. Отпустить закаленные образцы при трех-четырех выбранных температурах в течение 1 ч.
  - 7. Зачистить отпущенные образцы на наждачной бумаге.
- 8. Произвести замер твердости образцов (не менее 4 измерений на один образец), предварительно удостоверившись в правильности показаний прибора.
- 9. Построить графики зависимости твердости от температуры отпуска для трех сталей.
- 10.Проанализировать результаты: оценить влияние легирования на величину твердости при разных температурах отпуска и характер ее изменения с повышением температуры.
  - 11. Просмотреть и зарисовать микроструктуры закаленных сталей.
- 12. Рекомендовать температуру отпуска стали Х2МФБ (Х2ГСФБ), исходя из необходимой твердости валков не менее 47 *HRC*.
- 13. Рассчитать предел прочности и предел текучести этой стали по формулам

$$\sigma = k$$
 $d = k$ 
 $d =$ 

#### Содержание отчета

- 1. Конкретная цель работы.
- 2. Основные сведения о влиянии легирования на фазовые превращения, структуру и свойства инструментальных сталей.
- 3. Сведения о химическом составе, равновесном фазовом составе и критических точках исследуемых сталей.
  - 4. Методика проведения эксперимента.
- 5. Режимы термообработки и результаты измерения твердости, сведенные в табл. 2 и 3.

Таблица 2 Влияние температуры закалки на твердость сталей, отпущенных при\_°C сталей

|             | Pe                                     | ежимы закалі                    | си           |                                        |                            |        |                                     |  |
|-------------|----------------------------------------|---------------------------------|--------------|----------------------------------------|----------------------------|--------|-------------------------------------|--|
| марка стали | температура,<br>°С                     | а, выдержка, охла-<br>мин ждающ |              | Твердость после<br>закалки, <i>HRC</i> | Отпуск по<br>оптим. режиму |        | Твердость после отпуска, <i>HRC</i> |  |
|             |                                        |                                 | а я<br>среда |                                        | t, °C                      | τ, мин |                                     |  |
|             | $t_I$                                  |                                 |              |                                        |                            |        |                                     |  |
| Х2МФБ       | $t_2$                                  |                                 |              |                                        |                            |        |                                     |  |
|             | t                                      |                                 |              |                                        |                            |        |                                     |  |
| 75XM        | $egin{array}{c} t_1 \ t_2 \end{array}$ |                                 |              |                                        |                            |        |                                     |  |
|             | $t_3$                                  |                                 |              |                                        |                            |        |                                     |  |
| У7          | $t_{I}$                                |                                 |              |                                        |                            |        |                                     |  |
|             | $t_2$                                  |                                 |              |                                        |                            |        |                                     |  |

*Примечания*: 1. Оптимальный режим отпуска выбирается по результатам исследования других групп, температура отпуска лежит в пределах 500— 580°C (берется, например, 550°C), выдержка — 1 час.

2. Рекомендуются примерно следующие интервалы температур закалки:  $t_1 = 820$  - 860°C,  $t_2 = 890$ — 920°C,  $t_3 = 1000$ —1050.

# Влияние температуры отпуска на твердость закаленных по оптимальному режиму сталей

| Марка Закалка по оптимальным |                    | твердость после закалки, <i>HRC</i> |                      | Режимы<br>отпуска |                   | Твердость после<br>от- пуска, <i>HRC</i> |  |
|------------------------------|--------------------|-------------------------------------|----------------------|-------------------|-------------------|------------------------------------------|--|
| стали                        | температура,<br>°С | выдержка,<br>мин                    | охлаждающая<br>среда |                   | t. °C             | τ, мин                                   |  |
| Х2МФБ                        |                    |                                     |                      |                   | $t_1$ $t_2$ $t_3$ |                                          |  |
| 75XM                         |                    |                                     |                      |                   | $t_1$ $t_2$ $t_3$ |                                          |  |
| У7                           |                    |                                     |                      |                   | $t_1$ $t_2$ $t_3$ |                                          |  |

Примечание: 1. Оптимальный режим закалки выбирается по результатам исследования дру- гих групп: ориентировочно температура закалки для  $X2M\Phi E$  - $1000^{\circ}C$ , для 75XM — 900 —  $920^{\circ}C$ , для Y7 — 780 —  $800^{\circ}C$  (но берется 900 —  $920^{\circ}C$ ).

- 2. Рекомендуются примерно следующие температуры отпуска:  $t_1 \approx 450$ °C,  $t_2 \approx 550$ °C,  $t_3 \approx 650$ °C.
  - 6. Графики зависимости:
- а) твердости HRC от температуры закалки отпущенных по оптимальному режиму ( $t \approx 550$ °C, t = 1ч) исследуемых сталей;
- 6) твердости HRC от температуры отпуска закаленных по оптимальному режиму сталей.
  - 7. Рисунки микроструктур закаленных сталей.
  - 8. Выводы по работе с анализом результатов эксперимента и их соответствия теории.
  - 9. Рекомендации по режиму термической обработки и прочностным свой- ствам стали типа X2МФБ (X2ГСФБ) на твердость *HRC*≥47.

#### легированных сталей

*Цель работы:* научить студентов по марке стали определять ее химический состав, а по химическому составу — назначение и структурный класс и производить анализ микроструктуры легированных сталей.

#### ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

#### Маркировка и классификация легированных сталей

Простые углеродистые стали обладают рядом существенных недостатков. Они имеют малую прокаливаемость, низкую устойчивость мартенсита закалки при отпуске, низкую коррозионную стойкость и жаропрочность, не обладают особы- ми магнитными и электрическими свойствами. Присадкой специальных леги- рующих добавок эти недостатки частично или полностью устраняются.

В настоящее время в практике используется очень большое количество легиро- ванных сталей. В качестве легирующих элементов применяются хром, никель, молибден, вольфрам, ванадий, кобальт, титан, алюминий, ниобий, медь и др., а также кремний и марганец при их повышенном, против обычного, содержании.

Для обозначения марок стали разработана система, состоящая из небольшого числа цифр и букв, указывающих примерный состав стали. Каждый легирующий элемент обозначается буквой русского алфавита: Н— никель, X — хром, K — кобальт, C — кремний, M — молибден,  $\Gamma$  — марганец,  $\Pi$  — медь,  $\Pi$  — бор,  $\Pi$  — ниобий,  $\Pi$  — цирконий,  $\Pi$  — фосфор,  $\Pi$  — вольфрам,  $\Pi$  — ванадий,  $\Pi$ 

— азот, Ю — алюминий, Т — титан, Ч — редкоземельные элементы. Первые цифры в обозначении марки показывают среднее содержание углерода в сотых долях процента (у высокоуглеродистых инструментальных сталей — в десятых долях процента). Цифры, идущие после буквы, указывают на примерное содержание данного легирующего элемента. При содержании элемента менее 1

% цифра отсутствует, при содержании около 1 % — цифра 1, если это сильный карбидообразователь (V, Nb и т. д.) и около 2% — цифра 2 и т. д. В соответствии с этим сталь состава 0.28-0.35% C; 0.8-1.1% Cг; 0.9-1.2% Мn, 0.8-1.2% Si обозначают 30XГСА. Буква A в конце маркировки указывает на ограниченное содержание серы и фосфора (S<0.03%, P<0.03%). Сталь, содержащую 0.85-0.95% C; 0.95-1.25% Cг, 1.2-1.6% Si, маркируют 9XC,

а сталь, содержащую 1,45—1,7% С, 11,0—12,5% Сг, 0,4—0,6% Мо, маркируют Х12М (при содержании углерода более 1% цифры в начале маркировки обычно опускают).

Быстрорежущие стали принято маркировать буквой Р, после которой идет цифра, указывающая на содержание главного легирующего элемента таких сталей — вольфрама — в целых процентах (например, Р18), среднее содержание кобальта обозначают цифрой после буквы К, ванадия — после Ф и т. д. (например, Р18К5Ф2). В шарикоподшипниковых сталях в начале маркировки стоит буква Ш, а содержание хрома указывается не в целых процентах, а в десятых долях процента (например, ШХ15). Допускаются нестандартные обозначения некоторых высоколегированных сталей. Так, например, опытные марки, выплавляемые на заводе «Электросталь», обозначаются буквой Э, далее буквой И (исследовательские) или П (пробные) и порядковым номером: ЭИ69, ЭП398 и т. д.

Легированные стали классифицируют по составу (хромистые, хромоникелевые и т. д.), по назначению и структуре. По назначению стали делят на следующие группы.

**Конструкционные стали**, идущие на изготовление деталей машин и элементов конструкций. Они могут быть общего и специализированного назначения. К первым относят низкоуглеродистые (до 0,25% С) цементуемые (нитроцемен- туемые) стали, среднеуглеродистые (0,3 - 0,5% С) улучшаемые стали, высоко- прочные стали (мартенситно-стареющие, вторично твердеющие и др.). Ко вторым относят строительные (низколегированные), пружиннорессорные, подшипнико- вые, листовые стали для холодной штамповки и пр.

**Инструментальные стали**, идущие на изготовление различного инструмента. Их условно подразделяют на углеродистые и низколегированные общего назначения, быстрорежущие и штамповые.

Стали и сплавы с особыми свойствами. Сюда относятся стали, обладающие каким-либо резко выраженным свойством: нержавеющие, жаропрочные, износостойкие, с особыми магнитными и электрическими свойствами, с особенностями теплового расширения и т. д. К ним по назначению и свойствам примыкают жаропрочные сплавы на никелевой и кобальтовой основах.

С металловедческой точки зрения более показательной считается классификация по структуре. Стали классифицируют по структуре в отожженном (равновесном) состоянии и по структуре в нормализованном состоянии. Классификация сталей по равновесной структуре учитывает влияние легирующих элементов на полиморфные превращения (диаграмму равновесного состояния) и положение точек «S» и «E» диаграммы железо-углерод. По равновесной

структуре стали подразделяют на доэвтектоидные, эвтектоидные, заэвтектоидные, ледебу- ритные (карбидные), ферритные, аустенитные и феррито-аустенитные (полу- ферритные).

Классификация сталей в нормализованном состоянии производится по структуре образцов небольшого сечения (до 25 мм), охлажденных после нагрева выше критических точек на воздухе. В основу такой классификации положено влия- ние легирующих элементов на диаграмму распада переохлажденного аустенита и температуру начала и конца мартенситного превращения. По структуре в нормализованном состоянии стали подразделяют на три класса — перлит- ный, мартенситный и аустенитный. Кроме того, могут быть стали аустенитно- мартенситного (переходного), феррито-мартенситного и других классов.

Перлитные стали после отжига содержат в структуре или только перлит, образующийся из аустенита по эвтектоидной реакции (эвтектоидные), или, кроме него, еще избыточный феррит (доэвтектоидные), или вторичные карбиды типа Ме<sub>3</sub>С (заэвтектоидные). В перлитных малолегированных сталях, содержащих примерно до 4% легирующих элементов, после нормализации получается структура перлитного типа (перлит, сорбит, тростит) с возможными включениями феррита у доэвтектоидных и цементита у заэвтектоидных сталей. На этом основании их относят к перлитному классу (рис. 1,слева).

При содержании легирующих элементов приблизительно от 4 до 10% две Собразные кривые на диаграмме распада аустенита смещены вправо настолько, что после нормализации структура стали получается преимущественно мартенситная (рис. 1, справа). Поэтому такие среднелегированные стали относят к мартенситному классу.

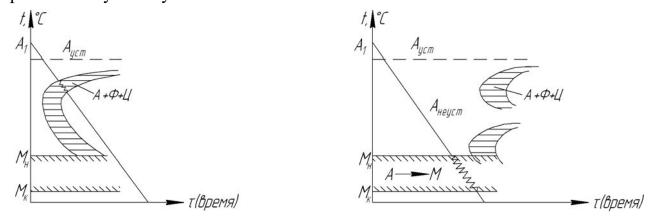



Рис. 1. Схемы изотермического распада аустенита в сталях перлитного *(слева)* и мартенситного *(справа)* классов

К перлитному классу относятся большинство марок конструкционных (20X, 3ОХГСА, ШХ15 и др.) и инструментальных (9ХС, ХВГ и др.) сталей. Сталями

мартенситного класса являются некоторые конструкционные (18Х2Н4ВА, 3ХН3МФА и др.), инструментальные (3Х2В8 и др.), хромистые нержавеющие (30Х13, 40Х13) и жаропрочные клапанные (40Х9С2 и др.) стали. Сюда же можно причислить высокопрочные мартенситностареющие стали (Н18К9М5Т и др.).

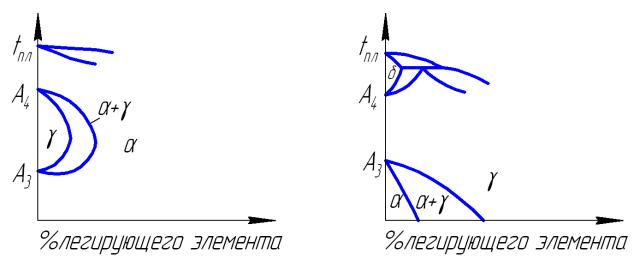
Легированные стали перлитного класса от простых углеродистых выгодно отличаются тем, что для получения мартенситной структуры могут закаливаться в масле, тогда как углеродистые стали должны закаливаться в воде, т. е. требуют более резкого охлаждения. Резкое охлаждение при закалке углеродистых сталей ведет к короблению деталей, а также может вызвать растрескивание. Самыми лучшими в этом отношении являются стали мартенситного класса. В них мартенсит образуется при закалке на воздухе. Коробление в этом случае получается наименьшее. Кроме того, с увеличением содержания легирующих элементов увеличивается прокаливаемость (глубина проникновения закаленной зоны от поверхности к центру), что позволяет производить упрочнение путем закалки и отпуска изделий больших сечений. У простых углеродистых сталей прокаливаемость очень низкая, у легированных сталей перлитного класса — умеренная, а у сталей мартенситного класса — большая.

Многие легирующие элементы, особенно кремний, молибден и вольфрам, растворенные в мартенсите, препятствуют его распаду при отпуске. Поэтому при одинаковой температуре отпуска легированные стали имеют более высокую твердость по сравнению с простыми углеродистыми. Это свойство является особенно важным для некоторых инструментальных сталей, от которых требуется высокая красностойкость.

В легированных сталях указанных классов структура сорбит сохраняет часто ориентировку по мартенситным иглам до высоких температур отпуска. В этом случае структура называется сорбитом, ориентированным по мартенситу.

Как уже указывалось, стали мартенситного и перлитного классов в равновесном состоянии могут быть доэвтектоидными, эвтектоидными и заэвтектоидныви в зависимости от содержания углерода. Однако в связи с тем, что все легирую- щие элементы сдвигают влево точки *S* и *E* диаграммы железо углерод, эвтекто- идная концентрация у легированных сталей всегда меньше, чем 0,8% С. Поэтому у отожженных доэвтектоидных легированных сталей при равном с углероди- стыми сталями содержании углерода площадь, занятая перлитом на микро- шлифе, оказывается всегда больше, чем у углеродистых. Так, в стали

ЗОХГСА доля перлита составляет примерно 60% и феррита примерно 40%, тогда как в стали 30 доля перлита составляет только 40%, а феррита — 60%.


Ледебуритные стали — это инструментальные стали с высоким содержанием углерода и карбидообразующих элементов (W, Mo, Cr и др), сдвигающих точку

«Е» диаграммы железо—углерод влево до концентраций углерода меньших, чем в стали. После литья структура таких сталей состоит из ледебурита, перлита и вторичных карбидов. При ковке грубые ледебуритные (первичные) карбиды раздробляются на более мелкие. В отожженном после ковки состоя- нии структура стали состоит из сорбитообразного перлита, первичных (более крупных) и вторичных (более мелких) карбидов, общее количество которых мо- жет достигать 30—35%. Поэтому стали иногда называют карбидными. Приме- ром может служить сталь P18 ( $\sim 0.7\%$  C,  $\sim 18\%$  W,  $\sim 4\%$  Cг,  $\sim 1\%$  V), а также стали X12M.9X18 и др.

По структуре в нормализованном состоянии многие ледебуритные стали являются сталями мартенситного класса или сталями перлитного класса с глубокой прокаливаемостью. Однако на практике классификация по структуре в нормализованном состоянии для ледебуритных сталей используется редко. После закалки в стали Р18 получается структура, состоящая из мартенсита, аустенита и карбидов. Однако различить мартенсит и аустенит как отдельные структурные составляющие не удается, присутствие бесструктурного мартенсита обнаружива- ется наличием высокой твердости и магнитных свойств. После закалки с 1280°С и трехкратного отпуска при 560°С структура этой стали состоит из бесструктур- ного мартенсита отпуска и первичных карбидов, недорастворившихся при нагре- ве под закалку.

Структура высоколегированных сталей зависит от типа легирующих элементов, их количественного соотношения между собой и содержания углерода в стали. Следует рассмотреть характер взаимодействия легирующих элементов с железом. Существует два принципиально различных типа такого взаимодействия. Хром, ванадий, молибден, вольфрам и некоторые другие элементы, имеющие однотипную решетку с  $\alpha$  - железом, растворяясь в нем (неограниченно и ограниченно), расширяют область существования феррита и называются ферритизаторами (рис. 2, а).

При достаточно большом легировании малоуглеродистой стали этими элементами (обычно хромом) она во всем диапазоне температур твердого состояния будет иметь структуру феррита и относиться к ферритному классу. Если сталь легировать элементами, расширяющими область существования аустенита аустенизаторами (никель, марганец, кобальт и др.), то при определенном их содержании можно получить аустенитную структуру для всех температур твердого состояния выше 20°С (рис. 2,6).



Р и с. 2. Схемы диаграмм состояния железолегирующий элемент с ферритизатором (а) и аустенизатором (б)

Такие стали относятся к аустенитному классу. У этих сталей температура начала мартенситного превращения находится ниже  $0^{\circ}$ C.

Однако высоколегированные стали только одними аустенизаторами (никелем, марганцем) обычно не легируют. Как правило, в них содержится то или иное количество компонентов ферритизаторов, и прежде всего хрома. При определенном их сочетании сталь будет аустенитно-ферритного и ферритномартенситного классов. Для определения структурного класса сталей широко используется диаграмма Шеффлера (рис. 3).

Стали ферритного, аустенитного, аустенитно-ферритного, аустенитномартенситного и мартенситно-ферритного классов относятся в большинстве своем к нержавеющим и жаропрочным и содержат не менее 12% хрома.

Сталями ферритного класса являются хромистые нержавеющие стали 08X13, 15X25T, 12X17, 15X28 и другие. Они не имеют фазовых превращений в твердом состоянии и поэтому не упрочняются термической обработкой. При увеличении содержания углерода или других аустенизаторов в хромистых нержавеющих сталях (например, 12X13, 20X13 и другие) при нагреве, часть феррита превращается в аустенит, который при быстром охлаждении переходит в мартенсит. Такие стали являются мартенситно-ферритными и, следовательно, могут упрочняться термической обработкой.

Самую большую группу высоколегированных сталей составляют хромоникелевые и хромоникелемарганцовистые стали. В качестве примера можно привести следующие марки: 12X18H9T, X13H4Г9, 40X14H14B2M, 20X23H18.

В равновесном состоянии они имеют легированный аустенит, а также некоторое количество карбидов и интерметаллидов. При закалке с 1000—1100°С в них

получается чисто аустенитная (но не мартенситная, как в перлитных и мартенситных сталях) структура, так как вторые фазы (карбиды, интерметаллиды) растворяются при нагреве под закалку. При этом получается наибольшая коррозионная стойкость и высокая пластичность, а упрочнения не происходит. Последнее резко отличает аустенитные стали от ранее рассмотренных мало- и среднелегированных.

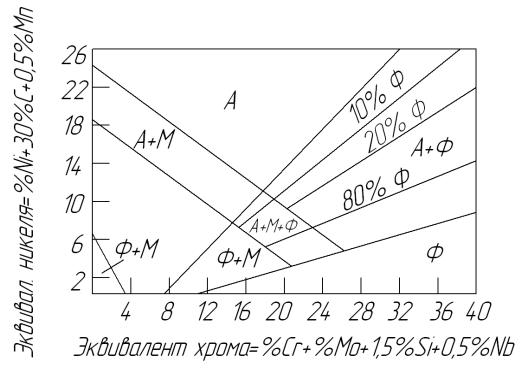



Рис. З. Структурная диаграмма нержавеющих сталей

Однако если в результате закалки аустенит достаточно сильно перенасыщен углеродом и другими легирующими элементами, то старением при 650—700°C можно вызвать упрочнение стали за счет выделения вторичных фаз в мелкодисперсном виде. Таким образом, аустенитные стали могут быть гомогенными, термообработкой, неупрочняемыми дисперсионно-твердеющими, И упрочняемыми завалкой и старением. К первым относятся, в основном, нержавеющие, например, 32XI8H9 и др., ко вторым - жаропрочные, например, 40Х14Н14В2М с карбид- ным упрочнением и Х14Н35ВТЮ с интерметаллидным упрочнением. К последним близко по структуре и принципам упрочняющей термообработки примыкают сплавы на никелевой основе, так называемые нимоники, например, сплав ХН77ТЮР (ЭИ 437Б), широко применяющийся для рабочих турбины газотурбинных изготовления лопаток двигателей. Микроструктура аустенита у нержавею-

щих и жаропрочных сталей весьма характерна. В светлых, довольно крупных и резко очерченных зернах — полиэдрах наблюдаются линии двойникования, не

выходящие за пределы зерна, и двойниковые области, ограниченные двумя параллельными линиями.

Стали переходного аустенитно-мартенситного класса при высоких температурах являются полностью аустенитными и при охлаждении до 20°С сохраняют это состояние, которое является неустойчивым. Это достигается подбором химиче- ского состава и, главным образом, путем снижения содержания никеля по срав- нению со сталями аустенитного класса. Неустойчивый после закалки аустенит при обработке холодом при —70°С частично (до 50—70%) превращается в мар- тенсит, сообщая этим самым стали более высокие прочностные свойства. Допол- нительное упрочнение стали происходит при старении (350—500°С; за счет ряда процессов, связанных с образованием карбидных или интерметаллидных фаз). Эти стали, как и аустенитные, обладая высокими технологическими свойствами, имеют более высокие прочностные свойства. Они используются как нержавею- щие для работы при обычных и высоких (до 500—550°С) температурах. Типовой маркой этих сталей является 09Х15Н9Ю.

Нержавеющие стали аустенитно-ферритного класса в связи с более высоким содержанием хрома и пониженным содержанием никеля имеют двухфазную структуру при всех температурах твердого состояния. Количественное соотношение аустенита и феррита в них зависит не только от химического состава, но и от температуры нагрева под термообработку или обработку давлением и может изменяться в широких пределах. К ним относятся стали 12X22H5T, 08X18Г8H2T и другие. Стабильность механических свойств этих двухфазных сплавов достига- ется только при относительно небольших колебаниях химического состава, что требует прецизионной выплавки.

## Контрольные вопросы

- 1. Понятие о легированной стали и целях легирования.
- 2. Признаки классификации легированных сталей.
- 3. Классификация легированных сталей по назначению.
- 4. Влияние легирующих элементов на полиморфные превращения железа.
- 5. Влияние легирующих элементов на диаграмму железо углерод.
- 6. Влияние легирующих элементов на диаграммы распада переохлажденного аустенита. На чем основывается классификация сталей по структуре в равновесном и нормализованном состояниях?
  - 7. Характеристика основных структурных классов сталей.
  - 8. Принципы маркировки легированных сталей.

#### ПРАКТИЧЕСКАЯ ЧАСТЬ РАБОТЫ

#### Задачи работы

- 1. Освоение основ теории легирования сталей.
- 2. Изучение маркировки и классификации легированных сталей.
- 3. Анализ микроструктуры и свойств некоторых марок легированных ста- лей различных структурных классов.

### Материальное оснащение

- 1. Методическая разработка.
- 2. Плакаты: влияние легирующих элементов на аллотропию железа и распад аустенита, диаграмма структурных классов высоколегированных сталей.
  - 3. Альбом микроструктур.
  - 4. Описание микроструктур и механических свойств легированных сталей.
  - 5. Набор шлифов легированных сталей.
  - 6. Микроскопы МИМ-7.

### Содержание отчета

- 1. Основные сведения из теории легирования сталей.
- 2. Рисунки микроструктур исследованных сталей с указанием их химсоста- ва, назначения, структурного класса и механических свойств.

## Порядок выполнения работы

- 1. Ознакомиться с основными теоретическими положениями, необходимыми для выполнения работы.
- 2. Разбор классификации легированных сталей на нескольких примерах по индивидуальным заданиям. Проведение микроанализа, описание микроструктур и свойств 8—10 сталей.
  - 3. Контроль выполненной работы преподавателем.

#### железоуглеродистых сплавов

Цель занятия: Изучение структуры железоуглеродистых сплавов при их термических превращениях в соответствии с диаграммой «Железо – цементит».

Теоретическая часть

Железоуглеродистые сплавы — стали и чугуны — важнейшие металлические сплавы современной техники. По объему производство чугуна и стали намного более чем в 10 раз превосходит производство всех других металлов вместе взятых.

Железоуглеродистые сплавы, содержащие от 0,02% до 2,14% углерода, относят к *сталям*, а с содержанием от 2,14% до 6,67% углерода - к *чугунам*. Стали и чугуны представляют собой твердые растворы внедрения.

Изучение структуры и свойств железоуглеродистых сплавов в зависимости от температуры целесообразно проводить с помощью диаграммы состояния «Железо — цементит». В этом случае по оси абсцисс рассматривается часть системы от железа до химического соединения железа с углеродом Fe<sub>3</sub>C, называемого цементитом; а по оси ординат — температура.

Структурные составляющие железоуглеродистых сплавов

Железо - металл серебристого цвета. Удельный вес равен 7,82 г/см<sup>3</sup>; температура плавления 1539° С; атомный вес 55,85; атомный радиус 1,27 Å. Железо известно в двух полиморфных модификациях:  $\alpha$ -Fe и  $\gamma$ -Fe. Модификация  $\alpha$ -Fe существует при температурах ниже 911°С и выше 1392°С (рис. 2), для интервала температур 1392-1539 °С  $\alpha$ -Fe нередко обозначают как  $\delta$ -Fe. Кристаллическая решетка  $\alpha$ -Fe - объемноцентрированный куб (о.ц.к.) с периодом решетки 2,86 Å. До температуры 768°С  $\alpha$ -Fe магнитно (ферромагнитно), а выше температуры 768° С - парамагнитно. Критическую точку (768°С), соответствующую магнитному превращению, т. е. переходу из ферромагнитного состояния в парамагнитное, называют точкой Кюри и обозначают  $\Lambda_2$ .

 $\gamma$ -Fe существует в интервале температур от 911 °C до 1392 °C (рис.1); оно парамагнитно, кристаллическая решетка  $\gamma$ -Fe — гранецентрированная кубическая (г.ц.к.). Критическую точку превращения  $\alpha$ -Fe в  $\gamma$ -Fe ( 911°C) обозначают  $A_3$ , а перехода  $\gamma$ -Fe в  $\delta$ -Fe при 1392 °C -  $A_4$ .

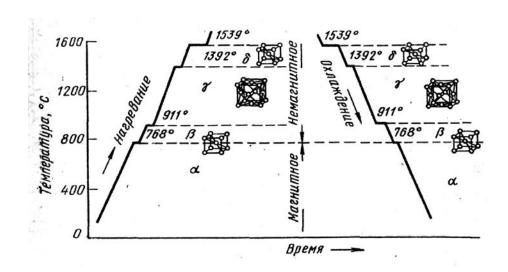



Рисунок 1 - Кривые нагрева и охлаждения чистого железа

Железо со многими элементами образует растворы: с металлами – растворы замещения, с неметаллами (углеродом, азотом и водородом) – растворы внедрения.

Углерод является неметаллическим элементом. Удельный вес равен 2,5 г/см<sup>3</sup>; атомный вес 12,011; температура плавления 3500 °C; атомный радиус равен 0,77 Å. В свободном состоянии углерод встречается в трех аллотропических модификациях: в виде алмаза, графита и угля. Углерод растворим в жидком и в твердом железе, а также может образовывать с железом химическое соединение - цементит (карбид железа).

**Цементит** - химическое соединение железа с углеродом Fe<sub>3</sub>C, содержащее 6,67% C (карбид железа). Цементит имеет сложную решетку с высоким координационным числом и сильными металлическими связями между атомами железа. Температура плавления цементита около 1250°C. Аллотропических превращений цементит не испытывает, но при низких температурах он слабо ферромагнитен. Цементит имеет высокую твердость (НВ > 800), но чрезвычайно низкую, практически нулевую, пластичность. Цементит — соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита.

Цементит может образовываться из жидкой и твердой фаз при различных температурах. Цементит, выделяющийся из жидкой фазы, называют первичным, из аустенита – вторичным, а их α-феррита – третичным.

**Феррит** — твердый раствор углерода в α-железе. Различают низкотемпературный α-феррит с растворимостью углерода до 0.02% (точка Р рисунок 2) и высокотемпературный δ-феррит с предельной растворимостью углерода 0.1% (точка H). α-феррит может содержать в твердом растворе при 723 °C до 0.02% углерода (точка P), а при комнатной температуре — только 0.006% углерода (точка Q). Феррит имеет объемно-центрированную кубическую решетку и ферромагнитен (до 768%), его твердость HB  $\approx 60$ .

**Аустенит** — твердый раствор углерода в γ-железе. Аустенит имеет гранецентрированную кубическую решетку. γ-Fe при температуре 1147°C максимально растворяет углерод - 2,14 % (точка E), а при температуре 723°C

- до 0.8% углерода (точка S). В чистых сплавах железа с углеродом и в простых углеродистых сталях аустенит устойчив только при высоких температурах. Аустенит, как и  $\gamma$ -железо, немагнитен и вязок. Твердость аустенита HB 170 -220.

Диаграмма состояния « $Fe - Fe_3C$ » Диаграмма состояния « $Fe - Fe_3C$ » представлена на рисунке 2.

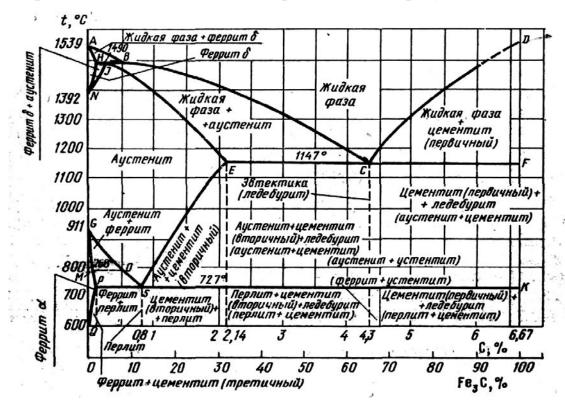



Рисунок 2 - Диаграмма состояния сплавов «Fe—Fe<sub>3</sub>C»

По горизонтальной оси диаграммы откладывается содержание углерода от 0 до 6,67% или от 0 до 100% цементита Fe<sub>3</sub>C, а по вертикальной оси — температура. Каждая точка на диаграмме характеризует определенный состав сплава при определенной температуре.

В ПРИЛОЖЕНИИ приведены таблицы, где указаны соответствующие точкам диаграммы «Fe — Fe<sub>3</sub>C» значения температур и концентраций углерода (табл.1) и значения критических точек диаграммы «Fe — Fe<sub>3</sub>C» (таблица 2).

Верхняя часть диаграммы

Линия ABCD называется ликвидусом (по латыни ликвидус — «жидкий»), начало затвердевания сплавов при переходе из жидкого состояния в твердое, выше этой линии все сплавы находятся в жидком состоянии.

Линия АНЈЕСГ является линией конца затвердевания сплавов и называется солидусом (по латыни солидус — «твердый»).

Чистое железо плавится и затвердевает при 1539 °C (ось ординат). Эвтектический сплав, содержащий 4,3% углерода, плавится и затвердевает при температуре, соответствующей т.С (1130 °C). Остальные сплавыпретерпевают плавление и кристаллизацию в определенном интервале

температур в зависимости от содержания углерода.

При температурах, соответствующих линии AB, из жидкого сплава начинает выделяться твердый раствор δ-феррита. В области AHB существует двухфазное состояние системы – жидкая

фаза + кристаллы δ-феррита. Далее на горизонтали HJB при 1499° происходит перитектическое превращение согласно реакции:

$$L_B + \Phi_H \rightarrow A_J$$
,

при котором жидкая фаза состава точки В ( $L_B$ ) в количестве, определяемом отрезком НЈ, и  $\delta$ -феррит, состава точки Н, ( $\Phi_H$ ), реагируя между собой, образуют аустенит, состава точки Ј, ( $A_J$ ). Поэтому в сплавах, лежащих левее точки Ј (линия НЈN) и потому имеющих избыточное количество кристаллов твердого  $\delta$ -феррита, при переходе линии перитектического превращения образуется структура - аустенит плюс кристаллы  $\delta$ -феррита; в сплавах, лежащих левее т.Н (область АНN) структура -  $\delta$ -феррит, а в сплавах, лежащих правее точки Ј и имеющих избыточное количество жидкой фазы, при переходе линии перитектического превращения образуется структура - аустенит и жидкая фаза.

Правее точки В при температурах, соответствующих линии ВС и ниже ее, из жидкого сплава выделяются кристаллы аустенита с пониженным содержанием углерода, а оставшийся жидкий сплав по мере охлаждения обогащается углеродом.

Затвердевание сплавов, содержащих до 2,14 % C, заканчивается на линии АНЈЕ (линия солидус). Ниже линии NJE сплавы состоят только из одного аустенита.

Затвердевание сплавов, содержащих от 2,14 до 6,67 % углерода, заканчивается на линии ЕСF – линии эвтектического превращения. В этом случае жидкий сплав состава точки С (4,3% углерода) кристаллизуется при постоянной температуре (1130°С) с образованием ледебурита (Л) согласно реакции:

$$L_C \rightarrow A_E + \coprod \rightarrow \coprod$$

Таким образом, ниже линии EC структура затвердевших сплавов будет состоять из аустенита и ледебурита. Ледебурит — эвтектика, т.е. механическая смесь, состоящая в момент образования из аустенита и цементита.

Сплавы, содержащие от 4,3 до 6,67 % С, начинают кристаллизоваться при температурах, соответствующих линии СD (ликвидус) и ниже. Сначала из жидкого сплава выделяются кристаллы первичного цементита, вследствие чего оставшийся жидкий сплав обедняется углеродом. После достижения температуры, соответствующей линии СF (солидус), оставшийся жидкий сплав принимает состав точки С и затвердевает при постоянной температуре. В результате кристаллизации такие сплавы имеют структуру, состоящую из первичного цементита и ледебурита.

Таким образом, сплавы с содержанием менее 2,14 % углерода, будут иметь в структуре аустенит; сплавы, содержащие от 2,14 % до 4,3 % углерода, - ледебурит и аустенит; с содержанием 4,3 % углерода — ледебурит; а с содержанием углерода от 4,3 до 6,67% - ледебурит и первичный цементит.

Нижняя часть диаграммы

В структуре сплавов «Fe—Fe<sub>3</sub>C» превращения протекают также и в твердом состоянии. Это объясняется:

- а) переходом железа из одной аллотропической формы в другую;
- б) изменением растворимости углерода как в  $\gamma$ -железе, так и в  $\alpha$ -железе при понижении температуры.

Линия GS (точка  $A_3$ ) определяет собой температуры начала выделения из аустенита  $\alpha$ -феррита. Она показывает, что температура образования  $\alpha$ -феррита понижается с 911°C для чистого железа до 723° C для сплава, содержащего 0,8% углерода. Феррит, выделяющийся в процессе охлаждения из аустенита, содержит не более 0,02% C, поэтому его выделение ведет к обогащению оставшегося аустенита углеродом.

При понижении температуры до 723° (линия PSK) сплав будет состоять из  $\alpha$ -феррита и аустенита, содержащего 0,8 % С. На линии PSK (точка  $A_3$ ) происходит **эвтектоидное** превращение, описываемое реакцией

$$A_S \rightarrow \Phi_P + \coprod \rightarrow \prod$$

т.е. аустенит  $(A_S)$ , состава точки S, превращается в перлит  $(\Pi)$  – механическую смесь кристаллов феррита  $(\Phi_P)$  и цементита  $(\coprod)$ . Такая смесь называется эвтектоидной.

В результате эвтектоидного превращения сплавы, содержащие менее 0,8 % углерода, имеют структуру, состоящую из феррита и перлита; а содержащие 0,8 % углерода - структуру, состоящую из одного перлита.

Различие между перлитным и эвтектическим превращениями заключается в том, что перлит образуется из твердой фазы, а не из жидкой, как ледебурит.

Линия SE (точка A<sub>ст</sub>) определяет растворимость углерода в аустените в зависимости от температуры. При 1130 °C в аустените растворяется 2,14% углерода. С понижением температуры растворимость углерода постепенно уменьшается и при 723 °C составляет 0,8% углерода. Поэтому линия SE является линией начала выделения вторичного цементита при охлаждении аустенита, содержащего более 0,8% углерода. Так как цементит отличается высоким содержанием углерода (6,67% С), то выделение цементита ведет к количества углерода В остающемся уменьшению аустените. продолжается до эвтектоидной температуры 723 °C, т. е. до линии PSK (точка  $A_1$ ), когда оставшийся аустенит обедняется углеродом до 0.8% и превращается в перлит. Структура сплавов, содержащих от 0,8 до 2,14% углерода, будет состоять из перлита и вторичного цементита.

Во всех сплавах, содержащих от 0,02 до 6,67% С, на линии РЅК происходит перлитное (эвтектоидное) превращение, т.е. аустенит, достигнув концентрации 0,8% углерода, переходит в перлит. Между линиями ЕСГ и РЅК в сплавах, с содержанием более 2,14% углерода, ледебурит, который выше линии РЅК состоял из механической смеси цементита и аустенита, ниже этой линии будет состоять из смеси цементита и перлита. В зависимости от состава сплавы, содержащие от 2,14 до 4,3 % углерода, будут иметь структуру, состоящую из перлита, вторичного цементита и ледебурита,

сплавы с 4,3% — структуру - из одного ледебурита, а сплавы с 4,3 до 6,67% С — структуру из первичного цементита и ледебурита.

Линия PQ в нижней левой части диаграммы определяет изменение растворимости углерода в  $\alpha$ -феррите. При 723° С в  $\alpha$ -феррите растворяется до 0,02% углерода. С понижением температуры растворимость углерода в  $\alpha$ -феррите быстро уменьшается и при 0° составляет всего 0,006%. В связи с этим при охлаждении из феррита начинает выделяться углерод в виде третичного цементита (по линии PQ), и ниже этой линии структура состоит из феррита и третичного цементита. Внутри площадки 0GPQ структура сплавов состоит из одного  $\alpha$ -феррита.

Железоуглеродистые сплавы с концентрацией углерода до 0.02~% называются железом, с концентрацией углерода от 0.02~% до 2.14~% - сталями, а с концентрацией углерода от 2.14 до 6~% - чугунами.

В зависимости от равновесной структуры стали делятся на доэвтектоидные (с содержанием углерода < 0,8%), структура которых состоит из феррита и перлита; эвтектоидные ( $C\approx0.8\%$ ), структура которых состоит только из перлита; и заэвтектоидные ( $C=0.8\div2.14\%$ ), структура которых состоит из перлита и вторичного цементита. В свою очередь, чугуны делятся на доэвтектические ( $C=2.14\div4.3\%$ ), структура которых — перлит плюс ледебурит; эвтектические ( $C\approx4.3\%$ ), структура — ледебурит и заэвтектические (C>4.3%), структура - ледебурит и первичный цементит.

#### ПРИМЕР № 1

Проследим по диаграмме состояния «Fe-Fe<sub>3</sub>C» за формированием структуры сплава с содержанием углерода 0,3% (сплав I) при его медленном охлаждении от температуры 1600°C. Соответствующие критические точки показаны на фигуративных линиях (рисунок 3).

Доэвтектоидная сталь с 0,3% С выше 1525°С находится в жидком состоянии. Кристаллизация ее начинается при 1525°С (точка 1) с выделением из жидкого раствора кристаллов δ-феррита. В процессе кристаллизации сплава δ-феррит изменяет свой состав согласно линии АН, а жидкость - согласно линии АВ от точки 1 до В. Эту стадию кристаллизации сплава I можно записать так:

В области АВН данный сплав состоит из двух фаз - δ-феррита и жидкой фазы.

При температуре 1499°С (точка 2)  $\delta$ -феррит (0,1% C) вступает во взаимодействие с жидким раствором (0,51% C); в результате этой реакции образуются кристаллы аустенита (0,16% C). Такое превращение называют перитектическим. Оно протекает при постоянной температуре до исчезновения феррита, в этом случае система нонвариантна (C = 2 - 3 + 1 = 0; фазы: аустенит и жидкий раствор):

$$\Phi_{(H)} + L_{(B)} \xrightarrow{1459^{\circ} C} A_{(J)} + L_{(B)}$$
 (избыток)

При охлаждении ниже температуры точки 2 процесс кристаллизации продолжается и по достижению температуры 1480°С (точка 3) сплав затвердевает, имея структуру аустенита

$$A_{(I)} + L_{(B)} \xrightarrow{1499-1480^{\circ} C} A_{(3)}$$

Таким образом, заканчивается первичная кристаллизация сплава. При дальнейшем охлаждении до 870 °C данный сплав, состоящий только из аустенита, превращений не претерпевает.

При температуре 870°С (точка 4) в результате полиморфного превращения  $\gamma$ - Fe  $\to \alpha$ -Fe из аустенита начинает образовываться  $\alpha$ -феррит. Понижение температуры способствует выделению  $\alpha$ -феррита и изменению состава фаз:  $\alpha$ -феррита согласно линии GP (точки от 4' до P) и аустенита GS (от 4 до S)

На линии PSK (точка 5) происходит эвтектоидное превращение. Аустенит, содержащий 0,8% углерода, распадается на ферритоцементитную смесь - перлит:

$$A_{(S)} \xrightarrow{727^{\circ} C} \Phi_{(P)} + \coprod_{(II)}$$

Следовательно, структура сплава ниже линии PSK (точка  $A_1$ ) состоит из  $\alpha$ -феррита и перлита.

#### ПРИМЕР № 2

Проследим за формированием структуры сталей с содержанием углерода 1,5% (сплав II) при его медленном охлаждении от температуры 1600 °C. Соответствующие критические точки показаны на фигуративных линиях (рис.3).

Заэвтектоидная сталь с содержанием углерода 1,5% начинает кристаллизоваться при температуре 1450 °C (линия ВС). По мере охлаждения в интервале температур 1450-1250 °C (от точки 6 до 7) из жидкой фазы выделяются кристаллы аустенита и по достижению температуры точки 7 (линия ЈЕ — солидус) кристаллизация заканчивается, и сплав состоит только из одного аустенита.

В интервале температур 1250-950 °C (от точки 7 до 8) аустенит охлаждается, не претерпевая никаких превращений. При охлаждении сплава ниже 950°C (линия SE, точка 8) концентрация углерода в аустените уменьшается, и он выделяется в виде вторичного цементита.

$$A_{(8)} \xrightarrow{950-727^{\circ} C} A_{(5)} + \coprod_{(\Pi)}$$

Структура сплавов ниже линии SE (точка  $A_{cr}$ ) будет состоять из аустенита и вторичного цементита.

При температуре 723°C (точка 9) в сплаве происходит эвтектоидное превращение, в результате которого аустенит превращается в перлит.

$$A_{(S)} + \coprod_{(II)} \xrightarrow{727^{\circ} C} \Phi_{(P)} + \coprod$$

Ниже температуры 723°C структуру данного сплава составляют перлит и вторичный цементит.

Таблица 1. Варианты контрольных заданий

| №<br>варианта | 1    | 2    | 3    | 4   | 5    | 6   | 7    | 8   | 9    | 10  | 11   | 12  |
|---------------|------|------|------|-----|------|-----|------|-----|------|-----|------|-----|
| С%            | 0,05 | 0,16 | 0,12 | 1,4 | 5,0  | 2,5 | 1,0  | 0,6 | 2,8  | 1,2 | 0,35 | 0,2 |
| №<br>варианта | 13   | 14   | 15   | 16  | 17   | 18  | 19   | 20  | 21   | 22  | 23   | 24  |
| С%            | 0,4  | 1,6  | 0,5  | 2,3 | 5,50 | 0,8 | 0,02 | 0,2 | 3,50 | 2,1 | 0,75 | 0,9 |

Таблица 2. Соответствие значений температур и концентраций углерода точкам диаграммы «Fe – Fe<sub>3</sub>C»

| Обозначение | Температура, | Концентрация углерода, |
|-------------|--------------|------------------------|
| точки       | °C           | %                      |
| A           | 1539         | 0                      |
| В           | 1499         | 0,5                    |
| Н           | 1499         | 0,1                    |
| J           | 1499         | 0,16                   |
| N           | 1392         | 0                      |
| Е           | 1147         | 2,14                   |
| С           | 1147         | 4,3                    |
| F           | 1147         | 6,67                   |
| D           | 1250         | 6,67                   |
| G           | 911          | 0                      |
| P           | 727          | 0,02                   |
| S           | 727          | 0,8                    |
| K           | 727          | 6,67                   |
| Q           | ~600         | 0,01                   |
| L           | ~600         | 6,67                   |

Эвтектика (от греч. éutektos - легко плавящийся), жидкая система (раствор или расплав), находящаяся при данном давлении в равновесии с твёрдыми фазами, число которых равно числу компонентов системы.

Перитектика - перитектика (от греч. peritekō — плавлю, расплавляю, разжигаю), равновесие трёх фаз в системе, состоящей из компонентов А и В: двух твёрдых растворов на основе А и В и жидкого раствора (расплава).

Перитектика существует при постоянной температуре, называемой перитектической точкой, которая является промежуточной между температурами плавления чистых веществ А и В. Образование перитектики используется в металловедении, производстве материалов для микроэлектроники.

Перитектическим превращением называется такое превращение, когда при взаимодействии жидкого расплава с твёрдой фазой образуется другая твёрдая фаза.

Порядок выполнения работы:

- 1. Используя материал теоретической части, проанализировать диаграмму состояния «Железо цементит».
- 2. Выбрать по заданию преподавателя согласно таблице 1 вариант контрольного задания, т.е. выбрать железоуглеродистый сплав с определенным содержанием углерода.
- 3. Начертить эскизы диаграммы состояния «Железо цементит», с указанием содержания углерода в сплаве (по своему варианту).
- 4. По диаграмме «Железо-цементит» рассмотреть превращения, происходящие при медленном охлаждении данного сплава от температуры 1600оС.
- 5. Указать превращения, фазы, структурные составляющие, критические температуры, характеризующие медленное охлаждение данного сплава.

По итогам выполнения работы выставляется одна общая отметка.

## Практическое занятие № 13 Изучение строения углеродистых сталей и чугунов в равновесном состоянии

Цель занятия: Изучить классификацию, микроструктуру, свойства и назначение сталей и чугунов.

Теоретическая часть

В машиностроении используются детали из заготовок, полученных способами обработки давлением или литьем. Широкое применение имеют стали и чугуны. Стали являются деформируемым материалом, иногда применяется стальное литье. Чугуны представляют собой, как правило, литейные материалы. Примеры использования этих материалов даны ниже. Легковой автомобиль среднего класса массой 1000...1100 кг имеет детали из разных сталей, составляющие 57...60 % его массы (США, Западная Европа). В станкостроении общая масса чугунных деталей равна в среднем 70...80 % от массы металлорежущего станка.

Основу химического состава сталей и чугунов составляет железо с добавками углерода менее 2,14 % (стали) или более 2,14 % (чугуны). У многих марок этих материалов дополнительно содержатся легирующие химические элементы (хром, кремний, марганец, никель, молибден и др.). Перечень основных видов сталей и чугунов по государственным стандартам приведен в табл. 3 и 4. В машиностроении преимущественно применяются конструкционные отливки чугунов, используемые стали И ИЗ изготовления деталей машин и различных сооружений, и инструментальные металлорежущих, штамповых, измерительных стали инструментов.

При изучении строения и определении качества металлических материалов в материаловедении широко используется микроструктурный анализ.

Микроанализ - изучение строения поверхностей шлифованных, полированных и протравленных образцов - микрошлифов с помощью металлографических оптических микроскопов при увеличениях обычно от '100 до '1000.

Наблюдаемое при этом строение поверхности шлифа называется *микроструктурой*. Микроструктура разных по химическому составу материалов и после их различной обработки отличается по размеру, геометрической форме, цвету, взаимному расположению отдельных структурных составляющих

Микроанализ основан на использовании законов отражения и поглощения световых лучей от поверхности непрозрачных металлических материалов (рис. 3). Полированная металлическая поверхность отражает направленные на нее перпендикулярно световые лучи и видна в окуляр микроскопа как светлая. При наличии в материале неметаллических составляющих структуры они видны как темные, так как поглощают световые лучи.

Стали, получаемые кислородно - конверторным, электросталеплавильным и другими способами, содержат *неметаллические включения*. Это химические соединения металлов (железа, алюминия, и др.) с неметаллами (серой, кислородом, азотом и др.).

Таблица 3. Перечень основных разновидностей сталей по государственным стандартам

|          | <u> </u>                                                            |  |  |  |  |
|----------|---------------------------------------------------------------------|--|--|--|--|
| №№ ΓOCTa | Наименование стандарта                                              |  |  |  |  |
| 380-88   | Сталь углеродистая обыкновенного качества. Марки.                   |  |  |  |  |
| 535-88   | Прокат сортовой и фасонный из стали углеродистой обыкновенного      |  |  |  |  |
|          | качества. Общие технические условия.                                |  |  |  |  |
| 1050-88  | Прокат сортовой, калиброванный со специальной отделкой поверхности  |  |  |  |  |
|          | из углеродистой качественной конструкционной стали. Общие           |  |  |  |  |
|          | технические условия.                                                |  |  |  |  |
| 1414-75E | Прокат из конструкционной стали высокой обрабатываемости резанием.  |  |  |  |  |
| 1435-90  | Технические условия                                                 |  |  |  |  |
| 4543-71  | Прутки, полосы и мотки из инструментальной нелегированной стали     |  |  |  |  |
| 5632-72  | Прокат из легированной конструкционной стали. Технические условия   |  |  |  |  |
| 5950-73  | Стали высоколегированные и сплавы коррозионностойкие, жаростойкие   |  |  |  |  |
|          | и жаропрочные. Марки.                                               |  |  |  |  |
| 14959-79 | Прутки и полосы из инструментальной легированной стали. Технические |  |  |  |  |
|          | условия                                                             |  |  |  |  |
| 19265-73 | Прокат из рессорно-пружинной углеродистой и легированной стали.     |  |  |  |  |
|          | Технические условия.                                                |  |  |  |  |
|          | Прутки и полосы из быстрорежущей стали. Технические условия.        |  |  |  |  |

Таблица 4. Перечень основных разновидностей чугунов по государственным

#### стандартам

| №№ ΓOCTa | Наименование стандарта                                            |
|----------|-------------------------------------------------------------------|
| 1215-79  | Отливки из ковкого чугуна. Общие технические условия.             |
| 1412-85  | Чугун с пластинчатым графитом для отливок. Марки.                 |
| 1585-85  | Чугун антифрикционный для отливок. Марки.                         |
| 7293-85  | Чугун с шаровидным графитом для отливок. Марки.                   |
| 7769-82  | Чугун легированный для отливок со специальными свойствами. Марки. |
| 28394-89 | Чугун с вермикулярным графитом для отливок. Марки.                |



Рис. 3. Схема отражения световых лучей от поверхности полированного (a) и подвергнутого травлению (б) микрошлифа.

Основными видами неметаллических включений в стали по ГОСТ 1778-70 являются оксиды, сульфиды, силикаты, нитриды и карбонитриды (MnS, SiO<sub>2</sub>, TiN, nFeO · mMnO · pSiO<sub>2</sub> и др.). Оксиды и нитриды являются хрупкими и при прокатке стали располагаются в виде строчек или

рассредоточенных точечных частиц. Пластичные сульфиды получают форму продолговатых линз. Силикаты имеют сложный химический состав и могут быть пластичными или хрупкими.

После травления шлифа химическим реактивом различные структурные составляющие материала растворяются в разной степени, т.е. возникает некоторый рельеф поверхности (наличие выступающих и углубленных участков). На отдельных участках этого рельефа световые лучи отражаются в разной степени и участки поверхности шлифа видны в окуляр как светлые и темные различных оттенков.

Данные о фазовом строении и структуре материалов в равновесном состоянии получают из приведенных в учебниках и справочниках диаграмм состояния. Такие диаграммы состояния в координатах «температура - химический состав» содержат информацию о фазах (первичных составляющих микроструктуры), имеющихся в отдельных областях диаграмм, разделенных сплошными линиями. Эти данные относятся к равновесному состоянию сплавов. Применительно к сталям и чугунам диаграмма состояния железо – углерод дана на рис. 4.

Метастабильная диаграмма состояния железо-углерод относится к случаю полной растворимости компонентов в жидком состоянии выше линии ликвидуса ABCD и ограниченной растворимости углерода в железе в твердом состоянии. У железа наблюдаются два полиморфных превращения:

$$Fe\gamma \stackrel{\longleftarrow}{\leftarrow} Fe\alpha ; Fe\alpha \stackrel{\longleftarrow}{\leftarrow} Fe\gamma$$

Железо модификаций α и γ имеет соответственно кристаллические решетки объемоцентрированного куба (ОЦК) и гранецентрированного куба

- (ГЦК). В связи с наличием у железа полиморфных превращений на диаграмме состояния железо-углерод образуются три области твердых растворов углерода в железе:
- область NJESGN твердого раствора  $\gamma$  (аустенита A), т.е. раствора углерода в  $Fe_{\alpha}(\Gamma \coprod K)$ ;
- две области QPGQ и AHNA твердого раствора  $\alpha$  (феррита  $\Phi$ ), т.е. раствора углерода в Fe $_{\alpha}$  (ОЦК).
- В правой части метастабильной диаграммы состояния железо-углерод имеется узкая область DFKLD твердого раствора небольшого количества железа в химическом соединении Fe<sub>3</sub>C, т.е. цементита Ц.

Следовательно, в сплавах метастабильной диаграммы состояния железо-углерод существуют следующие фазы: жидкий раствор углерода в железе, феррит, аустенит, цементит. Остальные области диаграммы состояния, ограниченные сплошными линиями, являются двухфазными, т.е. состоят из тех или иных двух фаз.

На диаграмме состояния имеются также горизонтальные линии трехфазных равновесий при постоянных температурах, где в равновесном состоянии существуют по три фазы:

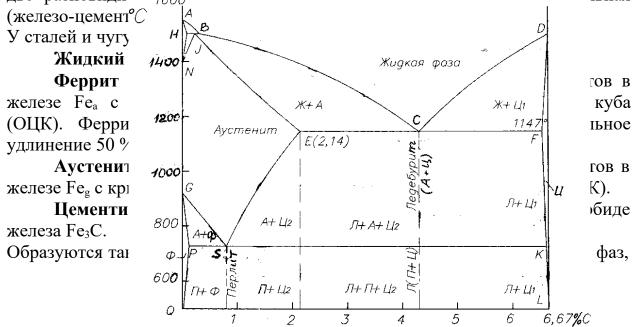
• линия НЈВ перитектического превращения:

НЈВ

 $\mathcal{K}_B + \Phi_H A_J$ 

• линия ЕСГ эвтектического превращения:

ECF


Жс е (Aе +  $\coprod_F$ ) (эвтектика-ледебурит Л)

• линия PSK эвтектоидного превращения:

PSK

 $A_S$  е  $(\Phi p + \coprod_K)$  (эвтектоид - перлит  $\Pi$ )

В сплавах железо – углерод - кремний в зависимости от количества углерода и кремния, численной величины скорости охлаждения существуют две разновидносту 600 година состояния менеро углерод: метеотобильная



наблюдаемые в микроструктуре:

## Рис. 4. Диаграмма состояния железо – углерод

**Перлит (П)** в виде темных (коричневых) участков, состоящий из ферритной основы и кристаллов цементита пластинчатой формы (пластинчатый перлит). Он образуется при медленном охлаждении в сталях и чугунах в результате следующего фазового превращения аустенита:

psk

 $A \Phi + Ц (\Pi)$ 

Особой термической обработкой может быть получен зернистый перлит, состоящий из феррита и частиц цементита в форме мелких зерен.

**Ледебурит** (**Л**) в виде пестрых бело-темных участков, состоящий из белого цементита -основы и темного перлита в виде округлых или удлиненных частиц (ниже 727°C). Выше температуры 727°C этот ледебурит состоит из цементита и аустенита :

Ж A + Ц (Л)

Многочисленные стали разных марок, отличающиеся химическим составом, по микроструктуре в равновесном состоянии разделяются на шесть основных структурных классов (табл. 5). Представление о структурных классах чугунов дает табл. 6 и структурная диаграмма на рис. 5. Формы включений графита показаны на рис. 6.

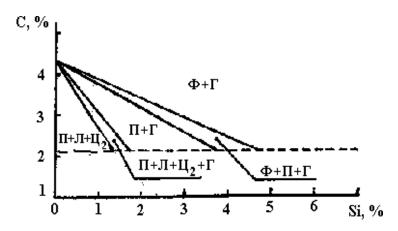



Рис. 5. Структурная диаграмма чугунов (толщина стенки отливки постоянная)



Рис. 6. Характерные геометрические формы включений графита в конструкционных чугунах (без травления шлифов): а - пластинчатая, б - шаровидная, в – вермикулярная, г - хлопьевидная (компактная).

Таблица 1. Структурные классы сталей в равновесном состоянии

|                 |                   |            | и равновесном  |                |  |
|-----------------|-------------------|------------|----------------|----------------|--|
| Структурный     | Химический состав |            | Микроструктура | Типовое        |  |
| класс стали     | Углерод           | Типичные   |                | применение в   |  |
|                 | C                 | легирующие |                | машиностроении |  |
|                 |                   | элементы   |                | _              |  |
| Доэвтектоидные  |                   |            |                |                |  |
| стали           |                   |            |                |                |  |
| Эвтектоидные    |                   |            |                |                |  |
| стали           |                   |            |                |                |  |
| Заэвтектоидные  |                   |            |                |                |  |
| стали           |                   |            |                |                |  |
| Стали           |                   |            |                |                |  |
| карбидного      |                   |            |                |                |  |
| (ледебуритного) |                   |            |                |                |  |
| класса          |                   |            |                |                |  |
| Стали           |                   |            |                |                |  |
| аустенитного    |                   |            |                |                |  |
| класса          |                   |            |                |                |  |
| Стали           |                   |            |                |                |  |
| ферритного      |                   |            |                |                |  |
| класса          |                   |            |                |                |  |

## Контрольные вопросы:

- 1. Какими свойствами обладают чугуны?
- 2. Перечислите основные виды чугунов.

- 3. Чем обусловлено различие свойств серого и белого чугунов?
- 4. В чем состоит сущность изготовления высокопрочного чугуна?
- 5. Как маркируется серый чугун?
- 6. Какое влияние оказывает углерод на свойства стали?
- 7. Расскажи/е о влиянии серы и фосфора на свойства стали.
- 8. Расскажите о влиянии углерода и случайных примесей на свойства углеродистой стали.

### Порядок выполнения работы:

- 1. Ознакомитьтся с теоретической частью.
- 2. Заполнить таблицу 1.
- 3. Ответить на контрольные вопросы

Приложение

# Пример заполнения Таблицы 2.3. Структурные классы сталей в равновесном состоянии

| Структурный     | Химический                                                                             | состав       | Микроструктур | Типовое           |
|-----------------|----------------------------------------------------------------------------------------|--------------|---------------|-------------------|
| класс стали     | Углерод                                                                                | Типичные     | a             | применение в      |
|                 | C                                                                                      | легирующи    |               | машиностроении    |
|                 |                                                                                        | е элементы   |               | _                 |
| Доэвтектоидны   | Cp <c<cs< td=""><td>Cr, Mn, Ni и</td><td>Феррит +</td><td>Конструкционные</td></c<cs<> | Cr, Mn, Ni и | Феррит +      | Конструкционные   |
| е стали         |                                                                                        | др.          | перлит        | стали             |
| Эвтектоидные    | C = Cs                                                                                 | Cr, W, V и   | Перлит        | Инструментальные  |
| стали           |                                                                                        | др.          |               | стали             |
| Заэвтектоидные  | $C_S < c < c_{E < /c < c}$                                                             | Cr           | Перлит и      | Инструментальные  |
| стали           |                                                                                        |              | карбиды       | стали             |
|                 |                                                                                        |              | вторичные     |                   |
| Стали           | $C_E < c < 2,14\% <$                                                                   | Хром,        | Перлит,       |                   |
| карбидного      | p=""> <td>вольфрам</td> <td>карбиды</td> <td>Инструментальные</td>                     | вольфрам     | карбиды       | Инструментальные  |
| (ледебуритного) | >                                                                                      | (до 612      | первичные и   | стали             |
| класса          |                                                                                        | %)           | вторичные     |                   |
| Стали           | Десятые доли % и                                                                       | Никель,      | Аустенит      | Коррозионно-      |
| аустенитного    | менее                                                                                  | марганец     | легированный  | стойкие стали.    |
| класса          |                                                                                        | (до 1320     | _             | Жаропрочные стали |
|                 |                                                                                        | %)           |               |                   |
| Стали           |                                                                                        | Кремний,     | Феррит        | Электротехнически |
| ферритного      |                                                                                        | хром         | легированный  | е стали.          |
| класса          |                                                                                        |              |               | Кислотостойкие    |
|                 |                                                                                        |              |               | стали             |

## Практическое занятие № 14 Обоснование выбора марок сталей, применяемых для инструментов

#### Цель занятия:

- Освоить умения работы со справочной литературой по выбору марок стали и сплавов в зависимости от условий их работы;
- Освоить умения по выбору вида и режимов термической обработки сплавов в зависимости от назначения изделия;
- Освоить умения по обоснованию выбора материала для заданной детали.

#### Теоретическая часть

Задание предусматривает: обосновать выбор материала для изготовления заданной детали и выбор вида и режима термической и химико-термической обработки, которая обеспечит надежность и работоспособность детали в условиях эксплуатации, указанных в задаче.

Для решения задачи необходимо прежде всего определить материал, обладающий свойствами, близкими к требуемым. Для этой цели рекомендуется ознакомиться с классификацией, составом и назначением основных материалов, используемых в технике.

Если для улучшения свойств выбранного материала нужны термическая и химикотермическая обработка, то необходимо указать их режимы, получаемую структуру и свойства. При рекомендации режимов обработки необходимо также указать наиболее экономичные и производительные способы. Например, для деталей, изготавливаемых в массовом и крупносерийном производстве — обработку с индукционным нагревом, газовую цементацию и др.

Инструментальные стали для резания или горячего деформирования должны сохранять при нагреве высокие твердость, прочность и износостойкость, т.е. обладать красностойкостью (теплостойкостью). Это свойство создается специальным легированием и термической обработкой. В связи с этим различают:

- *Нетеплостойкие* --сохраняющие высокую твердость (HRC 60) при нагреве не выше 190-225 °C и используемые для резания мягких металлов с небольшой скоростью, а также для деформирования в холодном состоянии. Это углеродистые и легированные стали (с относительно невысоким содержанием легирующих элементов). Карбидная фаза цементит. *Полутеплостойкие* преимущественно штамповые, рабочая кромка которых нагревается до 400-500 °C. Это стали легированные хромом и дополнительно вольфрамом, молибденом и ванадием. Карбидная фаза легированный цементит и карбид хрома.
- *Теплостойкие* для резания с повышенной скоростью. Нагрев рабочей кромки до 500-600°C (быстрорежущие стали). Штампа стали при повышенном нагреве до 600-800°C. Твердость HRC 60-62 у быстрорежущей стали после нагрева до 600-680°C и HRC 45-52 у штамповых при нагреве до

650-700°C.

Сплавы на основе цветных металлов обладают лучшими механическими и технологическими свойствами, чем чистые металлы, поэтому они широко применяются в промышленности.

Латунями называются сплавы меди с цинком, содержание цинка до 42%. Чтобы придать латунным сплавам лучшие механические и технологические свойства в них добавляют легирующие элементы: железо, никель, свинец, алюминий от 2-8%. Латуни подвергают рекристаллизационному отжиму при температуре 600-700°С для снятия наклепа, полученного впроцессе холодной деформации.

Бронзы — сплавы меди с любыми элементами кроме цинка и никеля. Бронзы разделяют на простые и оловянистые и специальные — безоловянистые; литейные и деформируемые.

Алюминиевые сплавы обладают высокими механическими свойствами, небольшим удельным весом, устойчивые против коррозии. Различают две группы алюминиевых сплавов: литейные и деформируемые.

Магниевые сплавы представляют собой сплавы магния с алюминием, марганцем и цинком. Их широко применяют в промышленности как литейные, так и деформируемые.

Большое применение в промышленности, особенно в самолетостроении нашли сплавы титана, которые имеют сочетание высокой прочности и пластичности, малую плотность, хорошую жаропрочность, высокую коррозийную стойкость во многих агрессивных средах.

Этапы задания:

- 1. Изучить условия работы заданной детали и требования, предъявляемые к ней.
- 2. Выбрать марку материала для изготовления детали или инструмента, изучить ее состав и механические свойства.
- 3. Разработать в зависимости от условий работы детали, необходимый вид и режим термической или химико-термической обработки, начертить термический цикл обработки.
- 4. Дать обоснование выбора марки материала и вида термической обработки детали.

Пример выполнения задания Задание:

Подберите марку стали повышенной теплостойкости, пригодную для резания жаропрочной стали. Укажите ее состав, режимы термической обработки, схемы микроструктуры.

Решение:

При резании сталей и сплавов с аустенитной структурой (нержавеющих, жаропрочных и др.), получающих все более широкое применение в промышленности, стойкость инструментов и предельная скорость резания могут сильно снижаться по сравнению с

резанием обычных конструкционных сталей и чугунов с относительно невысокой твердостью (до НВ 220-250). Это связано главным образом с тем, что теплопроводность аустенитных сплавов понижается. Вследствие этого теплота, выделяющаяся при резании, лишь в небольшой степени поглощается сходящей стружкой и деталью и в основном воспринимается режущей кромкой. Кроме того, эти сплавы сильно упрочняются под режущей кромкой в процессе резания, из-за чего заметно вырастают усилия резания.

Для резания подобных материалов, называемых труднообрабатываемые, малопригодны быстрорежущие стали умеренной теплостойкости типа P12, сохраняющие высокую твердость (HRC-60) и мартенситную структуру после нагрева не выше 615-620°C.

Для обработки аустенитных сплавов необходимо выбирать быстрорежущие стали повышенной теплостойкости, а именно кобальтовые стали сохраняют твердость HRC 60 после более высокого нагрева до 640-645°С. Кроме того, кобальт заметно повышает теплостойкость быстрорежущей стали, а следовательно, снижает температуру режущей кромки из-за лучшего отвода тепла в тело инструмента. Стали с кобальтом имеют высокую твердость — до HRC 68.

Для сверл и фрез, применяемых для резания аустенитных сплавов, рекомендуются кобальтовые сплавы марок PI2Ф4K5 или P8M3K6C.

Химический состав сталей, %

Сталь С Gr W Mo V Co

РІ2Ф4К5 1,3 3,8 12,5 1 3,5 5,5

P8M3K6C 1,1 3,8 8 3,6 1,7 6

Термическая обработка кобальтовых сталей принципиально не отличается от обработки других быстрорежущих сталей.

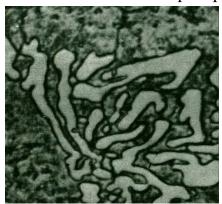
Закалка до 1240-1250°С (РІЗФ4К5) и 1210-1220°С (Р8МЗК6С), что необходимо для растворения большого количества карбидов и насыщения аустенита (мартенсита) легирующими элементами. Более высокий нагрев недопустим: он вызывает рост зерна, что снижает прочность и вязкость. Структура стали после закалки: мартенсит, остаточный аустенит (15-30%) иизбыточные карбиды, не растворяющиеся при нагреве и задерживающие рост зерна. Твердость НRС 60-62.

Затем инструменты опускают при  $550-560^{\circ}$ С (3 раза по 60 минут). Отпуск:

- а) вызывает выделение дисперсных карбидов мартенсита, что повышает твердость до HRC 66-69;
- б) превышает мягкую составляющую остаточный аустенит в мартенсит;
- в) снимает напряжения, вызываемые мартенситным превращением.

После отпуска инструмент шлифуют, а затем подвергают цианированию, чаще всего жидкому с выдержкой 15-30 мин. (в зависимости от сечения инструмента).

Твердость цианирования слоя на глубину 0,02-0,03мм достигает HRC 69-70. Цианирование повышает стойкость инструментов на 50-80%. После


цианирования возможен кратковременный нагрев при 450-500 °C с охлаждением в масле, поверхность инструмента приобретает тогда синий цвет и несколько улучшает стойкость против воздушной коррозии. Термический цикл обработки:

 $T^{0}C = 1250^{0}C$  -

 $A_1$  Закалка  $550^{\circ}C$ 

3-х кратный отпуск цианирование Время

Микроструктура стали.







после закалки и многократного отпуска

Варианты индивидуальных заданий:

1. Завод изготавливает коленчатые валы диаметром 35мм; сталь в готовом состоянии должна иметь предел текучести не ниже 290 мПа и ударную вязкость не ниже 50 мПа. Вал должен обладать повышенной износостойкостью не по всей поверхности, а только в шейках, т.е. в участках, сопряженных с подшипниками и работающих на истирание.

Подберите марку стали, рекомендуйте режим термической обработки, повышающей твердость в отдельных участках поверхности вала.

Зарисовать схему микроструктуры и твердость стали в поверхностном слое шейки вала и структуру и механические свойства в остальных участках вала.

2. Щеки и шары машин для дробления руды и камней работают в условиях повышенного износа, сопровождаемого ударами.

Подберите сталь для изготовления щек и шаров, учитывая, что они изготавливаются методом литья, должны иметь предел прочности не ниже 640 мПа и ударную вязкость при температуре  $+20~^{\circ}$ С не ниже 260 дж/см  $^{2}$ . Укажите химический состав, режимы термической обработки и свойства стали.

Зарисуйте схему микроструктуры.

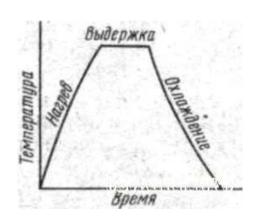
- 3. Детали самолетов педали, рычаги изготавливают из сплава с хорошими литейными свойствами, обладающие кроме того хорошей обрабатываемостью резанием. Предел прочности сплава не ниже 220 мПа. Рекомендуйте состав сплава, режимы термической обработки, укажите механические свойства в готовом изделии. Зарисуйте схему микроструктуры.
- 4. Стаканы цилиндров мощных двигателей внутреннего сгорания должны

обладать высоким сопротивлением износу на поверхности. Для повышения износостойкости применяют азотирование.

Подберите сталь, пригодную для азотирования, приведите химический состав, рекомендуйте режим термической обработки и режим азотирования. Укажите твердость поверхностного слоя и механические свойства низлежащих слоев в готовом изделии. Приведите схему микроструктуры.

- 5. Рессоры грузового автомобиля изготавливают из качественной ленерованной стали, толщина рессоры до 10мм. Сталь должна иметь предел прочности не менее 1500 мПа и обладать высокими пределами выносливости и упругости. Подберите сталь, укажите ее состав, режимы термической обработки, свойства. Зарисуйте микросхему.
- 6. Необходимо изготовить шестерни из цветного сплава, стойкого против действия воды и пара и обладающего небольшим коэффициентом трения. Предел прочности не ниже 340МПа. Укажите марку сплава, его состав, механические свойства. Зарисуйте схему микроструктуры.
- 7. Выбрать марку материала для изготовления фрезы, обрабатывающей нержавеющие стали. Теплостойкость до 630 <sup>0</sup>C. Укажите состав сплава, режимы его термической обработки, механические свойства. Зарисуйте схему микроструктуры.
- 8. Выберите марку стали для изготовления топоров. Лезвие топора не должно сниматься или выкрашиваться в процессе работы, поэтому оно должно иметь твердость в пределах HRC 50-55 на высоту не более 30-40мм, остальная часть топора не подвергается закалке. Укажите химический состав стали, режимы термической обработки, обеспечивающие данную твердость на лезвии топора. Зарисовать схему микроструктуры.
- 9. Сварные бензиновые и масляные баки, от материала которых не требуется высоких механических свойств, изготавливают в самолетостроении из легких листов сплавов, обладающих повышенной стойкостью против коррозии, пластичностью и хорошей свариваемостью. Подберите сплав, укажите состав, механические свойства, зарисуйте схему микроструктуры.
- 10. Необходимо подобрать марку цветного сплава для пружинящего контакта, не дающего искры. Материал должен иметь предел прочности не ниже 1176 мПа и твердость не ниже НВ 400. Укажите состав, режимы термической обработки, механические свойства. Зарисуйте схему микроструктуры.
- 11. Шар баллон с толщиной стенки 30мм для сжатого воздуха изготавливается из поковок с помощью сварки. Должен иметь предел прочности не менее 900 мПа. Выбрать марку материала, режимы термической обработки. Указать состав стали, механические свойства и схему микроструктуры.
- 12. Выберите марку стали для изготовления продольной пилы по дереву, укажите режимы термической обработки, механические свойства готовой пилы, схему микроструктуры. Термическую обработку необходимо проводить таким образом, чтобы предупредить деформацию пилы и

обеспечить получение в стали высоких упругих свойств (пила должна пружинить).


- 13. Лопатки реактивных двигателей работают в окислительной среде при высоких температурах 720-850 °C. Металл должен обладать повышенной коррозийной стойкостью и прочностью при указанной температуре. Подберите материал для лопаток, укажите его состав, свойства, структуру, режимы термической обработки.
- 14. Лонжероны и шпангоуты самолетов изготавливают из легких сплавов высокой прочности. Подберите марку сплава, укажите химический состав, режимы термической обработки и механические свойства. Зарисуйте схему микроструктуры.
- 15. Сталь, применяемая для пароперегревателей котлов высокого давления должна сохранять повышенные механические свойства при длительных нагрузках при T=500 °C и иметь достаточную пластичность для возможности гибки и завальцовки при сборке котла. Укажите состав стали, режимы термообработки, механические свойства. Зарисуйте схему микроструктуры.

## Практическое занятие № 15 Построение и анализ графика термической обработки

Цель занятия: изучить технологию термической обработки стали (закалка, отпуск, нормализация, отжиг) и познакомиться с закономерностями изменения твердости образцов стали в исходном состоянии и после термообработки.

## Теоретическая часть

Термической обработкой называют технологические, процессы теплового воздействия, состоящие из нагрева, выдержки и охлаждения металлических изделий по определенным режимам с целью изменения структуры и свойств сплава. Любой процесс термической обработки может быть описан графиком в координатах температура - время (рис. 1). Параметрами процесса термической обработки являются максимальная температура нагрева  $(t_{max})$  сплава; время выдержки  $(T_B)$  сплава при температуре нагрева; скорость нагрева  $(V_H)$  и охлаждения  $(V_O)$ . На практике обычно подсчитывают среднюю скорость нагрева или охлаждения. Она равна максимальной температуре нагрева, поделенной на время нагрева или охлаждения, т.е.  $V_{H,CP} = t_{max}/T_H$  и  $V_{O,CP} = t_{max}/T_O$ .



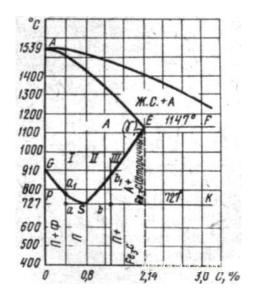



Рис. 1. График термической обработки

Рис. 2. «Стальной» участок диаграммы состояния железо-цементит: I - доэвтектоидная сталь, II - эвтектоидная сталь

Термическая обработка изменяет в нужном направлении прочностные, пластические и другие свойства материала изделий.

В основе теории термической обработки лежат фазовые и структурные превращения, протекающие при нагреве и охлаждении металлов и сплавов. Эти превращения характеризуются определенными критическими точками. При медленном нагреве от комнатной температуры до 727°С в сплаве І фазовых изменений не происходит (рис. 2). При температуре 727°С перлит превращается в аустенит (точка а). Точку а на диаграмме называют нижней критической точкой и обозначают Ас<sub>1</sub> (при охлаждении – Аг<sub>1</sub>). Буквы с и г указывают на то, что превращение происходит соответственно при нагреве или охлаждении стали, а индекс единица внизу этих букв - на точки, образующие линию PSK. При дальнейшем нагреве сплава І зерна феррита растворяются в аустените.

Растворение аустенита заканчивается в точке  $\mathbf{a}$ , (линия GS), которую называют верхней критической точкой и обозначают при нагреве  $Ac_3$ , охлаждении  $Ar_3$ .

Если нагревать эвтектоидный сплав II, то перлит в точке S (линия PSK) при 727°C превращается в аустенит. Критические точки  $Ac_1$  и  $Ac_3$  при этом совпадают. Перлит сплава III при 727°C превращается в аустенит (точка b). Дальнейший нагрев сплава III вызывает растворение цементита (вторичного) в аустените. В точке b1, лежащей на линии SE, процесс растворения заканчивается. Эту точку обозначают  $A_{cm}$ .

Таким образом, на диаграмме железо-цементит критические точки, образующие линию PSK, обозначают  $Ac_1$  (при нагреве) и  $Ar_1$  (при охлаждении), точки по линии GS -  $Ac_3$  и  $Ar_3$ , по линии SE - Acm. Знание критических точек облегчает изучение процессов термической обработки сталей.

Превращения в стали при нагреве. Нагрев стали при термической обработке используют для получения аустенита. Структура доэвтектоидной стали при нагреве ее до критической точки  $Ac_1$  состоит из зерен перлита и феррита. В точке  $Ac_1$  происходит превращение перлита в мелкозернистый аустенит. При дальнейшем нагреве от точки  $Ac_1$  до  $Ac_3$  избыточный феррит растворяется в аустените и в точке  $Ac_3$  (линия GS) превращения заканчиваются. Выше точки  $Ac_3$  структура стали состоит из аустенита.

Таким же образом происходят превращения при нагреве заэвтектоидной стали, но с той лишь разницей, что при дальнейшем повышении температуры от точки  $A_{c_1}$  до точки  $A_{c_m}$  в аустените начинает растворяться избыточный цементит (вторичный). Выше точки  $A_{c_m}$  (линия SE) структура состоит только из аустенита. Вновь образовавшийся аустенит неоднороден даже в объеме одного зерна. В тех местах, где раньше были пластинки цементита, содержание углерода значительно больше, чем в тех местах, где находились пластинки феррита.

Для выравнивания химического состава и получения однородного аустенита доэвтектоидную сталь нагревают немного выше верхней критической точки  $Ac_3$  и выдерживают некоторое время при этой температуре для завершения диффузионных процессов

По окончании процесса превращения перлита в аустенит образуется большое количество мелких аустенитных зерен. Эти зерна называют начальными зернами аустенита.

Дальнейший нагрев стали или увеличение выдержки приводит к росту аустенитного зерна. Размер зерна, полученный в стали в результате той или иной термической обработки, называют действительным зерном. Величина такого зерна зависит не только от термической обработки, но и от способа выплавки стали. Однако склонность к росту аустенитных зерен с повышением температуры нагрева различная. Стали, раскисленные в процессе плавки кремнием и марганцем, обладают большой склонностью к непрерывному росту зерен аустенита при повышении температуры. Такие стали называют наследственнокрупнозернистыми. К ним относят кипящие стали.

Стали, раскисляемые в процессе выплавки дополнительно алюминием и в особенности легированные титаном или ванадием, мало склонны к росту зерна аустенита при нагреве до 950-1000°С. Такие стали называют наследственномелкозернистыми. К ним относят спокойные стали.

Размер наследственного зерна не оказывает влияния на свойства стали. От размера действительного зерна зависят механические свойства стали, главным образом ударная вязкость, она значительно понижается с увеличением размера зерна. Размер действительного зерна в стали зависит от размера зерна аустенита. Как правило, чем крупнее зерна аустенита, тем крупнее действительные зерна.

Размер наследственного зерна оказывает влияние на технологические свойства стали. Если сталь наследственно мелкозернистая, то ее можно нагревать до более высокой температуры и выдерживать при ней более

длительное время, не опасаясь чрезмерного роста зерна но сравнению с наследственно крупнозернистой сталью. Горячую обработку давлением - прокатку, ковку, объемную штамповку наследственно мелкозернистой стали - можно начинать и оканчивать при более высокой температуре, не опасаясь получения крупнозернистой структуры.

Для определения размера наследственного (аустенитного) методы. Например, низкоуглеродистых применяют различные ДЛЯ цементуемых сталей применяют метод цементации, т. е. науглероживание поверхности стали. При нагреве стали до 930±10°C в углеродсодержащей смеси и выдержке при данной температуре в течение 8 ч поверхностный слой ее насыщается углеродом до заэвтектоидного состава. При охлаждении из аустенита выделяется избыточный цементит, который располагается по границам зерен аустенита в виде сетки. После полного охлаждения эта цементитная сетка окружает зерна перлита и показывает размер бывшего при нагреве аустенитного зерна. Подготовленную таким образом структуру стали рассматривают в микроскоп при  $100^{x}$  увеличении, видимые под микроскопом зерна сравнивают с эталонными, предусмотренными стандартной шкалой размеров зерна (рис. 3). Зерна от № 1 до № 4 считают крупными, а с № 5 мелкими.

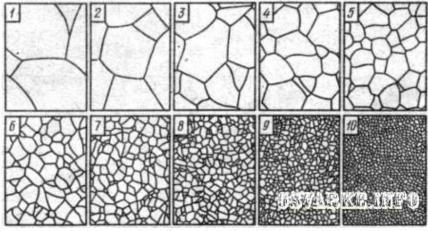



Рис. 3. Шкала для определения размера зерен: 1-10 — номера зерен при  $100^x$  увеличении

Превращения в стали при охлаждении. Аустенит является устойчивым только при температуре выше 727°C (точка Ar<sub>1</sub>). При охлаждении стали, предварительно нагретой до аустенитного состояния (ниже точки Ar<sub>1</sub>), аустенит становится неустойчивым - начинается его превращение. Такое превращение может начаться только лишь при некотором переохлаждении Для случая эвтектоидной углеродистой стали превратится в перлит, т. е. в механическую смесь феррита и цементита. При этом, с одной стороны, чем ниже температура превращения, тем больше переохлаждение и тем быстрее будет происходить превращение аустенита в перлит. С другой стороны, это превращение сопровождается диффузионным перераспределением углерода и чем ниже температура переохлаждения, тем медленнее протекает процесс диффузии, что в свою очередь замедляет

превращение аустенита в перлит. Такое противоположное действие обоих названных факторов (переохлаждения и диффузии) приводит к тому, что вначале с увеличением переохлаждения скорость превращения возрастает, достигая при определенной величине переохлаждения максимума, а затем убывает.

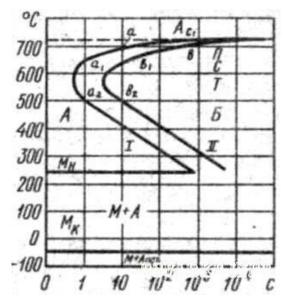



Рис. 4. Диаграмма изотермического превращения эвтектоидной стали: A – аустенит,  $\Pi$  – перлит, C – сорбит, T – троостит, E – бейнит, E – мартенсит

Процесс превращения аустенита в перлит экспериментально проводят при постоянной температуре, т. е. в изотермических условиях. Для этого образцы из стали нагревают до температуры, при которой ее структура состоит из однородного аустенита, а затем быстро переносят в термостаты с заданной температурой.

Превращение аустенита при постоянной температуре обобщается и изображается наглядно в виде диаграммы изотермического превращения (рис. 4). Эта диаграмма строится на основе исследований при постоянных температурах (700, 650, 550°С и т. д.). По горизонтальной оси диаграммы наносят время в логарифмической шкале: 1, 10, 100, 1000, 10 000 и 100 000 с. Это дает возможность проследить превращения, протекающие за промежуток от долей секунды до суток и более. По вертикальной оси откладывают температуру. Далее на диаграмме проводят жирные С-образные линии, отвечающие полученным экспериментальным путем точкам изотермического превращения аустенита. В этой стали распад аустенита происходит в интервале температур от Ас<sub>1</sub> до М<sub>н</sub>. Левая кривая I соответствует началу, а правая кривая II - окончанию распада аустенита.

Стальной образец охлаждают до 700°С и выдерживают его при этой температуре. В течение некоторого промежутка времени до точки а (пересечение горизонтали, соответствующей 700°С с кривой I) в аустените превращений не происходит. Этот период времени называют инкубационным.

На диаграмме изотермического превращения в зависимости от степени переохлаждения различают три температурные области превращения: перлитную, бейнитную и мартенситную. В точке а начинается перлитное превращение. Диффузионный распад аустенита продолжается до точки в (пересечение горизонтали 700°С с кривой II), где происходит превращение аустенита в перлит. Перлит образуется при распаде аустенита при малых степенях переохлаждения в области температур от Ac<sub>1</sub> до 650°С. Твердость перлита НВ 160. Если охлаждать образец до 650°С, т. е. до точек начала а<sub>1</sub> и конца в распада аустенита, то инкубационный период и период распада аустенита уменьшаются, в результате чего образуется структура сорбит.

Перлитом (рис. 34, а) называют механическую смесь кристаллов феррита и цементита; сорбитом (рис. 34, 6) - более мелкую (дисперсную), чем перлит, механическую смесь феррита и цементита. Сталь, в которой преобладает структура сорбита, обладает высокой прочностью и пластичностью.

При охлаждении образца до 500°C, до точек распада  $a_2$  и  $b_2$ , аустенит превращается в троостит. Троостит (рис. 34, в) представляет собой очень тонкую смесь феррита и цементита; отличается от перлита и сорбита очень высокой степенью дисперсности составляющих. Сталь со структурой троостита обладает повышенной твердостью (НВ 330-400), достаточной прочностью, умеренной вязкостью и пластичностью.

Таким образом, основным фактором, определяющим структуру и свойства аустенита, является температура превращения. Если на С-образную кривую нанести лучи (термические линии охлаждения), то получим следующую схему (рис. 35). При медленном охлаждении образца луч  $v_1$ , пересечет кривые I и II в точках  $a_1$  и  $b_1$ . При этих температурах происходит превращение аустенита в перлит.

При большей скорости охлаждения луч  $v_2$  пересечет кривые в точках  $a_2$  и  $b_2$  и аустенит полностью превратится в сорбит. При еще больших скоростях охлаждения луч  $v_3$  проходит через точки  $a_3$  и  $b_3$  и образуется новая структура - троостит.

Далее по мере ускорения процесса охлаждения лучи будут все круче (линии  $v_4$  и  $v_5$ ) и первое превращение аустенита в троостит не успеет закончиться. Оставшаяся часть переохлажденного аустенита (точки  $a_4$  и  $a_5$ ) начнет превращаться в троостит с мартенситом.

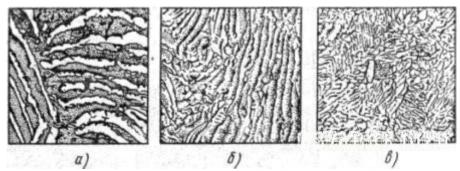



Рис. 5. Микроструктура перлита (а), сорбита (б), троостита (в) при 7500<sup>х</sup> увеличении

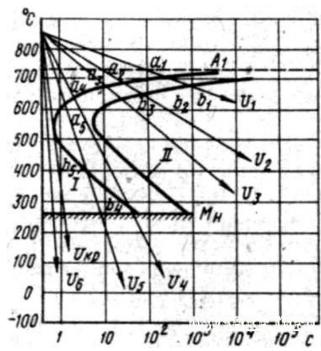



Рис. 6. Кривые охлаждения стали на диаграмме изотермического распада аустенита

Наконец, при наибольших скоростях охлаждения, когда луч  $v_{\kappa p}$  касается кривой I (начала распада аустенита) и пересекает горизонталь  $M_{\rm H}$ , в стали получается только *мартенсит*. Скорость охлаждения, при которой в закаливаемой стали из аустенита образуется только мартенсит, называют *критической скоростью* закалки. Чтобы закалить сталь, ее охлаждают со скоростью, не меньшей, чем критическая (например,  $v_6$ ).

превращение перлитного Мартенситное В отличие OT бездиффузионный характер. Мартенсит является основной структурой закаленной стали. Он имеет высокую твердость, зависящую от содержания углерода в стали. Чем больше содержится углерода в мартенсите, тем выше твердость стали. Так, например, для стали с содержанием 0,4% углерода твердость мартенсита составляет HRC 52-54, а для стали с содержанием углерода 1,0% - HRC 62-64. Мартенсит имеет совершенно отличную от других структур природу. При резком переохлаждении углерод не успевает выделиться из твердого раствора (аустенита) в виде частичек цементита, как это происходит при образовании перлита, сорбита и троостита. В этом случае происходит только перестройка решетки ү-железа в решетку а-железо. Атомы углерода остаются в решетке α-железа (мартенсите) и поэтому сильно ее искажают.

Такую искаженную кристаллическую решетку называют тетрагональной (рис. 7), в которой один параметр с больше другого а и, следовательно, отношение параметров c/a > 1. Степень искаженности (тетрагональности) зависит от содержания углерода в стали: она тем выше, чем больше углерода в стали. Следовательно, мартенсит представляет собой твердый раствор углерода в α-железе, которое способно растворять очень небольшое количество углерода (до 0,02%), а в мартенсите углерода столько,

сколько его содержится в аустените этой стали, поэтому мартенсит является

α-твердым раствором, перенасыщенным углеродом.

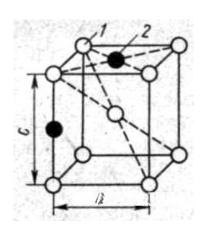



Рис. 7. Кристаллическая ячейка мартенсита: 1 — атомы железа, 2 — атомы углерода

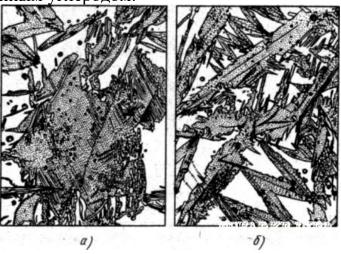



Рис. 8. Микроструктура мартенсита при  $1000^{x}$  увеличении

Мартенсит имеет характерное игольчатое строение (рис. 37, а). Чем мельче зерна аустенита, тем мельче получаются иглы мартенсита (рис. 8, 6). Такая структура характерна для правильно закаленной стали.

Для аустенитно-мартенситного превращения характерно то, что оно в интервале температур. Начинается превращение температуре  $M_H$ , а заканчивается при более низкой температуре  $M_K$  (рис. 39). Чем больше в стали углерода, тем ниже температура точек М<sub>н</sub> и М<sub>к</sub>. При содержании углерода более 0,6% мартенситное превращение оканчивается температурах Поэтому, ниже нуля. ДЛЯ высокоуглеродистых сталях получить большее количество мартенсита, их следует охлаждать до температур ниже нуля. Однако при температуре конца мартенситного превращения (точка Мк) не происходит полного образования мартенсита. Аустенит А частично остается не превращенным в мартенсит и называется остаточным аустенитом. В конструкционных углеродистых аустенит ~5%. Закаленные остаточный составляет сталях высокоуглеродистые стали содержат большее количество остаточного аустенита - до 12%.

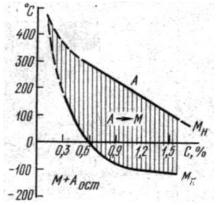
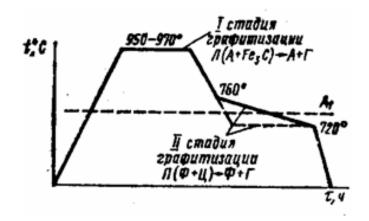



Рис. 9. Влияние содержания углерода на температуру начала и конца мартенситного превращения

При аустенитно-мартенситном превращении изменяется объем образующихся структур. Максимальный объем имеет структура мартенсита, меньший объем - структура троостита, еще меньший - сорбита и перлита и самый минимальный объем имеет структура аустенита.

Бейнитное (промежуточное) превращение при изотермической выдержке углеродистых сталей происходит в интервале температур ~500-250°C с образованием структуры, называемой бейнитом. Это превращение характеризуется сочетанием как перлитного (диффузионного), так и мартенситного (бездиффузионного) превращения. Начинается бейнитное превращение с перераспределения углерода в аустените. Благодаря этому в аустените образуются обогащенные и обедненные углеродом участки. Цементит выделяется в участках, обогащенных углеродом, в результате чего образуются участки аустенита, обедненные углеродом. В этих участках, а также в уже имеющихся участках, обеднениях углеродом, идет мартенситное превращение, а затем распад цементита, в результате чего образуется ферритоцементитная смесь.


При температуре изотермической выдержки более 350°C образуется верхний бейнит (~HB 450) с перистым строением, напоминающим строение перлита, при температуре изотермической выдержки менее 350°C образуется нижний бейнит (~HB 550), имеющий игольчатое строение, похожее на строение мартенсита.

## Контрольные вопросы:

- 1. Расскажите о превращениях, происходящих в стали при ее нагреве и охлаждении.
- 2. Что представляет собой мартенситная структура закаленной стали?
- 3. Назовите основные виды термической обработки.

## Порядок выполнения работы:

- 1. Покажите графический режим отжига для получения ферритного ковкого чугуна.
- 2. Опишите структурные превращения, происходящие в процессе отжига.
- 3. Постройте график, показывающий изменения сплава в процессе термической обработки.
- 4. Укажите характеристики механических свойств, приведите зарисовку микроструктуры.
- 5. Ответьте на контрольные вопросы.



Практическое занятие № 16 Построение графика химико-термической обработки и последующей обработки детали

Цель занятия: выбрать и обосновать режим термической обработки для конкретного сплава и построить график химико-термической обработки.

Теоретическая часть

Химико-термическая обработка – процесс химического и термического воздействия на поверхностный слой стали с целью изменения состава, структуры и свойств. Химико-термическая обработка повышает твердость износостойкость, поверхности стали, ee коррозионную стойкость, кислотоустойчивость и другие свойства. Химико-термическая обработка нашла широкое применение в машиностроении, так как является одним из эффективных наиболее методов упрочнения стальных ДЛЯ повышения их долговечности.

Химико-термической обработке можно подвергать различные по размерам и форме детали и получать обработанный слой одинаковой толщины. При химико-термической обработке за счет изменения химического состава поверхностного слоя достигается большое различие свойств поверхности и сердцевины детали. Недостатком процессов химико-термической обработки является их малая производительность.

Химико-термическая обработка основана на диффузии атомов различных химических элементов в кристаллическую решетку железа при нагреве в среде, содержащей эти элементы. Химико-термическая обработка состоит из трех процессов: диссоциации - получения насыщающего элемента в активном атомарном состоянии:  $2NH3 \leftrightarrow 2N+3H_2$ ,  $CH4 \leftrightarrow C+2H_2$  и т. д.; абсорбции - поглощения активных атомов насыщающего элемента поверхностью металла; диффузии - перемещения атомов насыщающего элемента с поверхности в глубь металла.

Необходимо, чтобы скорости всех трех процессов были обязательно согласованы, а для абсорбции и диффузии требуется, чтобы насыщающий элемент взаимодействовал с основным металлом, образуя либо твердые

растворы, либо химические соединения. Химико-термическая обработка невозможна, если основной металл и насыщающий элемент образуют механические смеси. Глубина проникновения диффундирующего элемента зависит от температуры и продолжительности насыщения, а также от состава стали, главным образом наличия легирующих элементов.

Наиболее распространенными видами химико-термической обработки является цементация (насыщение поверхностного слоя углеродом), цианирование (углеродом и азотом), борирование (бором), алитирование (алюминием) и др.

Цементация - процесс химико-термической обработки, заключающийся в диффузионном насыщении поверхностного слоя углеродом при нагреве в соответствующей среде. Цементация придает поверхностному слою высокую твердость и износостойкость, повышает предел выносливости при изгибе и кручении. Цементируют детали, работающие в условиях трения, при больших давлениях и циклических нагрузках шестерни, поршневые пальцы, распределительные валы и др.

Для цементации используют низкоуглеродистые стали (0,1-0,3% С), т. е. стали марок 10, 15, 20, А12, А20, Ст3, 15X, 25ХГМ и др. При цементации содержание углерода в поверхностном слое доводят до 1% (рис. 1). Толщина (глубина) цементованного слоя составляет 0,5-2,5 мм. Для углеродистых сталей глубиной цементации условно считают расстояние от поверхности детали до половины зоны, в структуре которой наряду с перлитом содержится примерно такое же количество феррита.



Рис. 1. Изменение концентрации (%) углерода в цементованном поверхностном слое.

При цементации деталь нагревают без доступа воздуха до 930-950°С в науглероживающей среде (твердой, жидкой или газообразной), выдерживают при этой температуре в течение нескольких часов, а затем медленно охлаждают. После этого ее подвергают нормализации, закалке и отпуску.

Науглероживающей средой служат твердые карбюризаторы (мелкий древесный уголь в смеси с углекислым барием), жидкие соляные ванны (смесь поваренной соли, углекислого натрия, цианистого натрия и хлористого бария) и газы, содержащие углерод (природный, светильный и др.).

Цементованные детали подвергают закалке (820-850°C) и низкому отпуску (150-170°C). После термической обработки структура поверхностного слоя представляет собой мартенсит или мартенсит с небольшим количеством карбидов с твёрдостью HRC 60-64.

Структура сердцевины деталей из углеродистых сталей - феррит, перлит, а из легированных сталей - низкоуглеродистый мартенсит, троостит

Азотирование - процесс химико-термической обработки, заключающийся в насыщении поверхностного слоя азотом для придания этому слою высокой твердости, износостойкости или устойчивости против коррозии.

Твердость азотированного слоя выше, чем цементованного, и сохраняется до высоких температур 400-600°С, тогда как твердость цементованного слоя с мартенситной структурой сохраняется лишь до 200-250°С. Азотированию подвергают легированные стали, содержащие алюминий, хром, титан, например 35ХМЮА, 40Х, 18ХГТ, 40ХНМА и др.

Перед азотированием улучшают механические свойства деталей, подвергая их закалке и высокому отпуску. Толщина азотированного слоя составляет 0,2-0,6 мм. Азотированный слой хорошо шлифуется и полируется. Азотированию подвергают детали автомобилей (шестерни, валы), а также штампы, пресс-формы и др. Азотирование приводит к небольшому увеличению размеров. Поэтому после азотирования детали подвергают окончательному шлифованию (например, повторно шлифуют шейки коленчатых валов) со снятием слоя 0,02-0,03 мм. Азотирование обычно проводят в среде аммиака при температуре 500-600°C. Аммиак активного азота в атомарном состоянии: разлагается с выделением  $2NH_3 \leftrightarrow 2N+6H$ . При ЭТИХ температурах В герметически муфеле, вставленном в печь, азот внедряется в поверхностный слой стали и вступает в химическое взаимодействие с легирующими элементами, образуя нитриды хрома, молибдена, вольфрама и др. Нитриды легирующих стали повышают твердость ДО HRC 70. конструкционные стали после азотирования имеют меньшую твердость, а твердость углеродистых сталей совсем невысока, так как в них не образуются специальные нитриды. Поэтому углеродистые стали подвергают только антикоррозионному азотированию.

Процесс азотирования длительный: до 24-60 ч при 500-520°С. Длительность процесса можно сократить двухступенчатым азотированием. Сначала температуру поддерживают на уровне 500-520°С, а заканчивают процесс при 560-600°С. Повышение температуры, ускоряя диффузию, уменьшает время образования слоя требуемой толщины, не вызывая снижения поверхностной твердости.

Для сокращения длительности азотирования в 2-3 раза используют ионное азотирование. Процесс проводят в разреженной азотосодержащей атмосфере ( $NH_3$  или  $N_2$ ) при подключении обрабатываемой детали к отрицательному электроду - катоду. Анодом служит контейнер установки. Между деталью и контейнером возбуждается тлеющий разряд, в котором ионы газа бомбардируют поверхность детали. Продолжительность ионного азотирования от 1 до 24 ч.

Азотирование в жидких средах проводят при 540-590°C в расплавленных цианистых солях в течение 0,5-3 ч. При общей толщине азотированного слоя 0,15-0,5 мм на поверхности образуется тонкий (7-15

мкм) карбонитридный слой, обладающий высоким сопротивлением износу.

Нитроцементация - процесс химико-термической обработки, заключающийся в насыщении поверхностного слоя одновременно азотом и углеродом в газовой среде. Основой газовой среды служит эндотермический газ (эндогаз), состоящий из азота (40%), водорода (40%) и окиси углерода (20%). При нитроцементации детали нагревают до 850-870°С в среде эндогаза с добавлением природного газа (5-15%) и аммиака (5%) и выдерживают в течение 4-10 ч. Глубина нитроцементованного слоя 0,2-0,8 мм. Она зависит от температуры процесса и времени выдержки. С повышением температуры содержание азота в слое уменьшается, а углерода - до определенной температуры возрастает, а затем несколько уменьшается.

После нитроцементации детали подвергают закалке и низкому отпуску при 160-180°C до твердости HRC 58-64.

Нитроцементуют детали сложной формы, подвергающиеся износу (зубчатые колеса), склонные к короблению. Нитроцементация имеет существенные преимущества перед газовой цементацией благодаря более низкой температуре процесса (на 70-90°С) и меньшей толщине слоя, что обеспечивает меньшие деформации и коробление детали. Нитроцементацию широко применяют в автомобильном и тракторном производстве. Так, на ВАЗе до 20% деталей, проходящих химико-термическую обработку, нитроцементуют

Задача 1. Копиры должны иметь минимальную деформацию и высокую износостойкость (твердость поверхностного слоя HV 750-1000). Для их изготовления выбрана сталь 38ХМФА. Укажите состав и определите, к какой группе по назначению относится данная сталь. Назначьте и обоснуйте режим термической обработки, объяснив влияние легирования на превращения, происходящие на всех этапах обработки данной стали. Опишите микроструктуру и свойства стали после термической и химикотермической обработки.

Сталь 38XМФА является легированной конструкционной высококачественной сталью с содержанием углерода в среднем до 0,38%, хрома до 1,5 %, молибдена — до 1,5 %, ванадия до 1,5%. Химический состав и механические свойства стали 38XМФА приведены в таблицах 2.1 и 2.2

Таблица 2.1 – Химический состав стали 38ХМФА ГОСТ4543-8

| Сталь   | С         | Si        | Mn      | Cr      | Mo        | V         |
|---------|-----------|-----------|---------|---------|-----------|-----------|
| 38 ХМФА | 0,35-0,42 | 0,17-0,37 | 0,5-0,8 | 0,8-1,1 | 0,20-0,30 | 0,08-0,14 |

Таблица 2.2- Механические свойства стали 38ХМФА ГОСТ4543-95

| Сталь  | Температура ,°С |        | σт  | σт  | δ, | Ψ,           | KCU,       | НВ         |
|--------|-----------------|--------|-----|-----|----|--------------|------------|------------|
|        | •               | ,      |     |     |    | ,            | Дж/см $^2$ | после      |
|        |                 |        |     |     |    |              |            | отжига     |
|        |                 |        |     |     |    |              |            | (не более) |
|        | закалка         | отпуск | M   | Па  |    | <del>%</del> |            |            |
| 38ХМФА | 930             | 640    | 830 | 980 | 14 | 50           | 88         | 229        |

Технологический процесс изготовления копиров при применении

азотирования состоит из следующих этапов:

- 1) предварительная термическая обработка копиров;
- 2) механическая обработка детали, включая шлифование;
- 3) азотирование;

Сталь 38ХМФА с содержанием углерода 0,35-0,42% относится к группе улучшаемых износостойких сталей и воспринимает закалку и высокий отпуск.

Закалка стали заключается в нагреве до температуры на 30-50°C выше точки Ac<sub>3</sub> (851°C), выдержке при этой температуре и последующем охлаждении в масле. После закалки для снятия внутренних напряжений и сохранения прочности назначается высокотемпературный отпуск.

Желаемая структура закалки - мартенсит.

Копиры из стали 38ХМФА подвергаются закалке от температуры 920°C до комнатной температуры в масле с последующим отпуском при 500°C в течение 2 часов. Структура высокотемпературного отпуска – сорбит.

После этого копиры подвергаются высокому отпуску при температурах 500°С и 650°С в течение 10 часов для снятия внутренних напряжений. Затем поверхность шлифуется для доведения до точного размера и удаления обезуглероженного слоя.

Непосредственно перед азотированием образцы зачищаются на тонкой шкурке и обезжириваются.

Для обеспечения минимальной деформации и высокой износостойкости (HV 750-1000) для стали 38 XMФА перлитного класса назначаем азотирование.

Азотирование стали — насыщение поверхности стальных деталей азотом для повышения твердости, износоустойчивости и коррозионной стойкости. Для азотирования нагревают детали при 480—650°С в атмосфере диссоциированного аммиака, при этом образуется атомарный азот, который поглощается поверхностью стальных деталей с образованием твердого раствора азота в матрице металла, нитридов железа и нитридов легирующих элементов.

Высокая твердость азотированного слоя объясняется также и большой растворимостью азота в феррите, легированном переходными элементами. Растворенный азот приводит к возникновению высоких микронапряжений, релаксация которых ниже порога рекристаллизации затруднена. При последующем охлаждении фиксируется перенасыщенный азотом твердый раствор, склонный к старению. Старение в процессе охлаждения приводит к выделению из твердого раствора легированной у'-фазы и нитридов легирующих элементов, добавочно повышающих твердость.

В исходном состоянии структура азотированного слоя состоит из слоя нитридов железа, представленных преимущественно  $\epsilon-\text{Fe}_2\text{N}$  и диффузионной зоной, состоящей из легированного азотом  $\alpha$ -твердого раствора и нитридов легирующих элементов.

Легированные стали с содержанием хрома, молибдена и ванадия после азотирования имеют поверхностную твердость HV 850—1200 . Это достигается за счет образования мелкодисперсных нитридов на поверхности

детали (химических соединений азота с элементами VN, GrN, Cr<sub>2</sub>N, MoN).

Все легирующие элементы уменьшают толщину азотированного слоя, но резко повышают твердость на поверхности и по сечению диффузионного слоя. Азотистая є-фаза в большинстве случаев имеет пониженную твердость. Высока твердость зоны внутреннего азотирования, составляющей основную часть слоя, связана с образованием азотистого твердого раствора и выделением нитридов легирующих элементов, искажающих решетку матрицы и затрудняющих пластическую деформацию.

Рисунок 2- Микроструктура азотированной стали 38ХМФА

## Индивидуальное задание Таблица 1.Варианты индивидуальных заданий

|      | таолица т. Варианты индивидуальных задании                                          |
|------|-------------------------------------------------------------------------------------|
| №    | Вопросы для индивидуального задания                                                 |
| вар. |                                                                                     |
| 1.   | Как проводят цементацию в твердом карбюризаторе?                                    |
| 2    | Как проводят и какие преимущества газовой цементации?                               |
| 3    | Чем различается цементация и нитроцементации                                        |
| 4    | Дайте характеристику и опишите основные этапы процесса алитирования                 |
| 5    | Что такое процесс азотирования и зачем его проводят?                                |
| 6    | Дайте характеристику и опишите основные этапы процесса хромирования                 |
| 7    | Дайте характеристику и опишите основные этапы процесса борирования                  |
| 8    | Опишите процесс термической обработки, которая проводится после процесса цементации |
| 9    | Что представляет собой диффузионное насыщение поверхности кремнием?                 |
| 10   | В чем заключается процесс цианирования стали?                                       |
| 11   | Что представляет собой процесс цинкования стали?                                    |
| 12   | В чем заключается процесс цементации в газовой среде?                               |
| 13   | В чем заключается процесс цементации в твердом карбюризаторе?                       |
| 14   | Что представляет собой технология нитроцементации?                                  |
| 15   | Чем отличается азотирование от нитроцементации?                                     |
| 16   | Что представляет собой процесс диффузионной металлизации?                           |
| 17   | Чем отличается процесс цинкования от процесса цианирования?                         |
| 18   | Цементация: виды, и методы проведения                                               |
| 19   | Азотирование: виды и методы проведени.                                              |
|      |                                                                                     |

| 20 | Диффузионная металлизация: виды и методы проведения                    |
|----|------------------------------------------------------------------------|
| 21 | Нитроцементация: методы проведения, характеристика                     |
| 22 | Цианирование:методы проведения, характеристика                         |
| 23 | Дайте отличия газовой цементации от цементации в твердом карбюризаторе |
| 24 | Характеристика низкотемпературного газового цианирования               |
| 25 | Характеристика высокотемпературного газового цианирования              |

## Порядок выполнения работы:

- 1. Ознакомиться с теоретической частью.
- 2. Исходные данные по вариантам в таблице 1.
- 3. Решение задачи по образцу задачи 1.
- 4. Построение графика термической и химико-термической обработки.

## Практическое занятие № 17

## Сравнение эксплуатационных свойств алюминиевых сплавов.

Цель занятия: изучение характеристик, свойств, способов термообработки и областей применения алюминиевых сплавов Д16 и В95.

## Теоретическая часть

#### Алюминиевый сплав В95

**В95** - это высокопрочный термоупрочняемый сплав алюминия с цинком, магнием и медью. Это самый прочный из наиболее известных сплавов алюминия. Он применяется для высоконагруженных конструкций, работающих под большим давлением на сжатие. Сплав обладает высокой твёрдостью и прочностью в виду образования твёрдых кристаллических образований в нём. Высокая твёрдость сказывается на его пластичности, поэтому В95 плохо переносит надрезы.

Под высоким точечным напряжением В95 проявляет склонность к коррозии. В различных направлениях при поперечном и продольном приложении усилий материал склонен проявлять различные механические свойства (анизотропию). В95 обладает достаточной коррозионной стойкостью в обычных условиях, кроме как под большой точечной нагрузкой. Но в естественно состаренном состоянии антикоррозионные свойства проявляются плохо, поэтому в большинстве случаев используется сплав искусственно состаренный — В95Т1.

Высокопрочный сплав алюминия В95 хорошо обрабатывается резанием. Он не сваривается аргонодуговой сваркой, но подлежит только контактной сварке. А при высоких температурах его прочность начинает

падать, поэтому вместо него часто применяют дюралюминий и жаропрочные сплавы. Кроме того, он обладает худшими конструкционными свойствами, чем дюралюминий.

## Свойства материала В95

Химический состав B95 описан в ГОСТ 4784-97. Добавлением марганца делает сплав более прочным и делает структуру сплава более плотной.

#### Химический состав в % материала В95

| Fe     | Si     | Mn        | Ni     | Cr         | Ti      | AI          | Cu      | Mg        | Zn    | Примесей                       |
|--------|--------|-----------|--------|------------|---------|-------------|---------|-----------|-------|--------------------------------|
| до 0.5 | до 0.5 | 0.2 - 0.6 | до 0.1 | 0.1 - 0.25 | до 0.05 | 86.3 - 91.5 | 1.4 - 2 | 1.8 - 2.8 | 5 - 7 | прочие, каждая 0.05; всего 0.1 |

Примечание: AI - основа; процентное содержание AI дано приблизительно

Механические свойства этого материала деградируют при температуре свыше 120 °C.

| марка    | 1  |    | <b>юсть,</b><br>IB |               |    | водность в<br>нию к меди | теплопроводность<br>в кал/°С |      |          |  |
|----------|----|----|--------------------|---------------|----|--------------------------|------------------------------|------|----------|--|
|          | М  | H2 | H,T(T1)            | M H2 H, T(T1) |    |                          | M                            | H2   | H, T(T1) |  |
| А8 - АД0 | 25 |    | 35                 | 60            |    |                          | 0.52                         |      |          |  |
| АМц      | 30 | 40 | 55                 | 50            | 40 |                          | 0.45                         | 0.38 |          |  |
| АМг2     | 45 | 60 |                    | 35            |    | 30                       | 0.34                         |      | 0.30     |  |
| АМг5     | 70 |    |                    | 30            |    |                          | 0.28                         |      |          |  |
| АД31     |    |    | 80                 | 55            |    | 55                       | 0.45                         |      |          |  |
| Д16      | 45 |    | 105                | 45            |    | 30                       | 0.42                         |      | 0.28     |  |
| B95      |    |    | 150                |               |    | 30                       |                              |      | 0.28     |  |

|      | Физические свойства материала В95. |        |             |       |              |                   |  |  |  |  |
|------|------------------------------------|--------|-------------|-------|--------------|-------------------|--|--|--|--|
| Т    | E 10 <sup>-5</sup>                 | α 10 ° | λ           | ρ     | С            | R 10 <sup>9</sup> |  |  |  |  |
| Град | МПа                                | 1/Град | Вт/(м-град) | кг/м³ | Дж/(кг-град) | Ом-м              |  |  |  |  |
| 20   | 0.74                               | 1      |             | 2850  |              |                   |  |  |  |  |
| 100  |                                    | 23.2   |             |       |              |                   |  |  |  |  |

Механические свойства при T=20°C материала В95.

| Сортамент                                      | Размер | Напр. | σε          | στ          | δ <sub>5</sub> | Ψ | KCU         | Термообр.                          |
|------------------------------------------------|--------|-------|-------------|-------------|----------------|---|-------------|------------------------------------|
|                                                | мм     | -     | МПа         | МПа         | %              | % | кДж /<br>м² | -                                  |
| Трубы, ГОСТ 18482-79                           |        |       | 490-<br>510 | 375-<br>400 | 5-7            |   |             |                                    |
| Пруток, ГОСТ 21488-97                          |        |       | 490-<br>530 | 390-<br>420 | 4-6            |   |             | Закалка и искуственное<br>старение |
| Пруток, высокой прочности, ГОСТ 51834-<br>2001 |        |       | 550-<br>570 | 480-<br>490 | 6              |   |             | Закалка и искуственное<br>старение |
| Лента отожжен., ГОСТ 13726-97                  |        |       | 245         |             | 10             |   |             |                                    |
| Профили отожжен., ГОСТ 8617-81                 |        |       | 275         |             | 10             |   |             |                                    |
| Профили, ГОСТ 8617-81                          |        |       | 510-<br>520 | 451-<br>461 | 6              |   |             |                                    |
| Плита, ГОСТ 17232-99                           |        |       | 470-<br>490 | 390-<br>410 | 2-4            |   |             | Закалка и искуственное<br>старение |

| Твердость В95 |                            | HB 10 <sup>-1</sup> = 125 МПа |
|---------------|----------------------------|-------------------------------|
| Твердость В95 | после закалки и старения , | HB 10 <sup>-1</sup> = 150 MΠa |

#### Форма выпуска

Сплав В95 выпускается с различными состояниями материала:

- В обычном состоянии,
- М после отжига в пластичном состоянии,
- Т после закалки и естественного старения,
- **Т1** выпускаются чаще всего, после закалки и искусственного старения,
- А также Н с нагартовкой.
- С плакировкой.

<u>Алюминиевые листы</u> В95 обычно выпускаются с плакировкой 2-4% технического алюминия, для защиты от химического и электрического воздействия. Т.е. царапина на металле в одном месте не скажется на его коррозионных свойствах в целом.

Из него выпускают:

- Плиты В95,
- Ленты,
- Плиты,
- Профили.

Примечание: *Плакировкой* называется покрытие листов из алюминиевых сплавов при прокатке тонким слоем (5 % от толщины листа с каждой стороны) чистого алюминия, предохраняющим основной металл от коррозии. *Нагартовка* заключается в механическом уплотнении поверхности металла металлической дробью, увлекаемой струей воздуха. Дробь, ударяясь о поверхность, равномерно уплотняет металл.

Нагартовка и полунагартовка применяются для термически неупрочняемых сплавов, закалка и старение — для термически упрочняемых сплавов.

При обычных условиях - это самый прочный и твёрдый сплав достаточно стойкий к коррозии, но плохо деформируемый и умеренно стойкий к коррозии, практически наравне с дюралями, но немного выше АМг6. Особенно его малая коррозионная стойкость проявляется при высокой напряжённости. По этой причине детали из В95 дополнительно защищают от окисления.

В виду малой стойкости к коррозии под точечным напряжением и склонности к надлому при надрезе, В95 чаще применяется для изготовления нагруженных деталей, работающих на сжатие. Детали из В95 не должны работать длительное время при температуре выше 100 °С. После изготовления элементов из неупрочнённого материала их можно закалить. Из В95 выпускают различные детали для техники, крепления, заклёпки и заклёпочная проволока.

### Алюминиевый сплав Д16

Марка: Д16 (дуралюминий, дюраль).

Класс: Алюминиевый деформируемый сплав.

Сплав Д16 - наиболее распространенный сплав. Относится к системе А 1 - Cu - Mg - Mn . Он интенсивно упрочняется термической обработкой. Сплав хорошо деформируется в горячем и холодном состоянии. Горячая деформация возможна в широком интервале температур от  $350~^{\circ}$ C до  $450~^{\circ}$  C. Деформации при комнатной температуре сплав может подвергаться как в отожженном, так и в закаленном состоянии. Механические свойства полуфабрикатов после закалки и естественного старения в значительной мере обработки. зависят OT условий предварительной Так профилей прессованных из литого слитка, прочностные характеристики после термообработки имеют максимальные значения (46-50м/мм 2). У профилей прессованных из предварительно деформируемой заготовки прочностные характеристики после термообработки ниже 40- $43~{
m kг/mm}^2$  .

Механические свойства при T=20 °C материала Д16

| Сортамент                                        | Размер       | σв      | σΤ      | σ5    | Термообработка                   |
|--------------------------------------------------|--------------|---------|---------|-------|----------------------------------|
| - 1                                              | ММ           | МПа     | МПа     | %     | -                                |
| Трубы, ГОСТ 18482-79                             |              | 390-420 | 255-275 | 10-12 |                                  |
| Пруток, ГОСТ 21488-97                            |              | 245     | 120     | 12    |                                  |
| Пруток, ГОСТ 21488-97                            | Ø 8 -<br>300 | 390-410 | 275-295 | 8-10  | Закалка и старение               |
| Пруток, высокой прочности, ГОСТ 51834-2001       |              | 450-470 | 325-345 | 8-10  | Закалка и старение               |
| Пруток, повышенной пластичности, ГОСТ 51834-2001 |              | 410     | 265     | 12    | Закалка и старение               |
| Лента отожжен., ГОСТ 13726-97                    |              | 235     |         | 10    |                                  |
| Профили, ГОСТ 8617-81                            | 10 -<br>150  | 412     | 284     | 10    | Закалка и искусственное старение |

| Профили отожжен., ГОСТ 8617-81 | 245     |         | 12  |                    |
|--------------------------------|---------|---------|-----|--------------------|
| Плита, ГОСТ 17232-99           | 345-420 | 245-275 | 3-7 | Закалка и старение |

| Твердость материала Д16, сплав отожженный        | HB 10 -1 = 42 МПа  |
|--------------------------------------------------|--------------------|
| Твердость материала Д16 после закалки и старения | HB 10 -1 = 105 МПа |

#### Физические свойства материала Д16

| Т    | E 10- 5 | a 106  | 1           | r                 | С            | R 109 |
|------|---------|--------|-------------|-------------------|--------------|-------|
| Град | МПа     | 1/Град | Вт/(м·град) | кг/м <sup>3</sup> | Дж/(кг-град) | Ом·м  |
| 20   | 0.72    |        |             | 2800              |              |       |
| 100  |         | 22.9   | 130         |                   | 0.922        |       |

| Fe      | Si  | Mn        | Ni Z     | Химиче<br>  Ті<br> | ский состав<br>Al | в % мате<br>Cu | риала Д1<br>Мg | 6<br>Zn | Примесей                    |
|---------|-----|-----------|----------|--------------------|-------------------|----------------|----------------|---------|-----------------------------|
| до 0.5д | 0.5 | 0.3 - 0.9 | до 0.1де | 0.1                | 90.8 - 94.7       | 3.8 - 4.9      | 1.2 - 1.8      | до 0.3п | очие, каждая 0.05; всего 0. |

Примечание: Al - основа; процентное содержание Al дано приблизительно

Существенное влияние на механические свойства прессованных профилей оказывает величина коэффициента вытяжки при прессовании. Максимальные значения прочностных характеристик получаются при коэффициенте вытяжке равной 9-12. Поэтому крупногабаритные профили имеют, как правило более высокие показатели прочности, чем профили мелких сечений, прессуемых обычно с высокими коэффициентами вытяжки (25 - 35 и более) Различные механические свойства наблюдаются так же при производстве профилей с резко отличающимися толщиной полок. Образцы вырезанные из толстых полок имеют более высокие значения, чем вырезанные из тонких полок. Прочность прессованных полуфабрикатов будет выше примерно на 10% без заметного снижения показателей пластичности, если изготавливать их из сплава с содержанием меди и марганца на верхнем пределе 4,5, 0,85% С и 0,65-0,85% Мп и повышать температуру прессования до 430-460°С. Прессованные полуфабрикаты в закаленном и естественно состаренном состоянии имеют пониженную коррозионную стойкость. Искусственное старение является предпочтительным, так как обеспечивает лучшие практические свойства. Но применять его следует только для ответственных деталей.

Сплав алюминий Д16 хорошо сваривается точечной сваркой. При газовой и аргоно-дуговой сварках с присадкой Д16 склонен к образованию кристаллизационных трещин. Предел прочности сварного соединения составляет 60-75% от прочности основного материала. При перезакалке и естественном старении прочность достигает 90% от прочности основного материала. Пластичность сварных швов пониженная.

Детали из алюминиевого сплава Д16 обычно эксплуатируются при температурах не выше 120°С, так как при высоких температурах он проявляет склонность к межкристаллитной коррозии.

Алюминиевый сплав Д16Т широко используется для большинства силовых элементов конструкций. Он пластичен, вследствие чего обладает высокими усталостными характеристиками.

Для защиты сплавов алюминия Д16 и Д16т от коррозии используют анодное оксидирование. Надо отметить, что материал маркированный Д16АТ является плакированным, т.е. покрытым плёнкой чистого алюминия для сопротивления коррозии. Важно, что если вам надо покрывать алюминий другим материалом, например красить, то плакировочный слой надо удалять.

Современная авиационная техника - это техника для длительной эксплуатации (более 40 000 летных часов). Ее изделия находятся под воздействием циклических нагрузок, температуры и атмосферной среды. В конструкции самолетов гражданского флота используют в основном сплавы Д16, Д19, В95, В96 в качестве материалов для фюзеляжа, крыше и киля. Обшивка верхней поверхности крыла выполняется из сплавов типа В95, хорошо работающих на сжатие. Детали растянутой зоны крыла и обшивка фюзеляжа, вспомогательные лонжероны и нероворы изготавливаются из высокопрочного сплава типа Д16, В95. Сплавы эти рекомендуются для силовых деталей, которые воспринимают большие эксплуатационные нагрузки. Прессованные полуфабрикаты из сплавов В95 и В96 поступают на изготовление киля крупногабаритных самолетов. Обшивка в зоне двигателя, подвергающаяся нагреву, в основном, изготавливаются из сплавов Д16, Д19.

Алюминий и сплавы на его основе находят все более широкое применение в судостроении. Из алюминиевых сплавов изготовляют корпусы судов, палубные надстройки, коммуникацию и различного рода судовое оборудование. Наиболее широкое применение среди алюминиевых сплавов для изготовления конструкций речного и морского флота находят магналиевые сплавы АМгЗ, АМг5, АМг61, а также сплавы АМц и Д16. Корпус судна повышенной грузоподъемности изготовляют из стали, тогда как надстройки и другое вспомогательное оборудование из алюминиевых сплавов.

Одним из основных требований к материалам, применяемым в автомобильном транспорте, является малая масса и достаточно высокие показатели прочности. Принимаются во внимание также коррозионная стойкость и хорошая декоративная поверхность материала. Высокая удельная прочность алюминиевых сплавов увеличивает грузоподъемность и уменьшает эксплуатационные расходы передвижного транспорта. Высокая коррозионная стойкость материала продляет сроки эксплуатации, расширяет ассортимент перевозимых товаров, включая жидкости и газы с высокой агрессивной концентрацией.

#### Таблица 1

| №<br>п/п | Свойства сплавов               | B95 |  |
|----------|--------------------------------|-----|--|
| 1.       | Химический состав              |     |  |
| 2.       | Механические                   |     |  |
|          | свойства                       |     |  |
| 3.       | Коррозионные                   |     |  |
|          | свойства                       |     |  |
| 4.       | Изменения свойств,             |     |  |
|          | при повышении Т <sup>о</sup> С |     |  |
| 5.       | Виды                           |     |  |
|          | термообработки                 |     |  |
| 6.       | Значения твердости             |     |  |
|          | до и после закалки             |     |  |
| 7.       | Выпускаемые                    |     |  |
|          | полуфабрикаты                  |     |  |
| 8.       | Применение                     |     |  |

## Контрольные вопросы

- 1. Где применяют деформируемые алюминиевые сплавы?
- 2. Как улучшают механические свойства литейных алюминиевых сплавов?
- 3. Какие способы термической обработки применяют для алюминиевых сплавов?

## Порядок выполнения работы:

- 1. Ознакомиться с теоретической частью практического занятия.
- 2. Заполнить таблицу 1.
- 3. Ответить на контрольные вопросы

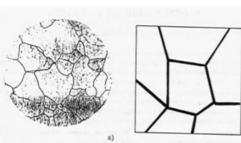
# Практическое занятие № 18 Изучение микроструктуры сплавов цветных металлов

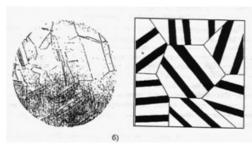
Цель занятия: Получить практический навык микроанализа основных групп медных сплавов и бронз. Изучить их микроструктуру и свойства, маркировку, область применения.

#### Теоретическая часть

Чистую медь применяют для электротехнических целей и поставляют в виде полуфабрикатов - проволоки, прутков, лент, листов, полос и труб. Из-за малой механической прочности чистую медь не используют как конструкционный материал, а применяют ее сплавы с цинком, оловом, алюминием, кремнием, марганцем, свинцом. Легирование меди обеспечивает повышение ее механических, технологических и эксплуатационных свойств. Различают три группы медных сплавов: латуни, бронзы, сплавы меди с никелем.

Медь— это пластичный металл светлорозового цвета, плавится при 1083 °С, имеет плотность 8,96 г/см3обладает гранецентрированной кубической решеткой. Отличительная особенность меди — ее малое электросопротивление, высокая


теплопроводность, хорошая коррозионная стойкость во многих естественных средах (атмосфера, земля, морская и пресная вода). объясняется Последнее свойство как химической стойкостью самой меди (по электрохимическому потенциалу положительнее водорода), так И устойчивостью образующихся продуктов коррозии.


Предел прочности меди в отожженном состоянии составляет 250 МПа, относительное удлинение 50%, относительное сужение 75%. Для упрочнения меди используется наклеп. Путем наклепа можно довести sbдо 450 МПа, но при этом пластичность понижается.

Примеси оказывают существенное влияние на механические, технологические и физические свойства меди. Растворимые примеси (А1, Sn, Zn и др.) повышают механические свойства, НО значительно снижают электро - и теплопроводность. Нерастворимые примеси (РЬ, Ві) образуют легкоплавкие эвтектики, которые затрудняют обработку давлением горячую горячеломкости. Примеси (S,O) образуют тугоплавкие эвтектики, которые располагаются границам ПО зерен, появлению хрупкости меди. приводит к Микроструктура литой меди полиэдрическая,

зернистая (рис.la). Микроструктура холоднодеформированной меди, подвергнутой последующему рекристаллизационному отжигу, такая же, но с наличием двойников (рис.1б).

Химический состав меди и свойства нормированы ГОСТ 859-78. Медь поставляют в мягком (отожженном) и твердом состоянии. Она применяется для





изготовления сплавов на медной основе, токопроводящих деталей, фольги и т.п. (см. табл.1 приложения).

Рис.1. Микроструктура меди (справа - схематическое изображение):

а ) л и т о й

в) холоднодеформированной, подвергнутой рекристаллизационному отжигу.

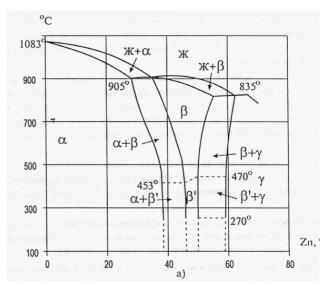



Рис. 2а. Диаграмма состояния медь-цинк.

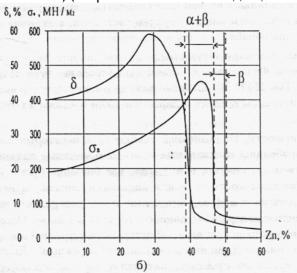



Рис. 26. График изменения механических свойств латуней, в зависимости от содержания цинка: относительной удлинение; - предел прочности ЛАТУНИ

Латуни представляют собой двойные или многокомпонентные медные сплавы, в которых цинк является основным легирующим компонентом. Цинк способен растворяться в меди в твердом состоянии до 39% (см. табл.1 приложения).

Твердый раствор Zn и Cu имеет кристаллическую решетку меди и называется а -фазой. При содержании цинка, превышающем 39%, наряду с а - фазой образуется b -фаза, представляющая собой твердый раствор на базе химического соединения.

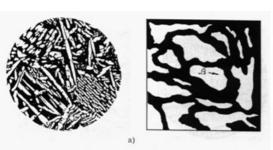
Количество b -фазы зависит от того, насколько содержание цинка превышает его предел растворимости и меди (39%). Поэтому латуни, содержащие цинк до 39%, имеют структуру, состоящую из зерен а -фазы и называются однофазными. Латуни с содержанием цинка более, 39%, но менее 46% имеют структуру, состоящую из зерен аи b -фазы и относятся к двухфазным. Микроструктура литой однофазной латуни имеет дендритное строение (рис.3а). Эта же латунь после холодной обработки давлением и рекристаллизационного отжига, имеет зернистую структуру с наличием двойников (рис.3б).










Рис. 3. Микроструктура однофазной латуни (справа - схематическое изображение): а) литой; б) деформированной и отожженной

Микроструктура литой двухфазной а + b - латуни состоит из светлых зерен а -фазы и темных зерен b -фазы. В деформированной и отожженной а + b -латуни на зернах а -фазы имеются ее двойники (рис.4).

' Гаким образом, латуни, содержащие от 39 до 46% Zn, имеют двухфазную структуру а + b и обладают низкой пластичностью, поэтому они хорошо обрабатываются давлением лишь в горячем состоянии, в отличие от а -латуни ,которая хорошо обрабатывается в холодном состоянии.

По технологическому признаку латуни подразделяют на литейные и обрабатываемые давлением. Физические и механические свойства этих латуней нормируются ГОСТом 15527-70. Двойные латуни маркируются буквой Л и числом, характеризующим среднее содержание меди

#### в сплаве (табл.2 приложения).



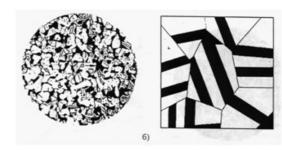



Рис. 4. Микроструктура двухфазной латуни (справа - схематическое изображение): а) литой; б) после деформации и отжига

Для прочности, повышения некоторых коррозионной стойкости И разработаны свойств специальных многокомпонентные латуни. специальные Состав сложных латуней отражается в ее марке, где большие буквы А, Н, Мц, К, О, Ж обозначают соответственно алюминий. никель, марганец, кремний, олово, железо, а цифры, следующие после содержания меди, показывают процентное содержание данного сплаве. Олово существенно металла, снижает обесцинкование латуней при работе пресной И морской воде, поэтому оловянные латуни иногда называют "морскими" (ЛО90-1, ЛО62-1). Марганец улучшает стойкость латуней в морской

атмосфере

(Амц58-2). Кремний резко упрочняет латуни, также повышает коррозионную стойкость (ЛК80-3). Более сложные по составу латуни содержат совместно алюминий (ДО 2%), железо, никель, марганец, кремний (по 1–3%). Отличительная особенность этих сплавов еще более высокая прочность и стойкость в различных среда. К этой группе сплавов относится латунь ЛЖМц59-1.

Для улучшения обработки резанием (точение, сверление и пр.) и некоторые двойные латуни вводят свинец (ЛС59-1). Он не растворяется и меди структуре И В распределен в виде отдельных включений. При обработке резанием латуни, в структуре которой имеются равномерно мелкие распределенные свинца, включения получается сыпучая, а не витая стружка.

Это не только облегчает процесс обработки резанием, но и позволяет получать чистую без заусенцев отработанную поверхность.

В табл.3 приложения приведены примеры специальных латуней, обрабатываемых давлением. Видно, что они широко применяются в судостроении в качестве антифрикционных материалов и для деталей судовой арматуры.

Литейные латуни нормируются по ГОСТ 17711-80, они содержат те же элементы, что

латуни, обрабатываемые давлением, последних литейные латуни отличает, как правило, большее легирование цинком металлами. Вследствие другими интервала кристаллизации литейные латуни хорошими обладают литейными характеристиками. В марке литейной латуни указывается содержание цинка. Например: ЛЦ10 – литейная латунь, содержащая 10% Zn и 90% Си. В таблице 4 приложения указаны состав и область применения сплавов этой группы.

#### **БРОНЗЫ**

Бронзами называют сплавы меди, в которых цинк и никель не являются основными легирующими элементами.

Название бронзам дают по названию основного легирующего элемента, например, оловянная, алюминиевая и т.п. Отдельные бронзы в качестве легирующего компонента содержат цинк, но он не является основным. Но фазовому составу бронзы делят однофазные и двухфазные. Однофазные бронзы состоят из зерен твердого раствора легирующих элементов в меди, называемого а -фазой. По технологическому признаку бронзы, как и латуни делят на 2 группы: литейные и деформируемые. бронза имеет однофазная структуру неоднородного твердого раствора т.е.

дендритную структуру. Дендриты любого сплава всегда обогащены более тугоплавким компонентом, а междендритные объемы более легкоплавким. Схемы микроструктуры литой и деформированной бронз аналогичны соответствующим схемам латуни. рис.3). В двухфазных бронзах наряду с а присутствуют кристаллы фазой более твердого химического соединения той или которые иной природы, ΜΟΓΥΤ присутствовать в структуре либо в виде кристаллов, либо отдельных являться эвтектоида. Например, составной частью микроструктура литой двухфазной бронзы БрА10 состоит из следующих структурных составляющих - светлых участков а -фазы (это твердый раствор алюминия в меди) и темных участков эвтектоидной смеси а -фазы и химического соединения, (рис.5).



Рис. 5. Микроструктура литой двухфазной бронзы (справа -

схематическое изображение)

Оловянные бронзы – это сплавы меди с оловом, которые могут содержать, добавки фосфора, свинца, цинка, никеля и других Обладая легирующих элементов. достаточной прочностью, они имеют высокую коррозионную стойкость (особенно в морской воде), хорошие антифрикционные свойства низкий коэффициент высокое сопротивление износу. Небольшие добавки фосфора (0,1?0,4%) в оловянные бронзы вводят с целью их раскисления. Добавки цинка улучшают литейные свойства (вследствие уменьшения интервала а добавки кристаллизации), свинца антифрикционные свойства.

Алюминиевые бронзы содержат обычно добавки марганца, железа, никеля, свинца Марганец улучшает коррозионную стойкость, никель и железо прочностные антифрикционные свойства, свинец обрабатывание резанием свойства И алюминиевых бронз. Помимо оловянных и алюминиевых бронз в судовых механизмах применяются кремнистые бериллиевые И бронзы. Последние близки к алюминиевым бронзам свойств ПО значению технологическим характеристикам. В табл.6 приложения указаны области применения деформируемых бронз, обрабатываемых

давлением.

Большинство литейных оловянных бронз применяется ДЛЯ изготовления ответственных отливок. Отливки ИЗ бронз обычно получают алюминиевых формы. литьем кокиль ИЛИ песчаные Обратите особенность внимание на маркировки литейных бронз (табл.7 приложения).

1. Для каждого из заданных образцов латуней и бронз выполнить следующее — определить структурные составляющие и схематично зарисовать микроструктуру изучаемых сплавов;

\_

- под каждой микроструктурой написать увеличение, химический состав сплава, структурные составляющие, марку, применение.
- 2. Пользуясь диаграммой состояния "медь цинк" и графиком изменения механических свойств латуней определить относительное удлинение и предел прочности рассмотренных сплавов, объяснить отличие свойств однофазных и двухфазных латуней.
- 3. Расшифровать марку предложенного многокомпонентного сплава.

#### КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какие примеси практически не растворяются в меди? Есть ли отличие в микроструктуре литой и деформированной, подвергнутой последующему рекристаллизационному отжигу меди?
- 2. Что такое латунь?
- 3. Как влияет цинк на свойства однофазных латуней? Как маркируют деформируемые латуни? Какие латуни относят к многокомпонентным, специальным?
- 4. Что такое бронза?
- 5. Дайте характеристику свойств оловянных бронз.
- 6. Где применяется бронза?
- 7. Где применяются латуни?

## Порядок выполнения работы:

- 1. Изобразить участок диаграммы медьцинк (до 50%. цинка), нанести на немфигуративные линии сплавов Л70 и ЛС59-1.
- 2. Изобразить схематически микроструктуру этих сплавов в

- предварительно деформированном и отожженном состоянии, указать структурные составляющие и фазовый состав.
- 3. Пользуясь таблицами приложения и рисунками, определить химический состав и механические свойства, изученных латуней.
- 4. Изобразить микроструктуру бронзы БрА5 и БрО10Ф1 в литом и предварительно деформированном и отожженном состоянии. Указать структурные составляющие и фазовый состав сплавов.
- 5. Краткие выводы об особенностях структуры и свойствах исследованных сплавов.
- 6. Ответить на контрольные вопросы.

## Практическая работа № 1 (6) Азотирование, борирование, силицирование и др. вилы ХТО

**Цель работы:** ознакомиться с процессами азотирования, борирования, силицирования, цианирования.

Задания: описать технологические процессы XTO и достигаемые технологические и эксплуатационные свойства материалов

#### Общие положения. Азотирование

Под азотированием подразумевается процесс диффузионного насыщения поверхностного слоя стального изделия или детали азотом при нагреве в соответствующей среде. Целью азотирования являются повышение твердости поверхности изделия, выносливости И износостойкости, стойкости к появлению задиров и кавитационным воздействиям, повышение коррозионной стойкости в водных средах атмосфере. Азотированию подвергаются самые разнообразные по составу и назначению стали — конструкционные жаропрочные коррозионностойкие, инструментальные, И порошковые стали, а также ряд тугоплавких материалов (табл. 1).

Азотирование проводится при температурах значительно температур температур фазовых цементации И превращений, поэтому иногда ЭТОТ процесс называют низкотемпературной химико-термической обработкой ИЛИ низкотемпературным азотированном. Температура процесса азотирования обычно не превышает 600 °C. Однако следует отметить, что в последние годы все большее распространение получает процесс высокотемпературного азотирования (600-1200 °C). Этот процесс применяют для насыщения азотом

поверхностей деталей из ферритных и аустенитных сталей, ряда тугоплавких металлов — титана, молибдена, ниобия, ванадия и т. д.

<u>Таблица 1</u> Составы основных насыщающих сред и режимы химико-термической обработки при азотировании

|     | Состав насыщающей среды                                                          |           | зотирования  |                  |
|-----|----------------------------------------------------------------------------------|-----------|--------------|------------------|
| Coo |                                                                                  |           | τ, ч         | Глубина<br>слоя, |
|     |                                                                                  |           |              | (MM)             |
|     | Азотиро                                                                          | вание изо | отермическое |                  |
| 1   | Аммиак NH3<br>давление, Па:<br>192,4–721,5<br>степень<br>диссоциации,<br>20–40 % | 500-520   | 6-90         | 0,1-0,8          |
|     | 30–55                                                                            | 560–580   | 1–10         | 0,15-0,4         |
| 2   | 20 % NH3 + 80 % N2<br>(или N2                                                    | 500–520   | 6–90         | 0,1-0,8          |

| _ |                                                                                   |           |                 |          |  |  |  |
|---|-----------------------------------------------------------------------------------|-----------|-----------------|----------|--|--|--|
|   | + H2)*1                                                                           |           |                 |          |  |  |  |
|   | Азотирование двухступенчатое                                                      |           |                 |          |  |  |  |
| 3 | 20 % NH3 степень<br>диссоциации 20–40 %                                           | 500–520   | 15–20           | 0,5-0,8  |  |  |  |
|   | 40–45                                                                             | 540-560   | 25–40           | 0,5-0,8  |  |  |  |
|   | Азотирование с доб                                                                | авками уі | глеродсодержащі | их газов |  |  |  |
| 4 | Аммиак NH3 + 50 %<br>эндогаза (40 % H2 +<br>20 % CO + 40 %<br>N2)*2               | 570       |                 |          |  |  |  |
| 5 | Аммиак NH3 + 50<br>% эндо- экзогаза (20<br>% H2 + 20 % CO<br>+ 60 % N2)           |           | 0,5–3,0         |          |  |  |  |
| 6 | Аммиак NH3 + 50 %<br>экзогаз (10 % CO +<br>90<br>% N2) в<br>отношении 1 к 2       |           |                 |          |  |  |  |
| 7 | 58,6 % N2 + 17,9 % H2<br>+ 14,3<br>% NH3 + 3,5 % CO +<br>2,2 % CO2 + 3,5 %<br>H2O |           |                 |          |  |  |  |
| 8 | Аммиак NH3 + 50 %<br>C2H8<br>(пропана)*3                                          | 570       | 2–10            |          |  |  |  |
| 9 | Продукты пиролиза<br>керосина, спирта<br>(50<br>%) + Аммиак NH3 (50<br>%)         | 570       | 1–6             |          |  |  |  |
|   | Азотирова                                                                         | ние анти  | коррозийное *4  |          |  |  |  |
|   | Аммиак NH3                                                                        |           |                 |          |  |  |  |
|   |                                                                                   |           |                 |          |  |  |  |

| 10 | давление, Па: 192,4— | 600-700 | 0,25–10 | 0,02-0,08 |
|----|----------------------|---------|---------|-----------|
|    | 721,5, степень       |         |         |           |
|    | диссоциации, %: 40-  |         |         |           |
|    | 60                   |         |         |           |

#### Примечание:

- \*1 Процесс кратковременного азотирования при 570 °C вместо жидкого азотирования. Разбавление аммиака азотом уменьшает хрупкость слоя.
- \*2 Применение эндогаза при температурах ниже 700 °C взрывоопасно. Требуется принятие специальных защитных мер.
  - \*3 Степень диссоциации аммиака 30–60 %.
- \*4 Антикоррозийному азотированию подвергают изделия, изготовленные из углеродистых сталей, работающих в условиях атмосферной коррозии.

Процесс низкотемпературного азотирования проводят, в основном, в газовых средах — смеси азота и аммиака, диссоциированного аммиака и т. д. Для активизации процесса в насыщающую среду могут быть введены кислород или воздух. Достаточно широкое применение нашли среды, где азотнасыщенные среды дополняются углероднасыщенными, среды, где кроме диссоциированного TO присутствуют природный или светильный газ, эндогаз, пары спирта или керосина и т. п. Для азотирования в жидких средах, которое также называют «мягким азотированием» или

«тенифер-процессом» применяют расплавы цианид-цианатных солей или ванны на основе карбамида. Однако жидкое азотирование не получило широкого распространения из-за токсичности процесса, высокой стоимости используемого оборудования и используется, в основном, для обработки инструментов из быстрорежущих или высоколегированных инструментальных Подогретые инструменты сталей. выдерживают в ванне при 530-560 °C в течение 10-100 мин — в зависимости от типа инструмента, а затем охлаждают воздухе. Необходимо строго следить за химическим составом насыщающего состава, так как полная азотирующая способность ванны устанавливается только в том случае, когда содержание цианатов составляет около 40

% от начального содержания в расплаве цианидов.

Термическая обработка инструментальных сталей после азотирования производится по следующему режиму: закалка с температур  $1000-1050~^{\circ}$ С и затем, для повышения ударной вязкости, первый отпуск выполняется при температуре  $350~^{\circ}$ С, а последующие — при  $560~^{\circ}$ С.

#### Борирование и силицирование стали

Борирование — процесс химико-термической обработки, состоящий в диффузионном насыщении поверхностного слоя стали бором при высокотемпературной выдержке в

соответствующих насыщающих средах. Это один из наиболее эффективных и универсальных процессов химико-термической обработки. Борированию могут подвергаться стали перлитного, аустенитного классов. Борирование ферритного твердых, (электролизное осуществляться жидких И безэлектролизное борирование) и газообразных средах (табл. 2). При борировании в твердых средах, обрабатываемые детали герметически закрываемые помещаются контейнеры, называемые боризаторами. Процесс твердофазного борирования, или борирования в порошковых средах, осуществляется в Жидкофазное водородных средах. вакууме или (безэлектролизное) борирование применяют только в случае обработки деталей сложной конфигурации, а электролизное, как более экономичное широко используется для широкого спектра изделий простых форм различного назначения. В качестве анода электролизном борировании применяют графитовые стержни, напряжение постоянного тока в процессе борирования колеблется в пределах 6-24 В. Наиболее низкотемпературным процессом борирования является химико-термическая обработка деталей в газообразных средах, однако взрывоопасность и токсичность применяемых сред ограничивает этого, безусловно прогрессивного, способа химико-термической обработки. Борирование применяют ДЛЯ износостойкости поверхностного слоя стального изделия, в

частности, при повышенных температурах, повышения его твердости и износостойкости. Изделия, подвергшиеся борированию, обладают повышенной до 800 °C окалиностойкостью и теплостойкостью до 900–950 °C.

Твердость борированного слоя в сталях перлитного класса составляет 15 000–20 000 МПа. Углерод в процессе борирования оттесняется от поверхности стали и в насыщаемой зоне образуется зона сплошных боридов, химический состав форма и структура которых напрямую зависит от химического состава стали. Углерод и легирующие элементы уменьшают глубину насыщаемого слоя, чем выше их содержание, тем меньше глубина борирования.

Таблица2. Составы сред и режимы борирования сталей

|                 | Режим бориро  |               |               |
|-----------------|---------------|---------------|---------------|
| Состав          | T, °C         | τ, ч          | Глубина слоя, |
| насыщающей      |               |               | MM            |
| среды           |               |               |               |
|                 | Борирование в | твердых среда | X             |
| B4C* + 2–4 %    |               |               |               |
| NH4Cl           |               |               |               |
| 80 % B4C + 16-  |               |               |               |
| 18 % Al2O3 + 2- | 950–1050      | 3–6           | 0,15-0,30     |
| 4 % NH4Cl       |               |               |               |
| 79 % B4C + 16 % |               |               |               |
| Na2B4O7 + 5 %   |               |               |               |

| KBF4                                                                     |                           |                |             |  |  |  |  |
|--------------------------------------------------------------------------|---------------------------|----------------|-------------|--|--|--|--|
| Борирование в жидких средах                                              |                           |                |             |  |  |  |  |
|                                                                          | Электролизное борирование |                |             |  |  |  |  |
| 40 %<br>расплавленная<br>бура – Na2B4O7<br>+ 50<br>% B2O3 + 10 %<br>NaCl | 950                       | 2–3            | 0,15–0,3    |  |  |  |  |
| Расплавленная<br>бура – Na2B4O7                                          | 900–950                   | 2–4            | 0,15–0,3    |  |  |  |  |
| 70 % Na2B4O7 +<br>30 % Na2SO4                                            | 600                       | 4–6            | 0,015–0,025 |  |  |  |  |
| I                                                                        | Безэлектролизі            | ное борировани | e           |  |  |  |  |
| 60 %<br>расплавленная<br>бура – Na2B4O7<br>+ 40<br>% B4C                 | 100–1050                  | 3–5            | 0,2–0,35    |  |  |  |  |
| Около 80 %<br>Na2B4O7<br>+ 15–17 % NaCl<br>+ 6–7                         | 850                       | 2–3            | 0,04–0,05   |  |  |  |  |

| % порошка бора                                                               | 900–950       | 2–4            | 0,1-0,25 |
|------------------------------------------------------------------------------|---------------|----------------|----------|
| Бор                                                                          | ирование в га | зообразных сре | едах     |
| В2Н2,<br>разбавленный<br>водородом в<br>соотношениях<br>от 1:25 до 1:<br>150 | 800–850       | 2–4            | 0,1-0,2  |
| BC13 + H2 в<br>соотношении<br>1:20                                           | 750–950       | 3–6            | 0,1-0,25 |

Примечание:

Углерод, вытесненный из поверхностного слоя, образует собственную повышенной **30HV** концентрации, располагается непосредственно за слоем боридов. По ширине такая зона оказывается значительно шире боридной размеры определяются наличием или отсутствием в стали карбидообразующих элементов. Карбидообразующие элементы, резко снижая скорость диффузии углерода, уменьшают ширину содержанием повышенным слоя углерода, некарбидообразующие практически не оказывают влияние на ее размеры.

В ряде случаев выполняется многокомпонентное борирование, когда совместно с насыщением бором дополнительно производится насыщение поверхности детали

<sup>\*</sup> Карбид бора используется в порошкообразном виде.

другими элементами — хромом, алюминием, кремнием и т. д. такое насыщение производится для повышения коррозионной стойкости и износостойкости поверхностного слоя детали, однако, полученные результаты повышения стойкости не так велики, чтобы эти процессы нашли широкое распространение.

<u>Силицирование</u> — процесс химико-термической обработки, состоящий в высокотемпературном (950-1100 °C) насыщении поверхности стали кремнием. Силицирование повышает коррозионную стойкость стали агрессивных средах — морской воде, растворах кислот, увеличивает окалиностойкость изделий до 800—1000 °C. В ряде случаев силицирование используется для придания детали антифрикционных свойств. Силицирование может производиться газообразных И жидких средах как электролизным, так и безэлектролизным методом. Основные составы насыщающих сред и режимы силицирования приведены в табл. 3.

Нитроцементация или цианирование стали — процессы химико-термической обработки, заключающиеся в высокотемпературном насыщении поверхности изделия азотом и углеродом. Причем процесс совместного насыщения поверхности азотом и углеродом в жидких ваннах принято называть цианированием, а насыщение в газообразных средах — нитроцементацией.

Таблица 3. Составы сред и режимы силицирования сталей

|                                                       | Режим силициро   | Режим силицирования |                     |  |  |  |  |  |  |  |
|-------------------------------------------------------|------------------|---------------------|---------------------|--|--|--|--|--|--|--|
| Состав насыщающей среды                               | T, °C            | τ, ч                | Глубина слоя,<br>мм |  |  |  |  |  |  |  |
| Силицирование в газообразных средах                   |                  |                     |                     |  |  |  |  |  |  |  |
| 75 % феррокремния<br>+ 20 % Al2O3 + 5 %<br>NH4Cl      |                  | 6–12                | 0,15-0,8            |  |  |  |  |  |  |  |
| SiCl4 + H2 или<br>SiCl4 + N2                          | 950              | 2–3                 | 0,4–0,5             |  |  |  |  |  |  |  |
| SiH4 + H2 или SiH4<br>+ Ar                            | 950              | 2–3                 | 0,4–0,6             |  |  |  |  |  |  |  |
| Сил                                                   | ицирование в ж   | идких средах        |                     |  |  |  |  |  |  |  |
| Эл                                                    | ектролизное сил  | ицирование          |                     |  |  |  |  |  |  |  |
| Расплав Na2SiO3<br>или 95% Na2SiO3 +<br>5%<br>NaF*    | 1050             | 0,5–1,0             | 0,15-0,25           |  |  |  |  |  |  |  |
| Безз                                                  | электролизное си | лицирование         |                     |  |  |  |  |  |  |  |
| 35% Na2SiO3 + 15%<br>SiC<br>+ 28% NaCl + 22%<br>BaCl2 | 950–1100         | 2–10                | 0,1-0,3             |  |  |  |  |  |  |  |

# Примечание:

Процесс нитроцементации обычно ведут при температурах 820–860 °C в средах эндогазов и эндоэкзогазов с добавками природного газа (метана) и аммиака. Чем больше

<sup>\*</sup> Плотность тока при электролизе от 2,5 до 3,0 кA/м2.

толщина требуемого слоя насыщения, тем меньше должно быть содержание аммиака и метана и выше температура химикотермической обработки. Для получения слоя толщиной около 0,2 мм при температуре нитроцементации 800–820 °C в атмосферу печи добавляют 6—

15 % аммиака и около 5 % метана. Для получения слоя 0,5-1,0 мм температура нитроцементации повышается до 860-880 °C , а содержание аммиака и метана снижаются соответственно до 0,6-1,3 % и 0,5-0,8 %.

Основное назначение процесса нитроцементации — повышение твердости, контактной выносливости, износостойкости и предела выносливости изделий. Основной температурой процесса считается 860 °C. При оптимальных условиях насыщения структура нитроцементованного слоя состоит из мартенсита, небольшого количества равномерно

распределенных частиц карбонитридов и 25-30 % аустенита, обеспечивающего остаточного прирабатываемость. Содержание углерода на поверхности составляет 0,7-0,9 %, азота — 0,3-0,4 %. Эффективная толщина насыщаемого слоя не должна превышать 1 мм, так как при большей толщине в структуре слоя появляются фазы, резко снижающие предел выносливости и контактную выносливость материала. Цианирование проводят при температурах от 800 до 950 °C в расплавах, содержащих цианистые соли, причем с повышением температуры химико-термической обработки доля углерода в слое растет, а азота — понижается. Структура насыщенного цианирования слоя после оказывается аналогичной структуре слоя после нитроцементации. Химические составы основных расплавов для цианирования приведены в табл. 4.

<u>Таблица 4</u>. Составы ванн и режимы цианирования изделий

|                                             | Режим цианиро |      |                 |  |
|---------------------------------------------|---------------|------|-----------------|--|
| Состав насыщающей<br>среды                  | T,°C          | τ, ч | Глубина слоя мм |  |
|                                             | 840           | 0,5  | 0,15-0,2        |  |
| 50 % NaCN +50 %<br>NaCl (20–<br>25 % NaCN + | 840           | 1,0  | 0,2-0,25        |  |

| 1                               |     |   |         |           |
|---------------------------------|-----|---|---------|-----------|
| + 25–30 % NaCl + 25–<br>50%     | 87  | 0 | 0,5     | 0,2–0,25  |
| Na2CO3)*                        |     |   |         |           |
|                                 | 870 |   | 1,0     | 0,25-0,35 |
| 10 % NaCN +40 %                 |     | 0 | 1,0-1,5 | 0,25-0,3  |
| NaC1 + +                        |     |   |         |           |
| 50 % BaCl2 (8–                  |     |   |         |           |
|                                 | 90  | 0 | 1,0     | 0,5–0,6   |
| 12 % NaCN +                     |     |   |         |           |
|                                 | 90  | 0 | 2,0     | ,7–0,8    |
| + 30–55 % NaCl + 10 %           |     |   |         |           |
| 1 30 33 70 Naci + 10 70         | 90  | 0 | 4,0     | 1,0-1,2   |
| Na2CO3 + + 15 %                 |     |   | ĺ       |           |
| BaCl2)                          |     |   |         |           |
| ,                               | 900 |   | 0,5     | 0,2-0,25  |
|                                 | 900 |   | 1,5     | 0,5-0,8   |
| 8 % NaCN +10 % NaCl<br>+ + 82   | 95  | 0 | 2,0     | 1,0-1,1   |
| % BaCl2 (3–8 % NaCN             |     |   |         |           |
| + 30<br>% BaCl2 + + 30 % NaC    |     |   |         | l         |
| 70 BaC12 + + 30 70 NaC.<br>+ 40 |     |   |         |           |
| % BaCO2)                        |     |   |         |           |
|                                 | 950 |   | 3,0     | 1,0–1,2   |
|                                 | 950 |   | 5,5     | 1,4–1,6   |
|                                 |     | _ |         |           |

<sup>\*</sup> В скобках дан рабочий состав ванн для цианирования.

Цианистый натрий в расплаве солей окисляется кислородом воздуха с протеканием реакций:

$$2NaCN + O2 = 2NaCNO, (1)$$
  
 $2NaCNO + O2 = Na2C3 + CO + 2N, (2)$   
 $2CO = CO2 + C (3)$ 

Полученные в результате реакций (2) атомарный азот и (3) атомарный углерод диффундируют в железо. Следует иметь в виду, что активность ванн в процессе цианирования изделий постепенно снижается. Для поддержания скорости течения процесса следует периодически лобавлять расплав натрий. Цианирование применяется для изделий шианистый низкоуглеродистых И низколегированных сталей ИЗ поверхностной твердости, повышения их износостойкости, предела изгибе выносливости при И контактной выносливости.

Среди главных достоинств цианирования небольшая относительно процесса длительность химикотермической обработки, малые деформации и коробления детали в ходе процесса насыщения, малые потери тепла. Главным же цианирования недостатком процесса является высокая применяемых расплавов токсичность И, следовательно, проблемы. Отсюда существуют экологические следует необходимость изолированных строительства помещений, установка вентиляции В них систем И очистки воздуха. Термическую обработку изделий после цианирования — закалку — проводят непосредственно из ванн, а затем дают

низкий отпуск при температурах порядка 180–200 °C. Твердость насыщенного слоя после термической обработки находится в пределах 58-64 HRC. Основными дефектами процессов насыщения поверхностных слоев изделий углеродом и азотом являются отслаивания; грубозернистый излом и хрупкость; мягкая поверхность; крайне малая толщина насыщенной пленки и снижение твердости; повышенная хрупкость. Отслаивания. Это явление, в основном, присуще насыщению поверхности стали углеродом и связано со слишком низкой температурой цементации, когда содержание углерода по направлению к сердцевине выравнивается очень медленно или при слишком быстром нагреве, когда содержание углерода очень резко снижается по мере удаления от поверхности изделия. Такие резкие переходы, а также очень крупное зерно в наружной зоне возникновения напряжений вызывают (за счет отрыва) отделение цементованного слоя от сердцевины изделия в виде отслаивающейся оболочки.

Грубозернистый излом и хрупкость. Грубозернистость цементованного слоя может быть обусловлена перегревом или передержкой при закалке, а также переизбытком углерода в поверхности изделия из-за слишком высокой или колеблющейся температуры цементации. Эти дефекты могут быть устранены повторной закалкой. Грубозернистость сердцевины может быть

обусловлена закалкой с температуры цементации при отсутствии последующего измельчения зерна, слишком низкой температурой закалки, при использовании углеродистых и низколегированных сталей — завышенными размерами деталей, что приводит к недостаточной прокаливаемости сердцевины.

Мягкая поверхность. Мягкие пятна на поверхности цементованных изделий могут быть обусловлены рядом нарушений процесса цементации, например, возникновением пустот (в отсутствии карбюризатора) при набивке деталей в при газовой цементации цементационный ящик, a возникновением на поверхности детали корки графита. Другими причинами локального снижения твердости цементованного дефекты ΜΟΓΥΤ быть закалки, слоя связанные обезуглероживанием, недостаточной скоростью охлаждения или возникновения паровой рубашки при охлаждении с температуры закалки. Для углеродистых сталей, характеризующихся малой дефект такой закаливаемостью, может быть устранен повышением скорости охлаждения при закалке, например, охлаждением детали в растворах солей.

Сплошная мягкая образоваться пленка может на поверхности высоколегированных сталей при ИΧ переуглероживании за счет образования при нагреве под закалку поверхностного слоя аустенита, сохраняющегося до комнатных температур. Для устранения дефекта необходимо такого провести гомогенизацию и понизить температуру закалки изделия.

В случае азотирования изделий мягкая поверхность или мягкие пятна на поверхности могут вызываться азотированием необезжиренных деталей.

Повышенная хрупкость и склонность к выкрашиванию азотированного слоя может быть связана с азотированием обезуглероженной поверхности, которая могла образоваться на детали в процессе горячей обработки давлением, термической обработке. Такой слой должен быть удален с помощью механической обработки . Также следует иметь в виду, что твердость поверхности при азотировании несколько ниже твердости слоя, лежащего непосредственно под поверхностью, поэтому при азотировании высоконагруженных деталей рекомендуется провести удаление поверхностного азотированного слоя шлифовкой и притиркой до сборки конструкции.

Нарушения температурного режима при азотировании

также могут привести к возникновению ряда дефектов на Так, слишком насыщенной поверхности изделия. температура процесса дает крайне малую толщину насыщенной пленки, причем такой дефект не выявить обычными методами контроля (проверкой твердости азотированного слоя), однако он крайне негативно отражается на эксплуатационных свойствах изделия. Подобный дефект может быть устранен повторным правильной температуре азотированием при процесса. Завышенные температуры азотирования применимы только для быстрорежущих и нержавеющих сталей, в других случаях они приводят к снижению твердости поверхности, которая уже не может быть восстановлена повторными азотированиями.

# Контрольные вопросы.

- 1. Общие задачи и место термической обработки в производственном процессе.
  - 2. Способы нагрева изделий при термической обработке.
- з. Рабочие среды для нагрева изделий при термической обработке.
- 4. Приемы и методы предотвращения окисления и обезуглероживания стальных изделий при термической обработке.
- 5. Охлаждающие среды, применяемые при термической обработке. Требования, предъявляемые к жидким

охлаждающим средам.

- 6. Основы технологии азотирования и разновидности процесса.
  - 7. Состав, строение и азотированных слоев.

СВ

- 8. Низкотемпературная термомеханическая обработка сталей, закаливаемых на мартенсит (сущность, назначение, влияние на структуру и свойства).
- 9. Высокотемпературная термомеханическая обработка сталей, закаливаемых на мартенсит (сущность, назначение, влияние на структуру и свойства).
- 10. Роль и место процессов термической и химикотермической обработки (ТО и ХТО) в общем технологическом цикле изготовления деталей.
- 11. Принципы разработки технологических процессов ТО и XTO
- 12. Технологичность изделий при ТО. Факторы технологичности: марка материала, форма и размеры изделий, стадия изготовления, технические требования и допуски на параметры
- 13. Организация контроля процессов ТО и ХТО. Анализ причин брака 14.Оборудование для ХТО

# Практическая работа № 2 (7)

# Разработка технологии термообработки для инструментальной стали, рессорно-пружинной стали, конструкционной стали.

**Цель работы:** ознакомиться с технологическими процессами термообработки различных видов сталей.

### Задания:

- 1. Назначить режимы закалки и отпуска, используя диаграмму Fe-Fe3C.
- 2. Определить влияние легирующих элементов и различных видов термической обработки на структуру и свойства инструментальных, рессорно-пружинных и конструкционных сталей.
- з. Описать технологические процессы ТО и достигаемые технологические и эксплуатационные свойства материалов.

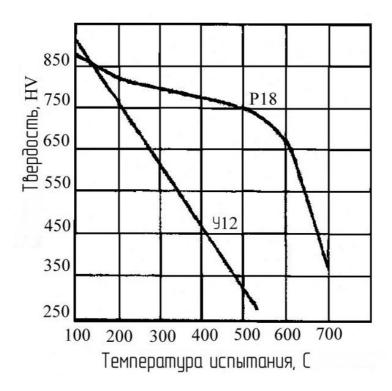
## Общие положения.

Инструментальные стали — это большая группа сталей, которые в результате термической обработки обладают высокой твердостью, прочностью и износостойкостью, необходимыми для обработки материалов резание и давлением. Многие инструментальные стали, кроме того, обладают теплостойкостью, т. е. способностью сохранять эти свойства при

нагреве, часто возникающим в рабочей кромке инструментов, при резании с повышенной например, скоростью, деформировании в горячем состоянии и т. д. Многочисленные инструментальные стали по химическому составу, могут быть разделены условно на две группы: 1) углеродистые И содержащие до 4-5 % малолегированные, легирующих элементов

– это нетеплостойкие стали; 2) высоко- и сложнолегированные, содержащие более 5 % (и даже до 40–45 %) легирующих элементов, – это теплостойкие стали.

Классификация свойствам ПО прежде И ПО теплостойкости является наиболее важной, так как она одновременно характеризует природу упрочнения, вызываемого термической обработкой, и определяет условия использования инстументов. Инструментальные сталей ДЛЯ стали 1) нетеплостойкие; подразделяются на три группы: полутеплостойкие; 3) теплостойкие.


Нетеллостойкие стали: эти стали приобретают высокую твердость, износостойкость и прочность в результате мартенситного превращения при закалке. Однако эти свойства сохраняются лишь при невысоком нагреве. Нагрев выше 200—300 °C вызывает почти полный распад мартенсита и значительную коагуляцию выделившихся карбидов; это снижает

твердость, износостойкость и прочность (рис. 1)

химическому составу нетеплостойкие По стали углеродистые или малолегированные, по структурному признаку заэвтектоидные, эвтектоидные, доэвтектоидные. Нетеплостойкие стали делят на подгруппы: а) стали небольшой углеродистые, прокаливаемости низколегированные, прокаливающиеся в образцах диаметром 10-15 мм, б) стали (c большим прокаливаемости повышенной содержанием легирующих элементов), прокаливающиеся в образцах до 50-80 мм, в) стали высокой прокаливаемости, прокаливающиеся в образцах диаметром 80–110 мм.

Полутеплостойкие стали: характерные стали – высокохромистые (3–18 % Cr), высокоуглеродистые (1–1,5 % C), главным образом ледебуритные. Часть из них имеет, кроме того, повышенное содержание ванадия. Подобно сталям предыдущей группы, они приобретают высокую твердость и прочность в результате мартенситного превращения при

закалке. Однако при отпуске 250–400 °C в них выделяются карбиды хрома и легированный цементит, обладающий большой устойчивостью против коагуляции, вследствие чего эти стали сохраняют повышенную твердость до более высоких темпера- тур.



**Рис. 1** Твердость инструментальных сталей при нагреве *Теплостойкие* стали. К этой группе относятся высоколегированные стали, приобретающие высокую твердость,

прочность и износостойкость в результате двойного упрочнения: а) мартенситного при закалке и б) дисперсионного твердения при относительно высоком отпуске (500–625 °C, вызываемом выделением упрочняющих фаз. Такими фазами для большинства сталей являются сложные карбиды вольфрама, молибдена, а также карбиды ванадия, создающие карбидное упрочнение, а у некоторых сталей и сплавов — интерметаллиды, создающие интерметаллидное упрочнение. Карбиды названных элементов выделяются из мартенсита и коагулируют при 500–650 °C, а интерметаллиды — при 650–720

°С. Свойства, полученные термической обработкой, сохраняются при высоком нагреве. Стали с карбидным упрочнением при повышенном содержании углерода (> 0,6 %) – быстрорежущими, ледебуритные, называют ИХ они наиболее характерных представляют одну ИЗ И часто применяемых групп инструментальных сталей. При меньшем содержании углерода и легирующих элементов стали карбидным упрощением – заэвтектоидные (их используют преимущественно штамповые ДЛЯ горячего как деформирования). Таким образом, нетеплостойкие И теплостойкие стали незначительно различаются по твердости, прочности и

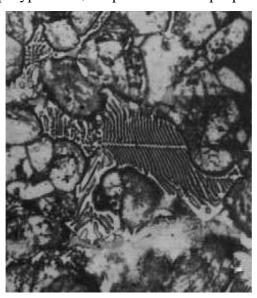
износостойкости при нормальных температурах, но при нагреве эти важнейшие свойства изменяются.

По назначению инструментальные стали делятся на следующие группы: – для режущего инструмента (углеродистые, низколегированные и быстрорежущие стали); – для штампового инструмента при холодной деформации; – для штампового инструмента при горячей деформации; – для измерительного инструмента.

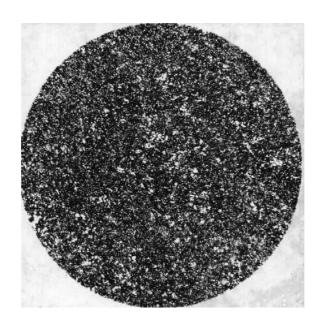
Рассмотрим пример использования инструментальной стали для режущего инструмента:

По теплостойкости стали материалы для режущего инструмента под-

разделяются: 1) на углеродистые и низколегированные (T до 250 °C); 2) высоколегированные (быстрорежущие) (T до 650 °C). Их используют только после закалки и отпуска (вид отпуска определяется степенью легирования стали), когда стали имеют:


- -высокую твердость в режущей кромке HRC 62-68;
- -высокую износостойкость, для сохранения размеров и формы режу- щей кромки;
- –прочность и вязкость для предупреждения поломки инструмента;
  - -теплостойкость при работе с повышенной скоростью. Углеродистые стали не обладают теплостойкостью. Их

используют для изготовления режущего инструмента, работающего без разогрева режущей кромки. После отжига углеродистые стали имеют в структуре зернистый перлит (НВ 185–215). Невысокая твердость позволяет обрабатывать эти стали резанием и давлением, изготавливать инструмент накаткой и насечкой. Инструмент из заэвтектоидных сталей подвергают неполной закалке и низкому отпуску для получения структуры


Режущие мартенсит И цементит. инструменты низколегированных сталей изготавливают больших размеров и сложной формы. По структуре они относятся к сталям перлитного класса. Их подвергают неполной закалки и низкому отпуску. Структура – мартенсит и карбиды. Как углеродистые инструментальные стали, низколегированные не обладают хорошо теплостойкостью, обрабатываются давлением. Теплостойкость сталей обеспечивается введением большого количества вольфрама (W) совместно с молибденом (Mo), хромом (Cr) и ванадием(V). Введение этих легирующих элементов формирует класс высоколегированных сталь быстрорежущих сталей, работающих при скорости резания 40-60м/мин.

Особенности термической обработки целесообразно рассмотреть на примере стали P18. В литом состоянии структура изделий из P18 — ледебурит. Высокие эксплуатационные свойства инструменты из быстрорежущих сталей приобретают

после закалки и трехкратного отпуска — рис.2,3. Мелкие инструменты охлаждают на воздухе, крупные в масле. Степень легирования аустенита возрастает с повышением температуры закалки и растворения в нем карбидов легирующих элементов. Но закалкой не достигается максимальная твердость сталей, иза присутствия 30–40 % остаточного аустенита, т. к. температуры конца мартенситного превращения снижаются.



**Рис. 2.** Микроструктура быстрорежущей стали P18 (состояние литое), x400



**Рис. 3.** Быстрорежущая сталь P18 после закалки и трехкратного отпуска. x500

 Таблица 1

 Химический состав сталей для определения вида

 термической обработки

| Марк  | Хим  | ическ       | ий с | остав | Номе | Вид       | Твер |     |       |           |      |
|-------|------|-------------|------|-------|------|-----------|------|-----|-------|-----------|------|
| a     |      |             |      |       | p    | термическ | дос  |     |       |           |      |
| стали |      |             |      |       |      |           |      |     | образ |           | ть,  |
|       |      |             |      |       |      |           |      |     | ца    | обработки | HB   |
|       | С    | Mn          | Si   | Cr    | Ni   | M         | W    | V   |       |           |      |
|       |      |             |      |       |      | o         |      |     |       |           |      |
| У12   | 1,15 | 0,15        | 0,15 | 0,2   | 0,25 |           |      |     | 1     | Отжиг 750 | 1    |
|       | _    | _           |      |       |      |           |      |     |       | °C        | 830  |
|       | 1,24 | 0,35        |      |       |      |           |      |     | 2     | Отжиг 800 | 1900 |
|       |      |             |      |       |      |           |      |     |       | °C        |      |
| 9XC   | 0,85 | 0,6–        | 1,2- | 0,95– | 0,25 |           |      |     | 1     | Отжиг 850 | 1960 |
|       | _    | 0,9         | 1,6  | 1,25  |      |           |      |     |       | °C        |      |
|       | 0,95 | 0,6–<br>0,9 |      |       |      |           |      |     | 2     | Закалка   | 6270 |
|       |      |             |      |       |      |           |      |     |       | 850-      |      |
|       |      |             |      |       |      |           |      |     |       | 870 °C    |      |
|       |      |             |      |       |      |           |      |     |       | Отпуск    |      |
|       |      |             |      |       |      |           |      |     |       | 180 °C    |      |
| ХВГ   | 0,9– | 0,8-        | 0,15 | 0,9-  | 0,25 |           | 1,2- |     | 1     | Горячекат | 2070 |
|       | 1,05 |             | _    | 1,2   |      |           | 1,6  |     |       | аная      |      |
|       |      | -           | 0,35 |       |      |           |      |     | 2     | Закалка   | 6670 |
|       |      |             | ,    |       |      |           |      |     |       | 820–      |      |
|       |      |             |      |       |      |           |      |     |       | 840 °C    |      |
| P18   | 0,7– | 0,4         | 0,4  | 3,8-  | 0,3  | 0,3       | 17,5 | 1,0 | 1     | Отожжена  | 1790 |
|       | 0,8  |             |      | 4,4   |      |           | _    | _   |       | Я         |      |
|       |      |             |      |       |      |           | 19,0 | 1,4 | 2     | Закалка 1 | 6800 |
|       |      |             |      |       |      |           |      |     |       | 260-      |      |
|       |      |             |      |       |      |           |      |     |       | 1 280 °C  |      |
|       |      |             |      |       |      |           |      |     |       | Отпуск    |      |
|       |      |             |      |       |      |           |      |     |       | 550-      |      |

| <br> |  | <br> |  |  |        |  |
|------|--|------|--|--|--------|--|
|      |  |      |  |  | 580 °C |  |

Рессорно-пружинные стали — высокоуглеродистые, содержат 0,5...0,8%С. Применяются для пружин, рессор и других упругих элементов. Термообработка: закалка + средний отпуск. Структура - троостит отпуска. Свойства: высокие пределы упругости, текучести и выносливости. Рессорно-пружинные стали должны иметь высокую прокаливаемость, пластичность, вязкость, релаксационную стойкость.

Углеродистые стали: 55, 60, 65, 70, 75, 80, 85. Применяются для пружин малого сечения (до 10 мм), эти стали имеют низкую релаксационную стойкость.

Легированные стали. Основными легирующими элементами в рессорно-пружинных сталях являются кремний (1...3% Si), марганец (~1% Mn), хром (~1%Cr), ванадий (~0,15%V), никель (до 1,7%Ni). Их вводят для повышения прокаливаемости, релаксационной стойкости и выносливости.

Кремнистые стали: 55С2, 60С2А, 70С3А применяют для автомобильных рессор, пружин вагонов. Кремний повышает прочность феррита, предел упругости, предел текучести, но способствует обезуглероживанию и графитизации. Эти недостатки устраняют добавками Cr, V, W, Ni: 60С2ХА, 65С2ВА, 60С2Н2А. Такие стали применяют для крупных тяжелонагруженных пружин и рессор.

Стали, не содержащие кремния, применяются для автомобильных рессор (50XГА), клапанных пружин (50ХФА, 50ХГФА).

Предел выносливости рессор может быть повышен в 1,5...2 раза путем поверхностного пластического деформирования: гидроабразивной или дробеструйной обработкой.

Стали для пружин и рессор представляют собой специальную группу конструкционных сталей с характерным комплексом свойств, важнейшим из которых является сопротивление малым пластическим деформациям. Оно характеризуется условным пределом упругости, отвечающим появлению остаточной деформация 10-3–10-4 %. Величина предела упругости определяет предельные напряжения, которые не должны быть превышены в упругих

элементах в процессе эксплуатации. Также к материалам пружин и рессор предъявляются требования:

- высокая релаксационная стойкость;
- наличие некоторой минимальной вязкости и прочности;
- высокий предел усталости;
- технологическая пластичность при горячей и холодной пластической де- формации. По назначению рессорно-пружинные стали классифицируются на:
- стали общего назначения, используемые в качестве конструкционных материалов для работы в обычных атмосферных условиях;
- стали специального назначения для изготовления упругих элементов, работающих в особых условиях (коррозионно- и теплостойкие).

Основными способами упрочнения пружинных сталей являются:

- холодная пластическая деформация с последующим низкотемпературным нагревом (обработка -наклеп-отжиг);
  - закалка на мартенсит с последующим отпуском;
- закалка на пересыщенный твердый раствор с последующим старением;
  - термомеханическая обработка;
  - комбинированные обработки.

В большинстве случаев материалом для изготовления пружин служит проволока или лента, полученная путем холодной пластической деформации (волочением, прокаткой) заготовок с предварительно подготовленной исходной структурой. Основным предварительной термической обработки является патентирование. Полученная при этом структура тонкопластинчатого перлита позволяет выполнять холодную деформацию с высокими степенями обжатия. Сталь существенно упрочняется, сохраняя пластичность и вязкость, достаточную для навивки пружин в холодном состоянии.

Упрочнение при деформационном наклепе зависит как от состава стали и ее структуры, так и от степени деформации. Высокие пружинные свойства достигаются после деформации с большими степенями обжатия и поэтому могут быть получены на проволоке и ленте небольших сечений (диаметром или толщиной до 6–8 мм).

Наиболее высокопрочную проволоку изготовляют из сталей У7А, У8А, У9А; проволоку с повышенной прочностью — из стали 65Г. Чем выше содержание углерода в стали, тем выше прочность после патентирования и последующей холодной деформации.

По конструкции и условиям работы рессоры транспортных устройств представляют отдельную группу упругих элементов. Рессорные листы должны обладать высоким

сопротивлением статическим и циклическим нагрузкам, фреттинг-усталости, просадке и истиранию. Преобладающим видом нагружения является циклический изгиб.

Экспериментальные данные показывают, что химический состав рессорных сталей (кроме содержания углерода) оказывает 10–15 %) незначительное (B пределах влияние на циклической прочности. характеристики Основная пель легирования рессорных сталей заключается в обеспечении прокаливаемости рессорных полной листов. При ЭТОМ используют дешевые и недефицитные легирующие элементы, увеличивающие прокаливаемость стали.

ГОСТ Для изготовления peccop 14959–79 марок предусматривает 25 стали. В производстве автомобильных рессор используют в основном стали 60С2 (55С2), 60ХГС, 50ХГ (50ХГА) и в меньшей степени (для рессор легковых автомобилей) стали 50ХГФА и 50ХФА. Рядом работ показана перспективность стали 55ХГР, содержащей 0,001–0,003 % B.

Основными технологическими характеристиками рессорных сталей являются склонность к перегреву и обезуглероживанию.

**При высокотемпературной термомеханической обработке** (ВТМО) рессорных сталей температуру

аустенитизации принимают на 100–150 °C выше АС3, степень деформации 25–60 % при одновременном обжатии и до 70 % при дробной деформации. Оптимальные режимы ВТМО выбирают эмпирически для каждого изделия. В результате ВТМО достигается возрастание статической и усталостной (в том числе и малоцикловой) прочности, сопротивления разрушению, пластичности и ударной вязкости; понижение температуры порога хладноломкости, устранение обратимой отпускной хрупкости и уменьшение водородного охрупчивания при нанесении гальванических антикоррозионных покрытий.

Повышение комплекса свойств при ВТМО установлено для широкого круга пружинных сталей с различной степенью легирования: кремнистых (55С2, 60С2), хромомарганцевых (50ХГА), сталей марок 50ХФА, 45ХН2МФА и др. Наибольшая эффективность от ВТМО достигнута на сталях, содержащих карбидообразующие элементы — хром, ванадий, молибден, цирконий, ниобий и т. п. (стали марок 50ХМФ, 50Х5СМЗФ и др.). Перспективным методом обработки пружинных сталей является дополнительное упрочнение холодной пластической деформацией, осуществляемой после ВТМО. В результате окончательного отпуска при 250

°C сохраняются прочностные характеристики стали и повышается ее пластичность.

Низкотемпературная термомеханическая обработка

(НТМО) позволяет получить высокий комплекс пружинных свойств на углеродистых (У7А) и легированных сталях (70С2ХА и др.), что связано как с наследованием мартенситом дислокационной структуры деформированного аустенита, так и с развитием бейнитного превращения в процессе пластической деформации. Наиболее сильно после НТМО возрастает предел упругости. Эффект упрочнения при НТМО, как правило выше, чем при ВТМО. С точки зрения практического выполнения НТМО является более сложной обработкой.

Свойства стали после HTMO, особенно предел упругости и релаксационная стойкость, могут быть повышены в еще большей степени путем холодной пластической деформации с обжатием 10 % и старения.

Недостатком НТМО является то, что рост упрочнения часто сопровождается снижением пластичности, повышением чувствительности к концентраторам напряжений.

**Конструкционные стали**. Для изготовления малонагруженных деталей машин и приборов (валов, осей, зубчатых колес) можно использовать наиболее дешевые углеродистые стали обыкновенного качества (ГОСТ 380-88) в состоянии поставки. Однако эти стали имеют сравнительно низкую прочность. Так, сталь Ст5сп имеет  $\sigma$ B = 500 - 640 МПа,  $\sigma$ 0,2 = 240 - 280 МПа. Значительно большую конструкционную

прочность можно получить в качественных углеродистых сталях (ГОСТ 1050-74) после упрочняющей термической обработки - объемной закалки с отпуском. После улучшения стали 40, 45, 50 имеют  $\sigma_B = 600 - 800$  МПа,  $\sigma_{0,2} = 400$ 

— 600 МПа при высокой ударной вязкости. Но углеродистые стали имеют низкую прокаливаемость. Детали из таких сталей при закалке в воде дают сквозную полумартенситную прокаливаемость в диаметрах (или толщинах) не более 20 мм. Элементы, специально вводимые в сталь с целью изменения ее строения и свойств, называют легирующими элементами (ЛЭ).

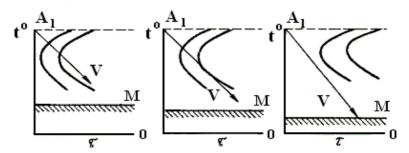
<u>Таблица</u> 2. Режимы термической обработки и механические свойства (минимальные) рессорно-пружинных сталей общего назначения.

|                | Крит        | ическ | Режим закалки и |                      |             | Механ      |              |         |         |
|----------------|-------------|-------|-----------------|----------------------|-------------|------------|--------------|---------|---------|
| Марка<br>стали | ие то<br>°С | чки,  | отпу            | отпуска              |             |            | свойства     |         |         |
|                | Ac1         | Ac3   |                 | закалочн<br>ая среда |             | ов,<br>МПа | σ0,2,<br>МПа | δ,<br>% | ψ,<br>% |
| 65             | 727         | 782   | 840             | масло                | 470         | 800        | 1000         | 10      | 35      |
| 85             | 730         | -     | 820             | масло                | 470         | 1000       | 1150         | 8       | 30      |
| У10А           | 730         | _     | 770-<br>810     | масло                | 300-<br>420 | -          | _            | _       | -       |
| 65Γ            | -           | -     | 830             | масло                | 470         | 800        | 1000         | 8       | 30      |
| 55C2           | 775         | 840   | 870             | масло                | 470         | 1200       | 1300         | 6       | 30      |

| 60C2  | 750 | 820 | 870 | масло | 470 | 1200 | 1300 | 6 | 25 |
|-------|-----|-----|-----|-------|-----|------|------|---|----|
| 50XΓ  | 750 | 775 | 850 | масло | 470 | 1200 | 1300 | 7 | 35 |
| 50ХГР | 750 | 790 | 850 | масло | 470 | 1200 | 1300 | 7 | 35 |
| 50ХФА | -   | -   | 850 | масло | 470 | 1100 | 1300 | 8 | 35 |
| 60C2H | -   | -   | 870 | масло | 470 | 1350 | 1500 | 8 | 30 |
| 2A    |     |     |     |       |     |      |      |   |    |
| 70C3A | -   | -   | 850 | масло | 470 | 1500 | 1700 | 6 | 25 |

По химическому составу стали могут быть распределены на следующие группы:

- -низколегированные Л.Э. < 5 %;
- -среднелегированные Л.Э. > 5 %;
- -высоколегированные Л.Э. ≥ 10 %.


Назначение легирования.

Легирование проводится для получения у сталей особых свойств: магнитных; высокого электросопротивления; заданного коэффициента линейного расширения; коррозионной стойкости; жаростойкости; жаропрочности; износостойкости; окалиностойкости; теплостойкости. Перечисленные свойства можно достичь лишь у высоколегированных сталей. Введение в легирующих небольшого количества элементов получение низколегированных сталей осуществляется ДЛЯ прокаливаемости. В отожженном повышения состоянии легированные стали по механическим свойствам практически не отличаются от углеродистых. Влияние легирующих элементов на повышение механических свойств сталей достигается при использовании сталей в термически упрочненном состоянии.

Чем выше устойчивость переохлажденного аустенита, тем меньше критическая скорость закалки Vкр и выше прокаливаемость стали.

Легированные стали, рис.4, имеют более переохлажденного аустенита, устойчивость если нем элементы, растворены легирующие т. к. диаграмма изотермического распада повышением содержания c легирующих элементов смещается вправо.

Легирование стали, даже небольшим количеством легирующих элементов, повышает прокаливаемость. Эффективно повышает прокаливаемость введение нескольких элементов (хрома и марганца; хрома и никеля; хрома, никеля и молибдена и т. д.).



**Рис. 4.** Диаграмма изотермического распада аустенита при охла- ждении на воздухе: a — углеродистой стали;  $\delta$  — низколегированной стали;  $\epsilon$  — среднелегированной стали

Легирующие элементы могут изменять температуру полиморфных превращений железа, образуя с ним твердые

растворы замещения. При этом меняются температуры линий A3 (GS) и A4 (NJ) определяющие область существования α и γ железа на диаграмме Fe–Fe3C. Поэтому диаграммы Fe–легирующий элемент имеют конфигурацию, отличную по сравнению с диаграммой Fe–Fe3C.

При классификации сталей по структуре учитываются особенности ее строения в нормализованном и отожженном состояниях

1. В нормализованном состоянии – после охлаждения на воздухе стали подразделяются на стали перлитного, мартенситного, аустенитного и ферритного классов.

Легирующие элементы значительно влияют на фазовые превращения в сталях. На рис 5 показаны изменения вида диаграммы Fe–Fe3C, т. к. элементы Cr, Si, V, Ti и др. уменьшают эвтектоидную концентрацию углерода и его предельную растворимость в аустените при всех температурах, сдвигая точки S и E влево.

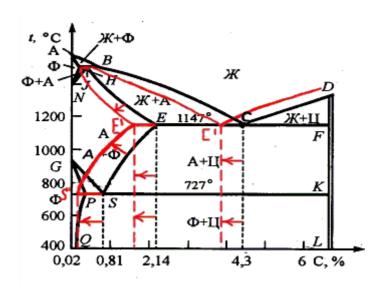



Рис. 5. Диаграмма состояния Fe-Fe3C

Повышение содержание легирующих элементов в составе сталей смещает точку S на диаграмме Fe–Fe3C влево –рис.5, что способствует формированию заэвтектоидной структуры при невысоком содержании углерода. Например, ее имеет сталь 40X13.

2. В отожженном состоянии по структуре, полученной в условиях равновесия, легированные стали делят на классы:

доэвтектоидный – структура: эвтектоид и легированный феррит; эвтектоидный – с перлитной структурой;

заэвтектоидный – структура эвтектоид и избыточные вторичные карбиды; карбидный.

Структура стали после улучшения – сорбит.

Улучшаемые стали имеют высокий предел текучести  $\sigma 0,2$ , малую чувствительность к концентраторам напряжений, высокий предел выносливости  $\sigma$ в и достаточный запас вязкости KCU.

Легированные стали обладают лучшей прокаливаемостью даже при закалке в масле. Поэтому для более крупных деталей, которые требуется прокалить насквозь, нужно выбирать легированную конструкционную сталь (ГОСТ 4543-71). Выбор марки стали (степени легирования) определяется размером термически обрабатываемой заготовки и условиями ее работы..

### Контрольные вопросы

- 1. Классификация инструментальной стали.
- 2. Применение инструментальной стали.
- з. Виды ТО для улучшения характеристик инструментальной стали.
  - 4. Что такое рессорно-пружинные стали?
- 5. Режимы термической обработки и механические свойства (минимальные) рессорно- пружинных сталей общего назначения.
- 6. Каково назначение отпуска стали? Перечислите виды отпуска и их применение.
- 7. Чем мартенсит закалки отличается от мартенсита отпуска?
- 8. Как влияет повышение температуры отпуска на пределы прочности и упругости стали?
- 9. Какую структуру должны иметь после термической обработки (закалка и отпуск) рессоры, пружины и пилы?
- 10. При каких температурах отпуска заканчивается распад аустенита остаточного?
- 11. Как изменяются структура и свойства стали в связи с коагуляцией карбидной фазы при отпуске?
  - 12. Что называется легированными сталями?
- 13. Как классифицируются легирующие элементы по их влиянию на существование α- и γ-модификаций?

- 14. Каково отношение легирующих элементов к углероду?
- 15. Как влияют легирующие элементы на свойства феррита?
- 16. Каково влияние легирующих элементов на превращения при закалке и отпуске стали?
  - 17. Приведите классификацию легированных сталей.
- 18. Как влияют марганец, хром, молибден, никель на свойства конструкционных легированных сталей?

### Практическая работа № 3 (8)

### Особенности термообработки быстрорежущей стали.

**Цель работы:** ознакомиться с процессами термообработки быстрорежущей стали, изучить влияние режимов термообработки на структуру и твердость быстрорежущей стали.

### Задания:

1. описать технологические

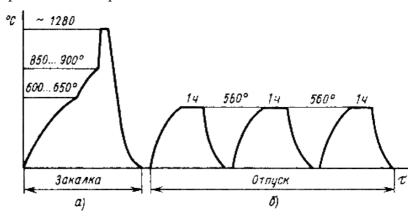
процессы ТО и достигаемые

технологические и эксплуатационные свойства

материалов.

Особенности отпуска для быстрорежущей стали.
 3.Описать микроструктуру после ТО.

### Общие положения.


Быстрорежущие стали относятся к легированным сталям. Из них изготавливают режущие инструменты, обладающие красностойкостью и высокой износостойкостью. Такие стали тяжело поддаются механической обработке. Высокие свойства быстрорежущей стали обеспечиваются химическим составом и токарными работами. Так, химический состав стали марки P18 следующий в %: 17,5-19W; 3,8-4,4Cr; 1,0-1,4V; 0,7-0,8C; 0,4Mn; 0,4Si.

Добавление ванадия повышает износостойкость инструмента, но ухудшает шлифуемость. Кобальт повышает теплостойкость до 650°С и вторичную твердость HRC 67...70.

быстрорежущей Микроструктура стали состоянии имеет эвтектическую структурную составляющую. Для свойств получения оптимальных инструментов быстрорежущей стали необходимо по возможности устранить структурную неоднородность стали – карбидную ликвацию. Для быстрорежущей этого слитки стали подвергаются ИЗ интенсивной пластической деформации (ковке). При этом происходит дробление карбидов эвтектики и достигается более однородное распределение карбидов по сечению заготовки.

Затем проводят отжиг стали при температуре 860...900°С. Структура отожженной быстрорежущей стали – мелкозернистый (сорбитообразный) перлит и карбиды, мелкие эвтектоидные и более крупные первичные. Количество карбидов около 25 %. Сталь с такой структурой хорошо обрабатывается резанием. Подавляющее количество легирующих элементов находятся в карбидной фазе. Для получения оптимальных свойств стали в готовом инструменте необходимо при термической обработке обеспечить максимальное насыщение мартенсита легирующими элементами. При закалке быстрорежущие стали требуют нагрева до очень высоких температур, около 1280°С. Нагрев

осуществляют в хорошо раскисленных соляных ваннах  $BaCl_{2}$ , что улучшает равномерность прогрева и снижает возможность обезуглероживания поверхности. Для снижения термических фазовых напряжений нагрев осуществляют ступенчато: замедляют нагрев при температурах 600...650°C и при 850... 900°C. График режима термической обработки быстрорежущей стали представлен на рис. 1.



**Рис.1.** График режима термической обработки быстрорежущей стали Охлаждение от закалочной температуры производится в масле. Структура стали после

закалки состоит из легированного, очень тонкодисперсного мартенсита, значительного количества (30... 40 %) остаточного аустенита и карбидов вольфрама. Твердость составляет 60...62 HRC. Наличие аустенита остаточного в структуре закаленной стали ухудшает режущие свойства.

Для максимального удаления аустенита остаточного проводят трехкратный отпуск при температуре 560°C. При нагреве под отпуск выше 400°C наблюдается увеличение твердости. Это объясняется тем, что из легированного остаточного аустенита выделяются легированные карбиды. от температуры отпуска Аустенит при охлаждении превращается в мартенсит отпуска, что вызывает прирост твердости. Увеличению твердости содействуют и выделившиеся температуре отпуска мелкодисперсные карбиды легирующих элементов. Максимальная твердость достигается при температуре отпуска 560°C. После однократного отпуска количество аустенита остаточного снижается до 10%. Чтобы минимума, необходим его количество ДО трехкратный отпуск. Твердость стали после отпуска составляет 64...65 HRC. Структура стали после термообработки состоит из мартенсита отпуска и карбидов.

При термической обработке быстрорежущих сталей применяют обработку холодом. После закалки сталь охлаждают до температуры — 80 ... — 100°C, после этого проводят однократный отпуск при температуре 560°C для снятия напряжений.

Иногда для повышения износостойкости быстрорежущих сталей применяют низкотемпературное цианирование.

При ступенчатом нагреве уменьшается разность между температурой поверхности и серединой, а, следовательно, и величина тепловых напряжений, что упростит фрезерные работы и механическую обработку в дальнейшем. Это предотвращает образования трещин возможность В данной стали, характеризующейся теплопроводностью низкой И Критическая скорость пластичностью. закалки невелика вследствие значительной усталости аустенита.

В интервалах температур t 800-600°С и 280-350°С устойчивость аустенита понижена, поэтому охлаждение должно быть ускоренным. Слишком медленное охлаждение сопровождается выделением карбидов из аустенита, что понижает степень ее легированности и, как следствие, красностойкости стали. Замедленное охлаждение в интервалах 250-350°С сопровождается образованием троостита — структуры с пониженной твердостью. Например, отпуск стали Р18 проводят в 3 стадий, при температуре 560°С, продолжительностью по 1 часу. Наилучшие режущие свойства быстрорежущая сталь приобретает после отпуска, готова к механической обработке. Режущие свойства быстрорежущей стали превосходят высококачественную углеродистую сталь У10А, в 5-10 раз.

Полный цикл механичекой обработки быстрорежущей стали при наличии трехкратного отпуска – около 6 часов.

Указанная длительность цикла не позволяет в отведенное время провести ее механическую обработку. Образцы поместить в первую печь, нагретую до температуры 850-950°С, и выдержать в ней из расчета 1 минута на 1 мм диаметра или толщины образца; образцы вынуть из 1-ой печи и быстро перенести во 2-ю печь, нагретую до 1280-1300°С. Выдержать во 2-ой печи образцы из расчета 15-20 секунд на 1 мм диаметра или толщины

обра

Образцы вынуть из печи и охладить в масле при энергичном непрерывном движений образца в охлаждающей жидкости; образцы обтереть тряпкой, зачистить шлифовальной бумагой и определить твердость закаленных образцов по HRC;

При закалке стали P18 ее твердость возрастает с HRC=17 до HRC=58 в связи с превращением аустенита в мартенсит. Структура стали P18 состоит из мартенсита, карбидов и остаточного аустенита (=30%).

При отпуске быстрорежущей стали ее твердость возрастает с HRC=58 до HRC=62 в связи с превращением остаточного аустенита в мартенсит. При отпуске структура отпущенной стали состоит из мартенсита, карбидов и остаточного аустенита (1-3%).

Основными видами режущих инструментов из быстрорежущей стали являются резцы, сверла, долбяки,

протяжки, метчики машинные, ножи для резки бумаги. Часто из быстрорежущей стали изготавливают только рабочую часть инструмента.

### Контрольные вопросы.

- 1. Какие марки быстрорежущих сталей Вы знаете?
- 2. В чем преимущество быстрорежущих сталей перед углеродистыми?
- з. Какие легирующие элементы обеспечивают высокую теплостойкость режущих инструментов?
- 4. Для чего быстрорежущие стали нагревают до высоких температур, близких к температурам плавления?
  - 5. Для чего после закалки проводят многократный отпуск?
- 6. Какие структурные превращения происходят при закалке, отпуске и какие свойства при этом приобретает быстрорежущая сталь?
- 7. Какие свойства быстрорежущей стали ухудшает остаточный аустенит?
- 8. К какому классу по структуре относятся быстрорежущие стали в нормализованном состоянии?
- 9. Структура быстрорежущей стали после закалки и отпуска.
  - 10. Почему сверла после ТО деформируются?

### Практическая работа № 4 (9) Исправление дефектов термообработки.

**Цель работы:** ознакомиться с процессами термообработки и причинами брака изделий при термообработке; методами устранения возможных дефектов.

### Задания:

- 1. Усвоить основные виды брака, образующиеся при различных видах термической обработки стальных изделий;
- 2. Установить возможные причины образования перечисленных видов брака;
- 3. Предложить способы устранения отдельных видов брака;

### Общие положения.

Дефекты, возникающие при термической обработке стали, принято подразделять на два вида: обратимые и необратимые. В первом случае, их можно «снять» дополнительной тепловой обработкой заготовки, во втором – изделие является браком, и далее подлежит переплавке.

К первой группе относится перегрев — нагрев стали до температуры выше 1250...11000С (меньшие значения — для сталей с повышенным содержанием углерода). Дефект

усугубляется, если к тому же увеличить время выдержки заготовки при таких температурах. В перегретом металле начинается интенсивный рост зерен, сопровождающийся изменением неблагоприятным ИХ формы. высокоуглеродистых сталей на фоне такой структуры дополнительно появляются грубые игольчатые цементита Fe3C. В результате механические свойства стали резко падают, причем особенно интенсивно у перегретого изделия уменьшаются показатели ударной вязкости. Такие заготовки разрушаются при попытке любой механической их обработки (а также обработки давлением со сколько-нибудь значительными степенями деформаций).

Перегрев стали можно устранить. Для этого применяют отжиг до температур, на 40...600С превышающих температуру начала аустенитного превращения. После некоторой выдержки заготовки медленно охлаждают вместе с печью. В теплое время года возможно охлаждение на спокойном воздухе (без сквозняков и искусственных воздушных потоков). В результате зерна становятся мельче, приобретают округлую форму, а металлу возвращаются его прежние физико-механические характеристики.

Необратимым дефектом термообработки является

пережог. Он возникает при нагреве стали до температур ниже температуры начала плавления на 50...1000С. При таких температурах неметаллические включения в стали, располагающиеся всегда по границам зèрен — сера и фосфор — плавятся. Этому сопутствует также интенсивное окисление, которое проходит по границам зерен. Пережженный металл полностью теряет свою пластичность, следствием чего является появление рваных трещин при последующей ковке или прокатке. Восстановить исходную структуру такой стали невозможно.

Кроме основных дефектов, каждому виду термической обработки свойственны и локальные. Во многих случаях они устранимы. Типовые дефекты термической обработки стали могут быть сведены к следующим:

- Несоответствие твердости обработанного изделия. Возникает при нарушении заданного режима: например, при повышенной/пониженной скорости охлаждения, недостаточном времени выдержки заготовки в печи или в результате нагрева до более низких/высоких температур. Исправляется повторной термообработкой;
- Появление сетки карбидных включений. Вызывается перегревом стали и устраняется выполнением нормализации

металла, либо многократной перековкой заготовки;

- Трещинообразование, вызванное растрескиванием стальной заготовки из-за возникших в ней высоких термических напряжений при мартенситном превращении. Сталь становится хрупкой, излом имеет ярко выраженный крупнозернистый характер. Проявляется при превышении допустимых скоростей охлаждения металла при закалке. Исправить такой брак невозможно;
- Обезуглероживание: выгорание цементита в поверхностных слоях стали с одновременным образованием высокотемпературного оксида железа FeO. Происходит при слишком длительной выдержке нагретой заготовки в печи, либо при использовании пламенных нагревательных устройств с неконтролируемой атмосферой. Брак исправим лишь частично: заготовки можно подвергнуть нормализации, но марка стали при этом изменится в сторону снижения процентного содержания углерода. Нагрев следует вести в электропечах, либо в печах безокислительного нагрева;
- Неравномерная твердость по поверхности или сечению. Дефект связан с некачественным отпуском (например, использованием загрязненной включениями охлаждающей среды или касанием заготовок друг друга в отпускной емкости). Дефект устраняется последующей нормализацией и закалкой с применением более интенсивной охлаждающей среды, в

частности, воды или водного раствора NaCl;

• Механическая деформация или коробление термообработанных изделий. Устраняется их правкой на гидравлических прессах, а – при необходимости – применением повторной термообработки, но с более медленной скоростью охлаждения.

Дефекты, возникающие при термической обработке стыков сварных конструкций, устраняются их повторным нагревом и последующим охлаждением на спокойном воздухе.

Дефекты при термической обработке могут быть обусловлены различными причинами. В одном случае эти причины непосредственно связаны с процессом термообработки, а в другом — с характером стали, конструкцией детали или технологией ее изготовления. Дефекты, при проведении термической обработки, могут возникнуть в связи с нарушением заданного режима нагрева или охлаждения, повышением или понижением (по отношению к заданной) температуры и времени выдержки, неправильной загрузки деталей в печи, неверным выбором атмосферы. К дефектам, связанным с условиями производства деталей, относятся ошибка в выборе материала, дефекты изготовления.

Выяснение причин появления дефектов и их систематизация производится в результате анализа условий их

образования или причин брака.

### Контрольные вопросы

- 1. C чем связано возникновение дефектов в готовом изделии?
  - 2. Какие дефекты могут возникать при отжиге?
- з. К чему приводит высокий уровень остаточных напряжений? Как устранить этот дефект?
- 4. Как устранить феррит по границам зерен в виде видманштетта в стали 45?
- 5. Способ устранения смешанной структуры мартенсита и троостита в стали У8?
- 6. Назовите дефекты, возникающие при XTO? Как они влияют на свойства стали?
- 7. Как устранить образование карбидной сетки в стали 20XH3A?

### Практическая работа № 5 (10)

### Газовая цементация

**Цель работы:** ознакомиться с процессом газовой цементации, технологией термической обработки после цементации и свойствами цементованной стали.

### Задания:

- 1. Описать технологический процесс газовой цементации.
  - 2. Назначить режим ТО.
- 3. Изучить микроструктуру цементованного слоя, определить его глубину.
- 4. Измерить на приборе Роквелла твердость сталей до цементации и после цементации и термообработки.
- 5. Изучить и схематически зарисовать микроструктуры сталей, указать структурные составляющие.

### Общие положения.

Газовая цементация заключается в насыщении поверхности стальных деталей углеродом в атмосфере углеродосодержащих газов. Газовую цементацию широко применяют в машиностроении, так как она является прогрессивным и экономичным процессом. Этот процесс позволяет регулировать содержание углерода в поверхностном

слое цементуемых деталей, механизировать и автоматизировать оборудование, а также производить полный цикл термической обработки в одном агрегате - цементацию, закалку, промывку и отпуск. Кроме того, себестоимость продукции и капитальные затраты при газовой цементации ниже, а условия труда рабочихлучше, цементации термистов чем при твердом карбюризаторе. При газовой цементации детали науглероживаются в 2 - 3 раза быстрее, чем при твердой цементованный слой получается более цементации, однородным.



Газовая цементация производится в механизированных методических и шахтных печах, а также в безмуфельных агрегатах.

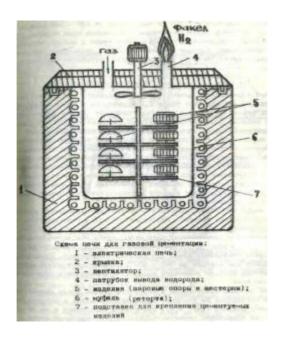
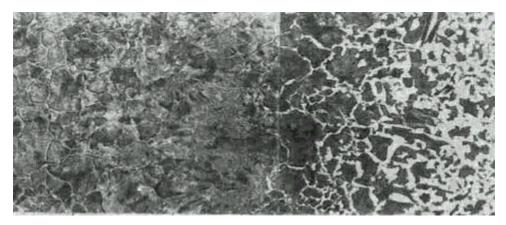



Рис.2 Схема печи для газовой цементации

В качестве карбюризаторов для газовой цементации применяют углеродосодержащие естественные и искусственные газы и газовые смеси, содержащие метан СН<sub>4</sub> и окись углерода СО. Можно использовать также жидкие карбюризаторы: бензол, пиробензол, осветительный керосин, синтин (продукт синтеза окиси углерода) и сжиженный природный газ.

Наиболее перспективным газовым карбюризатором является эндотермическая атмосфера, состоящая, как указывалось, из эндотермического газа (20°/о окиси углерода, 40% водорода и 40% азота) с добавлением к нему 1-5%-ного метана для усиления цементирующих свойств. В такой атмосфере можно опытным путем или при помощи приборов регулировать содержание науглероживающего газа. Это позволяет предупреждать образование сажи и обеспечивать необходимую скорость науглероживания.


Химический процесс газовой цементации протекает по двум реакциям: основной, когда метан под действием температуры цементации (920-840°) распадается на атомарный углерод и водород:  $CH_4 \rightarrow C_{ar} + 2H_2$  и сопутствующей, когда  $2CO \rightarrow C_{ar} + CO_2$ . Атомарный углерод, как и при твердой цементации, диффундирует в поверхность стальной детали, в результате чего получается цементованный науглероженный слой.

Выбор режима (температуры и времени выдержки) цементации определяется заданной глубиной цементованного слоя. С повышением температуры науглероживание резко возрастает. Цементацию проводят при 910-930°C, а иногда для ускорения при 1000-1050°C. С повышением температуры уменьшается время достижения заданной глубины

#### цементации.

Так, при газовой цементации науглероженный слой толщиной 1,0-1,3 мм получают при 920°C за 15 ч, а при 1000°C - за 8 ч. Чтобы предотвратить сильный перегрев (рост аустенитного зерна), высокотемпературной цементации подвергают наследственно мелкозернистые стали.

Концентрация углерода в поверхностном слое изделия обычно составляет 0,8-1,0% и не достигает предела растворимости при температуре цементации. Следовательно,

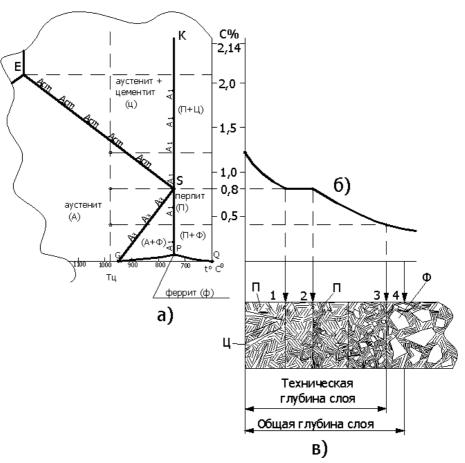


сетка Fe<sub>3</sub>C при температуре цементации не образуется, и поверхностный слой, как и сердцевина, находится в аустенитном состоянии. После медленного охлаждения цементованный слой с переменной концентрацией углерода состоит из феррита и цементита и характеризуется гаммой структур, типичных для заэвтектоидной, эвтектоидной и доэвтектоидной стали.

Рис. 3 Микроструктура поверхностной области стали,

### подвергнутой цементации

После цементации детали подвергают закалке и отпуску. Детали, цементованные в газовой атмосфере, подвергаются одинарной закалке непосредственно из цементационной печи после предварительного подстуживания с температуры цементации 520-930° до 800- 840° С.


После закалки и отпуска структура цементованного слоя для стали 25ХГТ состоит из мелкоигольчатого мартенсита, незначительного количества остаточного аустенита и мелких карбидов; твердость поверхности *HRC* 56-62. Структура сердцевины - троостит или троостосорбит, ее твердость *HRC* 28-32.

Глубина цементованного слоя проверяется на глаз по излому закаленного «свидетеля», прошедшего цементацию вместе с деталями, или металлографическим способом в цеховой лаборатории. За глубину цементованного слоя принимают расстояние от поверхности до исходной структуры, т. е. до появления феррита в отожженном и протравленном микрошлифе, сделанном из «свидетеля» или детали.

Состав и науглероживающая способность газовой атмосферы контролируются и регулируются в процессе цементации по пробе газа, взятой из печи для химического анализа или по точке росы атмосферы. *Точкой росы* называют

температуру, при которой газ определенного состава, охлаждаясь при постоянном влагосодержании, становится насыщенным. Для измерения точки росы и автоматического регулирования подачи цементуемого газа (эндотермической атмосферы) в муфель цементационной печи или

агрегата, в зависимости от требуемого содержания



углерода в цементованном слое, в настоящее время применяют

специальные приборы «Карботроль».

**Рис. 4.** Диаграмма состояния Fe - C(a), кривая изменения содержания углерода по толщине слоя  $(\delta)$  и микроструктура цементованного слоя  $(\epsilon)$ :

I — заэвтектоидный слой — перлит (темный) и вторичный цементит (светлая сетка); 2 — эвтектоидный слой — перлит; 3 — доэвтектоидный слой — перлит (темный) и феррит (светлый); 4 — сердцевина — феррит и перлит

Недостаточная стойкость жароупорных муфелей и ретор цементационных печей не позволяет повысить температуру цементации более 950-960°. Поэтому детали цементируют не в муфельных печах, а в установках ТВЧ. Индукционный нагрев позволяет производить цементацию при температуре до 1050°С, при этом время цементации сокращается в 10-12 раз по сравнению, с обычной газовой цементацией. Например, на автозаводе им. Лихачева цементация при нагреве ТВЧ зубчатых колес автомобиля на глубину 0,8-1,0 мм происходит в течение всего лишь 40-45 мин. В качестве карбюризатора применяют эндотермическую атмосферу. Так как время нагрева в процессе цементации небольшое, хотя температура и высокая, зерна аустенита не успевают вырасти, поэтому механические свойства таких зубчатых колес остаются хорошими. Для цементации

автомобильных зубчатых колес на автозаводе им. Лихачева применяют стали марки 25XГТ и 25XГМ.

**Дефекты цементации.** В процессе цементации могут возникнуть следующие дефекты:

- 1) завышенная или заниженная глубина цементованного слоя;
- 2) слишком высокое содержание углерода в слое (цементитная сетка);
  - 3) резкий переход от цементованного слоя к сердцевине.

Завышенная глубина цементованного слоя обычно получается из-за повышенной температуры в печи или большой выдержки деталей в зоне науглероживания. Детали с завышенным слоем бракуются.

Заниженная глубина цементованного слоя образуется в основном в результате малой активности карбюризаторов и пониженной температуры цементации. Такие детали после анализа исправляют повторной цементацией.

Слишком высокое содержание углерода в цементованном слое (выше 1,1-1,2% углерода) получается благодаря завышенной температуре цементации и высокой активности карбюризатора. В результате этого избыточный углерод выпадает по границам зерен в виде цементитной сетки, которая резко снижает прочностные свойства цементованного слоя и вызывает выкрашивание. Такие детали являются окончательным

браком.

Резкий переход от цементованного слоя к сердцевине получается в результате высокой температуры цементации и небольшой выдержки. При таком дефекте в процессе эксплуатации деталей цементованный слой может отслоиться от сердцевины.

Газовая цементация - основной процесс при массовом производстве, а цементацию в твердом карбюризаторе используют в мелкосерийном производстве.

Цементацию широко применяют в машиностроении для повышения твердости и износостойкости изделий с сохранением высокой вязкости их сердцевины.

### Контрольные вопросы

- 1. Что понимается под цементацией стали?
- 2. Какова цель газовой цементации?
- 3. Какие стали подвергают газовой цементации?
- 4. От чего зависит глубина цементованного слоя?
- 5. Для чего после цементации производится термообработка?
  - 6. Что такое карбюризатор?
- 7. Какие вещества активизируют процесс газовой цементации?
  - 8. Почему процесс твердой цементации более

- продолжителен по сравнению с газовой цементацией?
- 9. Какие вещества используются в качестве карбюризаторов при газовой цементации?
- 10. Какой способ цементации экономически целесообразен?
- 11. Для чего производят термическую обработку цементованных деталей?
- 12. Какова структура слоев стали после цементации и термической обработки?
- 13. Каковы варианты термической обработки после цементации стали?
- 14. Какой термической обработке подвергают особо ответственные детали после цементации?
- 15. Какова структура цементованных сталей после термической обработки?
- 16. Какова твердость поверхностных слоев стали после цементации и термической обработки?
  - 17. Какие детали подвергают газовой цементации?

Список использованных источников Перечень основной литературы:

- 1 Носенко, В. А. Физико-химические методы обработки материалов : учеб. пособие / В. А. Носенко, М. В. Даниленко. Старый Оскол : ТНТ, 2017. 196 с. : ил. Гриф: Доп. УМО. ISBN 978-5-94178-327-4
- 2 Материаловедение и технология материалов: учебное пособие. / Под ред. А.И. Батышева, А.А. Смолькина. М.: ИНФРА-М, 2012.

### Перечень дополнительной литературы:

- 1. Готтштайн, Г. Физико-химические основы материаловедения / Г. Готтштайн ; пер. с англ. К. Н. Золотовой, Д. О. Чаркина ; под ред. В. П. Зломанова. Москва : Бином. Лаборатория знаний, 2009. 400 с. ISBN 978-5-94774-769-0
- 2. Материаловедение: учебник / [Б. Н. Арзамасов, В. И. Макарова, Г. Г. Мухин и др.]. 8-е изд., стер. М.: МГТУ, 2008. 648 с.: ил. Библиогр.: с. 630-631. Предм. указ.: с. 632-637. -ISBN 978-5-7038-1860-2
- 3. Тимонин А.С. Основы конструирования и расчета химикотехнологического и природоохранного оборудования. Справочник. Калуга: Изд-во Н. Бочкаревой, 2002. Т 1,850 с.
- 4. Фетисов Г.П. и др. Материаловедение и технология металлов. М.: Высшая школа, 2002.- 638 с.
- 3. Лахтин Ю.М., Леонтьев В.П. Материаловедение: Учебник для высших технических учебных заведений. М.: Машиностроение, 1990. 528 с.
- 4. Технология конструкционных материалов: Учебник для студентов вузов. /А.М. Дальский. М.: Машиностроение, 1992. 448 с.
- 5. Практикум по технологии конструкционных материалов и материаловедению./Под ред. С. Некрасова. М.: Колос, 1978. 256 с.
- 6. . Химико-термическая обработка металлов и сплавов : справочник / [Г. В. Борисенок, Л. А. Васильев, Л. Г. Ворошнин и др.] ; под ред. Л. С. Ляхович. М. : Металлургия, 1981. 424 с. Библиогр.: с. 404-419.

Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. <a href="http://biblioclub.ru/">http://biblioclub.ru/</a> ЭБС «Университетская библиотека онлайн"
- 2. http://catalog.ncstu.ru/— электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО.
- 3. <a href="http://www.iprbookshop.ru">http://www.iprbookshop.ru</a> Электронная библиотечная система
- 4. <a href="http://window.edu.ru/">http://window.edu.ru/</a> единое окно доступа к образовательным ресурсам
- 5. <a href="http://openedu.ru/">http://openedu.ru/</a> Национальный портал онлайн обучения «Открытое образование»

# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное

образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

### Методические указания

по выполнению самостоятельной работы по дисциплине «Химико-термическая обработка материалов» 15.03.02 Технологические машины и оборудование направленность (профиль) Цифровые технологии проектирования и управления технологическим оборудованием

(ЭЛЕКТРОННЫЙ ДОКУМЕНТ)

### СОДЕРЖАНИЕ

| Введение                                                             | 3           |
|----------------------------------------------------------------------|-------------|
| 1 Общая характеристика самостоятельной работы студента при изучении  |             |
| дисциплины                                                           | 5           |
| 2 План-график выполнения самостоятельной работы                      | 7           |
| 3 Контрольные точки и виды отчетности по ним                         | 8           |
| 4 Описание показателей и критериев оценивания компетенций на различн | ЫХ          |
| этапах их формирования, описание шкал оценивания                     | 8           |
| 5 Тематический план дисциплины                                       | 9           |
| 6 Вопросы для собеседования                                          | 11          |
| 7 Методические рекомендации по изучению теоретического материала     | 12          |
| 8 Методические рекомендации по организации самостоятельной работы с  | тудентов 14 |
| 9 Методические рекомендации при работе над конспектом во время прове | дения       |
| лекции                                                               | 14          |
| 10 Методические рекомендации по подготовке к практическим занятиям   | 15          |

### Введение

Настоящее пособие разработано на основе:

- Федерального закона от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- Федеральных государственных образовательных стандартов высшего образования (далее  $\Phi \Gamma OC\ BO$ );
  - нормативно-методических документов Минобрнауки России;
  - Устава ФГАОУ ВО «Северо-Кавказский федеральный университет»;
- Приказом Минобрнауки России от 06.04.2021 N 245 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры» (Зарегистрировано в Минюсте России 13.08.2021 N 64644);
- локальных нормативных актов  $\Phi \Gamma AOY$  BO «Северо-Кавказский федеральный университет».

На современном рынке труда конкурентоспособным может стать только квалифицированный работник соответствующего уровня и профиля, компетентный, свободно владеющей своей профессией и ориентированный в смежных областях деятельности, способный к эффективной работе по специальности на уровне мировых стандартов и готовый к постоянному профессиональному росту.

Самостоятельная работа студента направлена на достижение целей специалистов-профессионалов, активное включение обучаемых в сознательное освоение содержания образования, обеспечение мотивации, творческое овладение основными способами будущей профессиональной деятельности. Чтобы подготовить и обучить такого профессионала, высшим учебным заведениям необходимо скорректировать свой подход к планированию и организации учебно-воспитательной работы. Это в равной степени относится к изменению содержания и характера учебного процесса. В современных реалиях задача преподавателя высшей школы заключается в организации и направлении познавательной деятельности студентов, эффективность которой во многом зависит от их самостоятельной работы. В свою очередь, самостоятельная работа студентов должна представлять собой не просто самоцель, а средство прочных и глубоких знаний, инструмент формирования самостоятельности студентов.

В связи с введением в образовательный процесс новых образовательных стандартов, с уменьшением количества аудиторных занятий по дисциплинам возрастает роль самостоятельной работы студентов. Возникает необходимость оптимизации самостоятельной работы студентов (далее - СРС). Появляется необходимость модернизации технологий обучения, что существенно меняет подходы к учебно-методическому и организационно-техническому обеспечению учебного процесса.

Данная методическая разработка содержит рекомендации по организации, управлению и обеспечению эффективности самостоятельной работы студентов в процессе обучения в целях формирования необходимых компетенций.

Самостоятельная работа студентов является обязательным компонентом учебного процесса для каждого студента и определяется учебным планом. Виды самостоятельной работы студентов определяются при разработке рабочих программ и учебных методических комплексов дисциплин содержанием учебной дисциплины. При определении содержания самостоятельной работы студентов следует учитывать их уровень самостоятельности и требования к уровню самостоятельности выпускников для того, чтобы за период обучения искомый уровень был достигнут. Так, удельный вес самостоятельной работы при обучении в очной форме составляет до 50% от количества аудиторных часов, отведённых на изучение дисциплины, в заочной форме - количество часов, отведенных на освоение дисциплины, увеличивается до 90%.

Самостоятельная работа определяется как индивидуальная или коллективная учебная деятельность, осуществляемая без непосредственного руководства педагога, но по его заданиям и под его контролем.

Самостоятельная работа — это познавательная учебная деятельность, когда последовательность мышления студента, его умственных и практических операций и действий зависит и определяется самим студентом. Самостоятельная работа студентов способствует развитию самостоятельности, ответственности и организованности, творческого подхода к решению проблем учебного и профессионального уровня, что в итоге приводит к развитию навыка самостоятельного планирования и реализации деятельности.

Целью самостоятельной работы студентов является овладение необходимыми компетенциями по своему направлению подготовки, опытом творческой и исследовательской деятельности.

На основании компетентностного подхода к реализации профессиональных образовательных программ, видами заданий для самостоятельной работы являются:

- для овладения знаниями: чтение текста (учебника, первоисточника, дополнительной литературы), составление плана текста, графическое изображение структуры текста, конспектирование текста, выписки из текста, работа со словарями и справочниками, ознакомление с нормативными документами, учебно-исследовательская работа, использование аудио- и видеозаписей, компьютерной техники и информационно- телекоммуникационной сети Интернет и др.
- для закрепления и систематизации знаний: работа с конспектом лекции, обработка текста (учебника, первоисточника, дополнительной литературы, аудио и видеозаписей), повторная работа над учебным материалом, составление плана, составление таблиц для систематизации учебного материала, ответ на контрольные вопросы, заполнение рабочей тетради, аналитическая обработка текста (аннотирование, рецензирование, реферирование, конспект-анализ и др.), завершение аудиторных практических работ и оформление отчётов по ним, подготовка мультимедиа сообщений/докладов к выступлению на семинаре (конференции), материаловпрезентаций, подготовка реферата, составление библиографии, тематических кроссвордов, тестирование и др.
- для формирования умений: решение задач и упражнений по образцу, решение вариативных задач, выполнение чертежей, схем, выполнение расчетов (графических работ), решение ситуационных (профессиональных) задач, подготовка к деловым играм, проектирование и моделирование разных видов и компонентов профессиональной деятельности, рефлексивный анализ профессиональных умений с использованием аудио- и видеотехники и др.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, конкретной тематики самостоятельной работы, уровня сложности, уровня умений студентов.

Контроль результатов самостоятельной работы студентов может осуществляться в пределах времени, отведенного на обязательные учебные занятия по дисциплине и внеаудиторную самостоятельную работу студентов по дисциплине, может проходить в письменной, устной или смешанной форме.

Самостоятельная работа проводится в виде упражнений при изучении нового материала, упражнений в процессе закрепления и повторения, упражнений проверочных и контрольных работ, а также для самоконтроля.

Для организации самостоятельной работы необходимы следующие условия:

- 1. готовность студентов к самостоятельному труду;
- 2. наличие и доступность необходимого учебно-методического и справочного материала;
- 3. консультационная помощь.

Самостоятельная работа может проходить в лекционном кабинете, компьютерном зале, библиотеке, дома. Самостоятельная работа способствует формированию компетенций, тренирует волю, воспитывает работоспособность, внимание, дисциплину и ответственность.

### 1 Общая характеристика самостоятельной работы студента при изучении дисциплины

Дисциплина «Химико-термическая обработка материалов» относится к дисциплинам части, формируемой участниками образовательных отношений, дисциплины по выбору учебного плана. Она направлена на формирование профессиональных компетенций, обучающихся в процессе выполнения работ, определенных ФГОС ВО.

Наименование компетенций:

|                                                                                                      | тенции:                                                                                                          | 1                                                                                                                   |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Код, формулировка<br>компетенции                                                                     | Код, формулировка индикатора                                                                                     | Планируемые результаты обучения по дисциплине (модулю), характеризующие этапы формирования компетенций, индикаторов |
| ПК-3 Способен                                                                                        | ИД-1 ПК-3 использует данные                                                                                      | Пороговый уровень                                                                                                   |
| обеспечивать контроль                                                                                | SKADA-систем для анализа                                                                                         | понимает: методы выбора                                                                                             |
| технологических процессов изготовления машиностроительных изделий средней сложности и управления ими | производственной ситуации и выявления причин брака для изготовления машиностроительных изделий средней сложности | основных и вспомогательных материалов, способов реализации технологических процессов, прогрессивных                 |
| и управления ими                                                                                     |                                                                                                                  | методов эксплуатации                                                                                                |
|                                                                                                      |                                                                                                                  | технологического                                                                                                    |
|                                                                                                      |                                                                                                                  | оборудования при                                                                                                    |
|                                                                                                      |                                                                                                                  | изготовлении                                                                                                        |
|                                                                                                      |                                                                                                                  | технологических машин;                                                                                              |
|                                                                                                      |                                                                                                                  | Повышенный уровень                                                                                                  |
|                                                                                                      |                                                                                                                  | понимает: на                                                                                                        |
|                                                                                                      |                                                                                                                  | профессиональном уровне                                                                                             |
|                                                                                                      |                                                                                                                  | методы стандартных испытаний по определению                                                                         |
|                                                                                                      |                                                                                                                  | физико-механических                                                                                                 |
|                                                                                                      |                                                                                                                  | свойств и технологических                                                                                           |
|                                                                                                      |                                                                                                                  | показателей используемых                                                                                            |
|                                                                                                      |                                                                                                                  | материалов и готовых                                                                                                |
|                                                                                                      |                                                                                                                  | изделий                                                                                                             |
|                                                                                                      | ИД-2 ПК-3 осуществляет                                                                                           | Пороговый уровень                                                                                                   |
|                                                                                                      | технологические эксперименты по                                                                                  | выбирает: основные и                                                                                                |
|                                                                                                      | заданным методикам с обработкой и                                                                                | вспомогательные материалы,                                                                                          |
|                                                                                                      | анализом результатов с применением                                                                               | способы реализации                                                                                                  |
|                                                                                                      | систем автоматизированного                                                                                       | технологических процессов,                                                                                          |
|                                                                                                      | проектирования                                                                                                   | применять прогрессивные                                                                                             |
|                                                                                                      |                                                                                                                  | методы эксплуатации                                                                                                 |
|                                                                                                      |                                                                                                                  | технологического                                                                                                    |
|                                                                                                      |                                                                                                                  | оборудования при                                                                                                    |
|                                                                                                      |                                                                                                                  | изготовлении                                                                                                        |
|                                                                                                      |                                                                                                                  | технологических машин;                                                                                              |
|                                                                                                      |                                                                                                                  | Повышенный уровень                                                                                                  |
|                                                                                                      |                                                                                                                  | осуществляет: стандартные                                                                                           |
|                                                                                                      |                                                                                                                  | испытания по определению                                                                                            |
|                                                                                                      |                                                                                                                  | физико-механических свойств и                                                                                       |
|                                                                                                      |                                                                                                                  | технологических показателей                                                                                         |
|                                                                                                      |                                                                                                                  | используемых материалов и готовых изделий                                                                           |

ИД-3 ПК-3 использует САD и САРРсистемы для моделирования физических явлений, возникающих при реализации технологических процессов изготовления машиностроительных изделий средней сложности

Пороговый уровень осуществляет: методики выбора основных вспомогательных материалов, способов реализации процессов, технологических прогрессивных применения методов эксплуатации технологического оборудования изготовлении при технологических машин;

Повышенный уровень

применяет: навыки применения методов стандартных испытаний по определению физикомеханических свойств и технологических показателей используемых материалов и готовых изделий;

В рамках курса дисциплины «Химико-термическая обработка материалов» самостоятельная работа студентов находит активное применение и включает в себя различные виды деятельности:

- подготовка к практическим занятиям, в том числе работа с методическими указаниями, средствами массовой информации;
- подготовка к лабораторным, в том числе работа с методическими указаниями;
- подготовка к лекциям, в том числе самостоятельное углубленное изучение теоретического курса по рекомендованной литературе;
- подготовка к промежуточной аттестации.

Цель самостоятельной работы студента при подготовке к лекциям заключается в получении новых знаний, приобретенных при более глубоком изучении литературы по дисциплине.

### Задачи:

- доработка и повторение конспектов лекции;
- осмысление содержания лекции, логической структуры, выводов.

Цель самостоятельной работы студента при подготовке к практическим занятиям заключается в углублении, расширении, детализировании знаний, полученных на лекциях в обобщенной форме.

### Задачи:

- развить способность применять полученные знания на практике при решении конкретных задач;
- проверить знания студентов, полученные на лекциях и при самостоятельном изучении литературы.

Цель самостоятельной работы студента при подготовке к лабораторным занятиям заключается в активизации познавательной деятельности и приобретение, развитие умений работы с учебными пособиями, методическими материалами, информационными ресурсами разного рода при подготовке к защите отчета по лабораторной работе.

#### Задачи:

- экспериментальная проверка формул, расчётов по материалам основных разделов лиспиплины:
  - ознакомление с методикой и техникой проведения экспериментов, исследований;
  - подготовка письменного отчета и устного, выступления по их защите.

Цель самостоятельной работы студента при подготовке к экзамену заключается в повторении и закреплении всего изученного материала.

### Задачи:

– научиться анализировать и систематизировать все знания, накопленные при изучении программного материала: данные учебника, записи лекций, заметки, сделанные во время консультаций и практических занятий.

### 2 План-график выполнения самостоятельной работы

Таблица 1 – Виды самостоятельной работы для очной и очно-заочной форм обучения

| Коды реализуемых компетенций, индикатора(ов)   Вид деятельности студентов   Технологии опенки   СРС компакти ая работа с преподава телем   Подготовка к лабораторной работе   Самостоятельное изучение литературы   Подготовка к практическому занятию   Самостоятельное с изучение литературы   Подготовка к практическому занятию   Самостоятельное с изучение литературы   Подготовка к лабораторной работе   Самостоятельное конспект, собеседовани е   Самостоятельное конспект, собеседование    |                 |                  | Средства и                            | Объе   | м часов, в том | и числе |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|---------------------------------------|--------|----------------|---------|
| Судентов   Судентов  | Коды            |                  | технологии                            | CPC    | Контактн       | Всего   |
| Очная форма обучения         Конспект, собеседовани е изучение литературы         Конспект, собеседовани е е изучение гобеседовани е е изучение литературы         Конспект, собеседовани е е изучение гобеседовани е е изучение литературы         Конспект, собеседовани е е изучение гобеседовани е е изучение гобеседование литературы         Конспект, собеседовани е е изучение гобеседование гобеседование литературы         Конспект, гобеседование гобеседовани                                                                                                          | реализуемых     | Вид деятельности | оценки                                |        | ая работа      |         |
| Очная форма обучения 7 семестр ПК-3 ИД-1 ПК-3 ИД-2 ПК-3 ИД-2 ПК-3 ИД-3 ПК-3 ИД-3 ПК-3 ИД-3 ПК-3 ИД-1 ПК-3 ИД-2 ПК-3 ИД-1 ПК-3 ИД-2 ПК-3 ИД-3  В семестр ПК-3 ИД-1 Подтотовка к обеседование изучение изичение изиче | компетенций,    | студентов        |                                       |        | c              |         |
| Очная форма обучения           7 семестр         ПК-3 ИД-1         Подготовка к практическому занятию         Конспект, собеседовани е е         5,13         0,27         5,4           ПК-3 ИД-3         Подготовка к лабораторной работе е Самостоятельное изучение литературы         Конспект, собеседовани е е         3,85         0,20         4,05           Очная форма обучения         Конспект, собеседовани е е         67,97         3,58         71,55           В семестр         ПК-3 ИД-1         Подготовка к практическому собеседование занятию         Конспект, собеседование занятию         1,425         0,075         1,5           ПК-3 ИД-2         Подготовка к обеседование литературы         Конспект, собеседование занятию         53,44         2,81         56,25           Самостоятельно е изучение литературы         Конспект, обеседование закамену         18,75         1,5         20,25           Очно-заочная форма         В семестр         Итого за 8 семестр         73,615         4,385         78           Очно-заочная форма         В семестр         Подготовка к практическому занятию         Конспект, собеседовани         2,57         0,14         2,70           ПК-3 ИД-2         Подготовка к лабораторий работе е Подготовка к лабораторий работе е Самостоятельное изучение литературы е Собеседовани по 103,03         5,42         108,45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | индикатора(ов)  |                  |                                       |        | преподава      |         |
| ПК-3 ИД-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                  |                                       |        | телем          |         |
| ПК-3 ИД-1   Подготовка к практическому занятию   собеседовани   е   практическому занятию   е   практическому занятию   практическому занят  | Очная форма об  | учения           |                                       |        |                |         |
| ПК-3 ИД-2   практическому занятию   собеседовани   собеседовани  | 7 семестр       |                  |                                       |        |                |         |
| ПК-3 ИД-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ПК-3 ИД-1       | Подготовка к     | Конспект,                             | 5,13   | 0,27           | 5,4     |
| Подготовка к дабораторной работе   Самостоятельное изучение дитературы   Самостоятельное изучения   Самостоятельное изучение дагатию   Самостоятельное изучение дагатие   Самостоятельное изучение дагат   | ПК-3 ИД-2       | практическому    | собеседовани                          |        |                |         |
| лабораторной работе         собеседовани е с         собеседовани е с         собеседовани е собеседование в собеседовани                                                   | ПК-3 ИД-3       | занятию          | e                                     |        |                |         |
| работе   с   Самостоятельное изучение литературы   е   Итого за 3 семестр   76,95   4,05   81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Подготовка к     | Конспект,                             | 3,85   | 0,20           | 4,05    |
| Самостоятельное изучение литературы         Конспект, собеседовани е         67,97         3,58         71,55           Итого за 3 семестр         76,95         4,05         81           Очная форма обучения           8 семестр           ПК-3 ИД-1         Подготовка к практическому занятию         Конспект, собеседование         1,425         0,075         1,5           ПК-3 ИД-2         практическому занятию         Конспект, собеседование         53,44         2,81         56,25           Подготовка к экзамену         Вопросы к экзамену         18,75         1,5         20,25           Итого за 8 семестр         73,615         4,385         78           Очно-заочная форма           8 семестр         ПК-3 ИД-1         Подготовка к практическому занятию         Конспект, собеседовани         2,57         0,14         2,70           ПК-3 ИД-3         Подготовка к практическому занятию         конспект, собеседовани         1,28         0,07         1,35           ПК-3 ИД-3         Самостоятельное е         Конспект, собеседовани         103,03         5,42         108,45           Работе         Самостоятельное изучение литературы         собеседовани         103,03         5,42         108,45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | лабораторной     | собеседовани                          |        |                |         |
| Изучение дитературы   Реговани   Реговани   Реговани   Реговани   Реговани   Реговани   Реговани   Реговани   Регование   Р  |                 | работе           | e                                     |        |                |         |
| Изучение дитературы   Реговани   Реговани   Реговани   Реговани   Реговани   Реговани   Реговани   Реговани   Регование   Р  |                 | Самостоятельное  | Конспект,                             | 67,97  | 3,58           | 71,55   |
| Итого за 3 семестр   76,95   4,05   81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | изучение         |                                       | •      |                | ŕ       |
| Очная форма обучения         Конспект, собеседование визиентературы         1,425         0,075         1,5           ПК-3 ИД-1 ПК-3 ИД-2 ПК-3 ИД-3         Подготовка к практическому занятию         Конспект, собеседование визичение питературы         53,44         2,81         56,25           Подготовка к экзамену         Вопросы к экзамену         18,75         1,5         20,25           Очно-заочная форма         Вопросы к экзамену         73,615         4,385         78           Очно-заочная форма         В семестр         ПК-3 ИД-1         Подготовка к практическому занятию         Конспект, собеседовани         2,57         0,14         2,70           ПК-3 ИД-3         Подготовка к лабораторной работе         Конспект, собеседовани         1,28         0,07         1,35           Самостоятельное изучение литературы         Конспект, собеседовани         1,03,03         5,42         108,45           Итого за семестр         Итого за семестр         106,88         5,63         112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | 1 -              |                                       |        |                |         |
| 8 семестр           ПК-3 ИД-1<br>ПК-3 ИД-2<br>ПК-3 ИД-3         Подготовка к<br>практическому<br>занятию         Конспект,<br>собеседование         1,425         0,075         1,5           Самостоятельно<br>е изучение<br>литературы         Конспект,<br>собеседование         53,44         2,81         56,25           Подготовка к<br>экзамену         Вопросы к<br>экзамену         18,75         1,5         20,25           Очно-заочная форма         В семестр         73,615         4,385         78           Очно-заочная форма         В семестр         Конспект,<br>практическому<br>занятию         собеседовани<br>е         2,57         0,14         2,70           ПК-3 ИД-3         Подготовка к<br>лабораторной<br>работе         Конспект,<br>собеседовани         1,28         0,07         1,35           Самостоятельное<br>изучение<br>литературы         Конспект,<br>собеседовани         103,03         5,42         108,45           Итого за семестр         106,88         5,63         112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                  | ого за 3 семестр                      | 76,95  | 4,05           | 81      |
| ПК-3 ИД-1<br>ПК-3 ИД-2<br>ПК-3 ИД-3         Подготовка к<br>практическому<br>занятию         Конспект,<br>собеседование         1,425         0,075         1,5           Самостоятельно<br>е изучение<br>литературы         Конспект,<br>собеседование         53,44         2,81         56,25           Итого за 8 семестр         Вопросы к<br>экзамену         18,75         1,5         20,25           Очно-заочная форма         В семестр         73,615         4,385         78           Очно-заочная форма         Конспект,<br>практическому<br>занятию         собеседовани<br>е         2,57         0,14         2,70           ПК-3 ИД-3         Подготовка к<br>лабораторной<br>работе         Конспект,<br>собеседовани         1,28         0,07         1,35           Самостоятельное<br>изучение<br>литературы         Конспект,<br>собеседовани         103,03         5,42         108,45           Итого за семестр         106,88         5,63         112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Очная форма об  | учения           | - 1                                   |        |                |         |
| ПК-3 ИД-2<br>ПК-3 ИД-3         практическому<br>занятию         собеседование         2,81         56,25           Самостоятельно<br>е изучение<br>литературы         Конспект,<br>собеседование         53,44         2,81         56,25           Подготовка к<br>экзамену         Вопросы к<br>экзамену         18,75         1,5         20,25           Итого за 8 семестр         73,615         4,385         78           Очно-заочная форма         Конспект,<br>практическому<br>занятию         собеседовани<br>собеседовани         2,57         0,14         2,70           ПК-3 ИД-2<br>ПК-3 ИД-3         Подготовка к<br>практическому<br>занятию         Конспект,<br>собеседовани         1,28         0,07         1,35           Подготовка к<br>лабораторной<br>работе         Конспект,<br>собеседовани         1,28         0,07         1,35           Самостоятельное<br>изучение<br>литературы         Конспект,<br>собеседовани         103,03         5,42         108,45           Итого за семестр         106,88         5,63         112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 семестр       | -                |                                       |        |                |         |
| ПК-3 ИД-2<br>ПК-3 ИД-3         практическому<br>занятию         собеседование         2,81         56,25           Самостоятельно<br>е изучение<br>литературы         Конспект,<br>собеседование         53,44         2,81         56,25           Подготовка к<br>экзамену         Вопросы к<br>экзамену         18,75         1,5         20,25           Очно-заочная форма         Всеместр         73,615         4,385         78           Очно-заочная форма         Всеместр         Конспект,<br>практическому<br>занятию         собеседовани<br>собеседовани         2,57         0,14         2,70           ПК-3 ИД-2<br>ПК-3 ИД-3         Подготовка к<br>пабораторной<br>работе         Конспект,<br>собеседовани         1,28         0,07         1,35           Самостоятельное<br>изучение<br>литературы         Конспект,<br>собеседовани         103,03         5,42         108,45           Итого за семестр         106,88         5,63         112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ПК-3 ИД-1       | Подготовка к     | Конспект,                             | 1,425  | 0,075          | 1,5     |
| ПК-3 ИД-3         занятию         53,44         2,81         56,25           Самостоятельно е изучение литературы         собеседование         18,75         1,5         20,25           Подготовка к экзамену         экзамену         18,75         1,5         20,25           Очно-заочная форма         8 семестр         73,615         4,385         78           Очно-заочная форма         8 семестр         Конспект, собеседовани         2,57         0,14         2,70           ПК-3 ИД-1 Подготовка к пк-3 ИД-2 Подготовка к лабораторной работе         Конспект, собеседовани         1,28         0,07         1,35           Подготовка к лабораторной работе         Конспект, собеседовани         1,28         0,07         1,35           Самостоятельное изучение литературы         Конспект, собеседовани         103,03         5,42         108,45           Итого за семестр         106,88         5,63         112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ПК-3 ИД-2       | практическому    |                                       |        |                |         |
| е изучение литературы         собеседование         18,75         1,5         20,25           Очно-заочная форма         В семестр         ПК-3 ИД-1 Подготовка к практическому занятию         Конспект, собеседовани собеседовани данятию         2,57         0,14         2,70           ПК-3 ИД-3         Подготовка к практическому занятию         конспект, собеседовани данятию         1,28         0,07         1,35           Работе         Самостоятельное изучение собеседовани дучение собеседовани дучение дизучение дучение дучени                                                                                                                                                                                                                                                                                         | ПК-3 ИД-3       | 1 - 1            |                                       |        |                |         |
| е изучение литературы         собеседование         18,75         1,5         20,25           Очно-заочная форма         8_семестр         Итого за 8 семестр         73,615         4,385         78           Очно-заочная форма         8_семестр           ПК-3 ИД-1         Подготовка к практическому занятию         Конспект, собеседовани собеседовани гобеседовани гобесед                                                                                                                                                                                                                                                                             |                 | Самостоятельно   | Конспект,                             | 53,44  | 2,81           | 56,25   |
| Подготовка к экзамену   18,75   1,5   20,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | е изучение       | собеседование                         |        |                |         |
| Подготовка к экзамену                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | _                |                                       |        |                |         |
| Укзамену         экзамену         73,615         4,385         78           Очно-заочная форма           8_ семестр         ПК-3 ИД-1         Подготовка к практическому собеседовани 2,57         0,14         2,70           ПК-3 ИД-2         практическому занятию е подготовка к лабораторной собеседовани 1,28         0,07         1,35           Работе         Самостоятельное изучение изучение литературы е побеседовани 103,03         5,42         108,45           Итого за семестр         106,88         5,63         112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                  | Вопросы к                             | 10 75  | 1.5            | 20.25   |
| Очно-заочная форма           8_ семестр         Конспект, практическому         Конспект, собеседовани         2,57         0,14         2,70           ПК-3 ИД-3         занятию         е         0,07         1,35           Подготовка к лабораторной работе         собеседовани собеседовани         1,28         0,07         1,35           Самостоятельное изучение литературы         конспект, собеседовани         103,03         5,42         108,45           Итого за семестр         106,88         5,63         112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                  |                                       |        | ·              |         |
| 8_ семестр           ПК-3 ИД-1         Подготовка к         Конспект, практическому собеседовани         2,57         0,14         2,70           ПК-3 ИД-3         занятию         е         Подготовка к конспект, пабораторной работе         конспект, собеседовани         1,28         0,07         1,35           Самостоятельное изучение литературы         конспект, собеседовани         103,03         5,42         108,45           Итого за семестр         106,88         5,63         112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | Ит               | ого за 8 семестр                      | 73,615 | 4,385          | 78      |
| ПК-3 ИД-1         Подготовка к практическому занятию         Конспект, собеседовани         2,57         0,14         2,70           ПК-3 ИД-3         Подготовка к практическому занятию         Конспект, собеседовани         1,28         0,07         1,35           Работе         Самостоятельное изучение литературы         Конспект, собеседовани         103,03         5,42         108,45           Итого за семестр         106,88         5,63         112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Очно-заочная фо | орма             |                                       |        |                |         |
| ПК-3 ИД-2<br>ПК-3 ИД-3         практическому<br>занятию         собеседовани<br>е         2,57         0,14         2,70           Подготовка к<br>лабораторной<br>работе         Конспект,<br>собеседовани<br>е         1,28         0,07         1,35           Самостоятельное<br>изучение<br>литературы         Конспект,<br>собеседовани<br>е         103,03         5,42         108,45           Итого за семестр         106,88         5,63         112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _8_ семестр     |                  |                                       |        |                |         |
| ПК-3 ИД-3         занятию         е           Подготовка к лабораторной работе         Конспект, собеседовани 1,28 0,07 1,35 работе         0,07 1,35 работе           Самостоятельное изучение литературы         Конспект, собеседовани 103,03 5,42 108,45 работе         108,45 112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ПК-3 ИД-1       | Подготовка к     | Конспект,                             |        | Ι Τ            |         |
| Подготовка к лабораторной собеседовани 1,28 0,07 1,35 работе е Самостоятельное конспект, изучение собеседовани 103,03 5,42 108,45 литературы е Итого за семестр 106,88 5,63 112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ПК-3 ИД-2       | практическому    | собеседовани                          | 2,57   | 0,14           | 2,70    |
| лабораторной собеседовани 1,28 0,07 1,35 работе е Самостоятельное Конспект, изучение собеседовани 103,03 5,42 108,45 литературы е Итого за семестр 106,88 5,63 112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ПК-3 ИД-3       | занятию          | e                                     |        |                |         |
| лабораторной собеседовани 1,28 0,07 1,35 работе е Самостоятельное Конспект, изучение собеседовани 103,03 5,42 108,45 литературы е Итого за семестр 106,88 5,63 112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | Подготовка к     | Конспект,                             |        |                |         |
| работе е Самостоятельное Конспект, изучение собеседовани 103,03 5,42 108,45 литературы е Итого за семестр 106,88 5,63 112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                  | · · · · · · · · · · · · · · · · · · · | 1,28   | 0,07           | 1,35    |
| изучение собеседовани 103,03 5,42 108,45 е Итого за семестр 106,88 5,63 112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | работе           | e                                     |        |                |         |
| изучение собеседовани 103,03 5,42 108,45 е Итого за семестр 106,88 5,63 112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | Самостоятельное  | Конспект,                             |        |                |         |
| литературы е Итого за семестр 106,88 5,63 112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                  |                                       | 103.03 | 5,42           | 108,45  |
| Итого за семестр 106,88 5,63 112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                  |                                       | ,      |                | , -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                  |                                       | 106,88 | 5,63           | 112,50  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Очно-заочная фо |                  | 1                                     |        | ·              |         |

| _9_ семестр |                 |              |       |      |       |
|-------------|-----------------|--------------|-------|------|-------|
| ПК-3 ИД-1   | Подготовка к    | Конспект,    |       |      |       |
| ПК-3 ИД-2   | практическому   | собеседовани | 1,43  | 0,08 | 1,50  |
| ПК-3 ИД-3   | занятию         | e            |       |      |       |
|             | Подготовка к    | Конспект,    |       |      |       |
|             | лабораторной    | собеседовани | 2,14  | 0,11 | 2,25  |
|             | работе          | e            |       |      |       |
|             | Самостоятельное | Конспект,    |       |      |       |
|             | изучение        | собеседовани | 44,89 | 2,36 | 47,25 |
|             | литературы      | e            |       |      |       |
|             | Подготовка к    | Вопросы к    | 25,5  | 1,5  | 27    |
|             | экзамену        | экзамену     | 23,3  | 1,5  | 27    |
|             | 73,95           | 4,05         | 78,00 |      |       |

### 3 Контрольные точки и виды отчетности по ним

В рамках рейтинговой системы успеваемость студентов по каждой дисциплине оценивается в ходе текущего контроля и промежуточной аттестации.

# 4 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

| различных                                                                                                                                                                                                                    | этапах их форг                                                                                                                                                                                                | чирования, опи                                                                                                                                                                                                                     | ісание шкал о                                                                                                                                                                                                         | ценивания                                                                                                                                                                            |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Уровни                                                                                                                                                                                                                       |                                                                                                                                                                                                               | Дескриг                                                                                                                                                                                                                            | торы                                                                                                                                                                                                                  |                                                                                                                                                                                      |  |
| сформированности компетенци(ий), индикатора (ов)                                                                                                                                                                             | Минимальный уровень не достигнут (Неудовлетворит ельно) 2 балла                                                                                                                                               | Минимальный уровень (удовлетворитель но) 3 балла                                                                                                                                                                                   | Средний<br>уровень<br>(хорошо)<br>4 балла                                                                                                                                                                             | Высокий<br>уровень<br>(отлично)<br>5 баллов                                                                                                                                          |  |
| Компетенция: ПК-3 Способен обеспечивать контроль технологических процессов изгомашиностроительных изделий средней сложности и управления ими                                                                                 |                                                                                                                                                                                                               |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                      |  |
| Результаты обучения по дисциплине (модулю): Индикатор: ИД-1 ПК-3 использует данные SKADA-систем для анализа производственной ситуации и выявления причин брака для изготовления машиностроительных изделий средней сложности | не понимает методы выбора основных и вспомогательных материалов, способов реализации технологических прогрессивных методов эксплуатации технологического оборудования при изготовлении технологических машин; | не в достаточном объеме понимает методы выбора основных и вспомогательных материалов, способов реализации технологических прогрессивных методов эксплуатации технологического оборудования при изготовлении технологических машин; | понимает методы выбора основных и вспомогательных материалов, способов реализации технологических процессов, прогрессивных методов эксплуатации технологического оборудования при изготовлении технологических машин; | понимает на профессиональн ом уровне методы стандартных испытаний по определению физикомеханических свойств и технологически х показателей используемых материалов и готовых изделий |  |
| ИД-2 ПК-3 осуществляет                                                                                                                                                                                                       | не выбирает<br>основные и                                                                                                                                                                                     | не в достаточном объеме выбирает                                                                                                                                                                                                   | выбирает<br>основные и                                                                                                                                                                                                | осуществляет<br>стандартные                                                                                                                                                          |  |

|                   | вспомогательные  | основные и       | вспомогательные  | испытания по     |
|-------------------|------------------|------------------|------------------|------------------|
| технологические   | материалы,       | вспомогательные  | материалы,       | определению      |
|                   | способы          | материалы,       | способы          | физико-          |
| эксперименты по   | реализации       | способы          | реализации       | механических     |
| заданным          | технологических  | реализации       | технологических  | свойств и        |
| методикам с       | процессов,       | технологических  | процессов,       | технологических  |
| обработкой и      | применять        | процессов,       | применять        | показателей      |
| анализом          | прогрессивные    | применять        | прогрессивные    | используемых     |
| результатов с     | методы           | прогрессивные    | методы           | материалов и     |
| применением       | эксплуатации     | методы           | эксплуатации     | готовых изделий  |
| систем            | технологического | эксплуатации     | технологического |                  |
| автоматизированно | оборудования при | технологического | оборудования     |                  |
| го проектирования | изготовлении     | оборудования при | при изготовлении |                  |
| 1 1               | технологических  | изготовлении     | технологических  |                  |
|                   | машин;           | технологических  | машин;           |                  |
|                   | ·                | машин;           | ·                |                  |
|                   | не осуществляет  | не в достаточном | осуществляет     | применяет        |
|                   | методики выбора  | объеме           | методики выбора  | навыки           |
| ИД-3 ПК-3         | основных и       | осуществляет     | основных и       | применения       |
| использует CAD и  | вспомогательных  | методики выбора  | вспомогательных  | методов          |
| САРР- системы     | материалов,      | основных и       | материалов,      | стандартных      |
|                   | способов         | вспомогательных  | способов         | испытаний по     |
| для моделирования | реализации       | материалов,      | реализации       | определению      |
| физических        | технологических  | способов         | технологических  | физико-          |
| явлений,          | процессов,       | реализации       | процессов,       | механических     |
| возникающих при   | применения       | технологических  | применения       | свойств и        |
| реализации        | прогрессивных    | процессов,       | прогрессивных    | технологических  |
| технологических   | методов          | применения       | методов          | показателей      |
| процессов         | эксплуатации     | прогрессивных    | эксплуатации     | используемых     |
| изготовления      | технологического | методов          | технологического | материалов и     |
| машиностроительн  | оборудования при | эксплуатации     | оборудования     | готовых изделий; |
| ых изделий        | изготовлении     | технологического | при изготовлении |                  |
| средней сложности | технологических  | оборудования при | технологических  |                  |
| · ·               | машин;           | изготовлении     | машин;           |                  |
|                   |                  | технологических  | ·                |                  |
|                   |                  | машин;           |                  |                  |

### 5 Тематический план дисциплины

| No    | Раздел (тема)     | Реализуемые  | Конта  | ктная рабо              | та обучаю:             | щихся с                | Самостоят |
|-------|-------------------|--------------|--------|-------------------------|------------------------|------------------------|-----------|
|       | дисциплины        | компетенции, |        | преподавателем, часов   |                        |                        | ельная    |
|       |                   | индикаторы   |        |                         |                        |                        | работа,   |
|       |                   |              | Лекции | Практические<br>занятия | Лабораторные<br>работы | Групповые консультации | часов     |
| Очна  | ая форма обучения |              |        |                         |                        |                        |           |
| 7 cen | местр             |              |        |                         |                        |                        |           |
| 1     | Введение.         | ИД-1 ПК-3    |        | 9,0                     | -                      |                        |           |
|       | Классификация и   | ИД-2 ПК-3    | 7,5    |                         |                        |                        | 81        |
|       | характеристика    | ИД-3 ПК-3    |        |                         |                        |                        |           |
|       | видов химико-     |              |        |                         |                        |                        |           |

|     | <u>u</u>            |                        |          | 1   |      |   |       |
|-----|---------------------|------------------------|----------|-----|------|---|-------|
|     | термической         |                        |          |     |      |   |       |
|     | обработки           |                        |          |     |      |   |       |
| 2   | Отжиг материалов.   | ИД-1 ПК-3<br>ИД-2 ПК-3 | 6        | 1,5 | 3    |   |       |
|     | материалов.         | ИД-3 ПК-3              |          | 1,5 |      |   |       |
| 3   | Закалка             | ИД-1 ПК-3              |          |     |      |   |       |
|     | материалов.         | ИД-2 ПК-3              | -        | 3,0 | -    |   |       |
|     | nar-primiss.        | ИД-3 ПК-3              |          |     |      |   |       |
| 4   | Старение и          | ИД-1 ПК-3              |          |     |      |   |       |
|     | отпуск              | ИД-2 ПК-3              |          | 1.5 |      |   |       |
|     | закалённых          | ИД-3 ПК-3              | -        | 4,5 | _    |   |       |
|     | материалов.         |                        |          |     |      |   |       |
| 5   | Термомеханическ     | ИД-1 ПК-3              |          |     |      |   |       |
|     | ая обработка        | ИД-2 ПК-3              | -        | 9,0 | 9    |   |       |
|     | материалов          | ИД-3 ПК-3              |          |     |      |   |       |
| 6   | Процессы            | ИД-1 ПК-3              |          |     |      |   |       |
|     | при химико-         | ИД-2 ПК-3              |          |     | 1.5  |   |       |
|     | термической         | ИД-3 ПК-3              | -        | -   | 1,5  |   |       |
|     | обработке.          |                        |          |     |      |   |       |
|     | ИТОГО за 7          |                        | 12.5     | 0.5 | 10.5 |   | 0.1   |
|     | семестр             |                        | 13,5     | 27  | 13,5 |   | 81    |
|     | ИТОГО               |                        |          |     |      |   |       |
|     | ая форма обучения   |                        |          |     |      |   |       |
|     | местр               | 1                      |          | i   | 1    |   | 1     |
| 1   | Введение.           | ИД-1 ПК-3              |          |     |      |   |       |
|     | Классификация и     | ИД-2 ПК-3              |          |     |      |   |       |
|     | характеристика      | ИД-3 ПК-3              | _        | _   |      |   |       |
|     | видов химико-       |                        | -        | _   |      |   |       |
|     | термической         |                        |          |     |      |   |       |
|     | обработки           |                        |          |     |      |   |       |
| 2   | Отжиг               | ИД-1 ПК-3              |          |     |      |   |       |
|     | материалов.         | ИД-2 ПК-3              | 4,5      | -   |      |   |       |
|     | 1                   | ИД-3 ПК-3              |          |     |      |   |       |
| 3   | Закалка             | ИД-1 ПК-3              |          |     |      |   |       |
|     | материалов.         | ИД-2 ПК-3              | 3,0      | -   |      |   |       |
| 4   |                     | ИД-3 ПК-3              |          |     |      |   |       |
| 4   | Старение и          | ИД-1 ПК-3              |          |     |      |   |       |
|     | отпуск              | ИД-2 ПК-3              | 3,0      | _   |      |   |       |
|     | закалённых          | ИД-3 ПК-3              |          |     |      |   |       |
|     | материалов.         |                        |          |     |      |   |       |
| 5   | Термомеханическ     | ИД-1 ПК-3              |          |     |      |   |       |
|     | ая обработка        | ИД-2 ПК-3              | 4,5      | 1,5 |      |   |       |
|     | материалов          | ИД-3 ПК-3              |          |     |      |   |       |
| 6   | Процессы            | ИД-1 ПК-3              |          |     |      |   |       |
|     | при химико-         | ИД-2 ПК-3              | 6,0      | 6,0 |      |   |       |
|     | термической         | ИД-3 ПК-3              | 0,0      | 0,0 |      |   |       |
|     | обработке.          |                        |          |     |      |   |       |
|     | ИТОГО за 8          |                        | 22.5     | 75  |      |   |       |
|     | семестр             |                        | 22,5     | 7,5 |      |   |       |
|     | ИТОГО               |                        |          |     |      |   |       |
| Очн | ю-заочная форма обу | чения                  | 0        |     |      |   |       |
| 1   | T                   | ип 1 пи 2              | 8 семест |     | 1    | 1 | 112.5 |
| 1   | Термомеханическ     | ИД-1 ПК-3              | 1,5      | 4,5 | -    |   | 112,5 |

|     | 1                                                                                         | ·                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|-----|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|----------------|-------|
|     | ая обработка                                                                              | ИД-2 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | материалов                                                                                | ИД-3 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
| 2   | Процессы при                                                                              | ИД-1 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | химико-                                                                                   | ИД-2 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | термической                                                                               | ИД-3 ПК-3                                                                               | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,5      | 3,0 |                |       |
|     | обработке.                                                                                | , ,                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
| 3   |                                                                                           | ИД-1 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
| 3   | Введение.                                                                                 | ИД-1 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | Классификация и                                                                           | ИД-2 ПК-3<br>ИД-3 ПК-3                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | характеристика                                                                            | ид-э ик-э                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,5      | _   |                |       |
|     | видов химико-                                                                             |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,0      |     |                |       |
|     | термической                                                                               |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | обработки                                                                                 |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
| 4   | Отжиг                                                                                     | ИД-1 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | материалов.                                                                               | ид-2 пк-3                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,5      | _   |                |       |
|     | татерналов.                                                                               | ид-3 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,        |     |                |       |
| 5   | Закалка                                                                                   | ИД-1 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | материалов.                                                                               | иД-2 ПК-3                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4,5      | 1,5 |                |       |
|     | матерналов.                                                                               | ид-3 пк-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,        |     |                |       |
| 6   | Старение и отпуск                                                                         | ИД-1 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | закалённых                                                                                | иД-2 ПК-3                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _        | _   |                |       |
|     | материалов.                                                                               | ИД-3 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | ИТОГО за 8                                                                                | , ,                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1   | +              |       |
|     | семестр                                                                                   |                                                                                         | 4,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13,5     | 4,5 |                | 112,5 |
| Our | теместр<br>10-заочная форма обуч                                                          | <br>                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
| Очи | о-заочная форма обуч                                                                      | СПИЛ                                                                                    | 9 семестр                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u> |     |                |       |
| 1   | Тормомоуаниноск                                                                           | ИД-1 ПК-3                                                                               | ) cemeerp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,        |     |                |       |
| 1   | Термомеханическ                                                                           | ИД-1 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                | 57.75 |
|     | ая обработка                                                                              | ИД-2 ПК-3<br>ИД-3 ПК-3                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        | -   |                | 57,75 |
|     | материалов                                                                                | ' '                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
| 2   | Процессы                                                                                  | ИД-1 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | при химико-                                                                               | ИД-2 ПК-3                                                                               | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |     |                |       |
|     | термической                                                                               | ИД-3 ПК-3                                                                               | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        | _   |                |       |
|     | обработке.                                                                                |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
| 3   | Введение.                                                                                 | ИД-1 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | Классификация и                                                                           | ИД-2 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | характеристика                                                                            | ИД-3 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | 1                                                                                         | ,,                                                                                      | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        | -   |                |       |
|     | видов химико-                                                                             |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | термической                                                                               |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | LOOPSOOTKIA                                                                               |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
|     | обработки                                                                                 |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     | 1              |       |
| 4   | Отжиг                                                                                     | ИД-1 ПК-3                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |                |       |
| 4   | _                                                                                         | ИД-2 ПК-3                                                                               | 1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        | -   |                |       |
|     | Отжиг<br>материалов.                                                                      | ИД-2 ПК-3<br>ИД-3 ПК-3                                                                  | 1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        | -   |                |       |
| 5   | Отжиг                                                                                     | ИД-2 ПК-3<br>ИД-3 ПК-3<br>ИД-1 ПК-3                                                     | , and the second | -        | -   |                |       |
|     | Отжиг<br>материалов.                                                                      | ИД-2 ПК-3<br>ИД-3 ПК-3<br>ИД-1 ПК-3<br>ИД-2 ПК-3                                        | 1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,5      | 1,5 |                |       |
| 5   | Отжиг материалов. Закалка материалов.                                                     | ИД-2 ПК-3<br>ИД-3 ПК-3<br>ИД-1 ПК-3<br>ИД-2 ПК-3<br>ИД-3 ПК-3                           | , and the second | 1,5      | 1,5 |                |       |
|     | Отжиг<br>материалов.<br>Закалка                                                           | ИД-2 ПК-3<br>ИД-3 ПК-3<br>ИД-1 ПК-3<br>ИД-2 ПК-3<br>ИД-3 ПК-3<br>ИД-1 ПК-3              | , and the second | 1,5      | 1,5 |                |       |
| 5   | Отжиг материалов. Закалка материалов.                                                     | ИД-2 ПК-3<br>ИД-3 ПК-3<br>ИД-1 ПК-3<br>ИД-2 ПК-3<br>ИД-3 ПК-3<br>ИД-1 ПК-3<br>ИД-2 ПК-3 | , and the second | 1,5      | 1,5 |                |       |
| 5   | Отжиг материалов. Закалка материалов. Старение и отпуск закалённых                        | ИД-2 ПК-3<br>ИД-3 ПК-3<br>ИД-1 ПК-3<br>ИД-2 ПК-3<br>ИД-3 ПК-3<br>ИД-1 ПК-3              | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |     |                |       |
| 5   | Отжиг материалов. Закалка материалов. Старение и отпуск закалённых материалов.            | ИД-2 ПК-3<br>ИД-3 ПК-3<br>ИД-1 ПК-3<br>ИД-2 ПК-3<br>ИД-3 ПК-3<br>ИД-1 ПК-3<br>ИД-2 ПК-3 | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |     | 20.25          |       |
| 5   | Отжиг материалов.  Закалка материалов.  Старение и отпуск закалённых материалов.  Экзамен | ИД-2 ПК-3<br>ИД-3 ПК-3<br>ИД-1 ПК-3<br>ИД-2 ПК-3<br>ИД-3 ПК-3<br>ИД-1 ПК-3<br>ИД-2 ПК-3 | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,0      | 6,0 | 20,25          |       |
| 5   | Отжиг материалов. Закалка материалов. Старение и отпуск закалённых материалов.            | ИД-2 ПК-3<br>ИД-3 ПК-3<br>ИД-1 ПК-3<br>ИД-2 ПК-3<br>ИД-3 ПК-3<br>ИД-1 ПК-3<br>ИД-2 ПК-3 | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |     | 20,25<br>20,25 | 57,75 |

Приступая к работе, каждый студент должен принимать во внимание следующие положения.

Дисциплина (модуль) построена по тематическому принципу, каждая тема представляет собой логически завершенный раздел.

Лекционный материал посвящен рассмотрению ключевых, базовых положений дисциплины (модуля) и разъяснению учебных заданий, выносимых на самостоятельную работу студентов.

Практические занятия проводятся с целью закрепления усвоенной информации, приобретения навыков ее применения при решении практических задач в соответствующей предметной области.

Лабораторные работы направлены на приобретение опыта практической работы в соответствующей предметной области.

Самостоятельная работа студентов направлена на самостоятельное изучение дополнительного материала, подготовку к практическим занятиям, а также выполнения всех видов самостоятельной работы.

Для успешного освоения дисциплины, необходимо выполнить все виды самостоятельной работы, используя рекомендуемые источники информации.

### 6. Вопросы для собеседования

- 1. Что такое закалка?
- 2. Как изменяются механические свойства в результате закалки?
- 3. Равновесные критические точки, их смысл и обозначение.
- 4. Обозначение и отличие фактических критических точек от равновесных.
- 5. Назначение нагрева, выдержки и охлаждения при закалке.
- 6. Что такое критическая скорость закалки?
- 7. От чего зависит и как практически определяется общее время выдержки при закалке?
- 8. Структура доэвтектоидной закаленной стали.
- 9. Структура заэвтектоидной закаленной стали.
- 10. Что такое мартенсит?
- 11. От чего зависят свойства мартенсита?
- 12. Основная структурная составляющая закаленной стали.
- 13. Влияние массовой доли углерода на закаливаемость стали.
- 14. В чем сущность мартенситного превращения?
- 15. Почему размер аустенитных зерен влияет на размер пластин мартенсита?
- 16. Каковы условия получения крупноигольчатого и мелкоигольчатого мартенсита?
- 17. Чем отличается мартенситное превращение от перлитного?
- 18. Чем вызывается образование закалочных напряжении?
- 19. До каких температур нагревают до- и заэвтектоидные стали под закалку?
- 20. Какими свойствами обладают чугуны? Основные виды чугунов.
- 21. Чем обусловлено различие свойств серого и белого чугунов?
- 22. В чем состоит сущность изготовления высокопрочного чугуна?
- 23. Как маркируется серый чугун?
- 24. Какое влияние оказывает углерод на свойства стали?
- 25. Влияние серы и фосфора на свойства стали.
- 26. Влиянии углерода и случайных примесей на свойства углеродистой стали.
- 26. Что такое отпуск?
- 27. Какие причины обусловливают необходимость проведения отпуска?
- 28. Виды отпуска?
- 29. Чем определяется выбор температуры отпуска?
- 30. Основное превращение, протекающее при отпуске?
- 31. От каких факторов зависят скорость и полнота превращений при отпуске?
- 32. Структура после низкого, среднего и высокого отпуска?
- 33. Отличие сорбита отпуска от троостита отпуска?
- 34. Влияние температуры отпуска на уровень закалочных напряжений?

- 35. Особенности свойств стали после каждого вида отпуска?
- 36. Практическое назначение видов отпуска.
- 37. Влияние температуры отпуска на механические свойства стали.
- 38. Какие процессы проходят в закаленной стали при ее последующем нагреве до температуры 200 °C?
- 39. Какие процессы проходят в закаленной стали при ее последующем нагреве до температуры 400  $^{\circ}C$ ?
- 40. Какие процессы проходят в закаленной стали при ее последующем нагреве до температуры 600 °C?
- 41. Какой комплекс термической обработки называют улучшением?
- 42. Для какой группы деталей целесообразно проводить улучшение?
- 43. Расскажите о превращениях, происходящих в стали при ее нагреве и охлаждении.
- 44. Что представляет собой мартенситная структура закаленной стали?
- 45. Назовите основные виды термической обработки.

### 7 Методические рекомендации по изучению теоретического материала

Самостоятельная работа студента в ходе **лекционных занятий** включает изучение вопросов теории, вынесенных на самостоятельное изучение в соответствии с рабочей программой дисциплины, проработку лекционных материалов для подготовки к контролю знаний на лекционных занятиях (опрос) и подготовку вопросов для обсуждения при консультации с преподавателем.

Работа с лекционным материалом не завершается по окончании лекции. На 2 часа лекции необходимо затратить около часа на работу с конспектом. За это временя необходимо перечитать записи, пополнить их данными, которые удалось запомнить из речи преподавателя, но не удалось записать. Работая с конспектом, нужно отметить непонятные вопросы для выяснения которые у преподавателя на консультации. Отдельно следует выделить связанные с темой лекции вопросы, которые преподаватель поручил проработать самостоятельно.

Активно проработанный в течение семестра конспект лекций в дальнейшем служит основой для подготовки к экзамену.

Вопросы для самостоятельного изучения представлены в п. 5.

Самостоятельная работа в ходе **практических** работ включает выполнение заданий к практическим занятиям, в частности решение задач различного уровня сложности. Задачи приведены в методических указаниях к практическим занятиям и фондах оценочных средств.

Зная тему практического занятия, необходимо готовиться к нему заблаговременно. Для эффективной подготовки к практическому занятию необходимо иметь методическое руководство к практическим работам.

Критерии оценивания практических занятий представлены в фонде оценочных средств.

При проверке практического задания, оцениваются: последовательность и рациональность изложения материала; полнота и достаточный объем ответа; научность в оперировании основными понятиями; использование и изучение дополнительных литературных источников.

Самостоятельная работа студентов в ходе выполнения **лабораторного практикума** включает несколько видов работы:

- подготовку к выполнению работы в составе группы;
- оформление отчета о лабораторной работе;
- подготовку к защите отчета о лабораторной работе.

При подготовке к выполнению лабораторной работы студенты должны изучить методические указания к лабораторной работе, обратив внимание на последовательность действий при её выполнении и технику безопасного её проведения. На этом этапе студенты должны четко представлять сущность изучаемых процессов, а также факторы, обеспечивающие получение достоверных данных и организовать работу в группе, распределив между собой обязанности при

выполнении работы. Эта подготовка должна быть проведена до начала занятий в лаборатории. Выполнение опыта по мере чтения методички на самом занятии, как правило, провоцирует ошибки в последовательности выполнения эксперимента. Требования к оформлению отчетов о лабораторных работах приведены в методических указаниях к лабораторным работам по дисциплине.

Подготовка к защите отчета о лабораторной работе обеспечивает приобретение и развитие умений работы с учебными пособиями, методическими материалами, информационными ресурсами разного рода. Контрольные вопросы и рекомендуемая литература для подготовки приведены в методических указаниях к лабораторным работам по дисциплине. Критерии оценки при сдаче отчета о лабораторной работе включают:

- наличие отчета о лабораторной работе и соответствие его требованиям по содержанию и оформлению;
- владение основными теоретическими положениями по теме лабораторной работы в соответствии с контрольными вопросами;
  - умение анализировать полученные результаты и делать практические выводы.

## 8 Методические рекомендации по организации самостоятельной работы студентов

Самостоятельная работа является одним из видов учебной деятельности обучающихся, способствует развитию самостоятельности, ответственности и организованности, творческого подхода к решению проблем учебного и профессионального уровня.

Аудиторная самостоятельная работа по учебной дисциплине осуществляется на учебных занятиях под непосредственным руководством преподавателя и по его заданию.

Внеаудиторная самостоятельная работа выполняется по заданию преподавателя без его непосредственного участия.

Виды заданий для внеаудиторной самостоятельной работы, их содержание и характер могут иметь вариативный и дифференцированный характер, учитывать специфику изучаемой учебной дисциплины, индивидуальные особенности обучающегося.

Контроль самостоятельной работы и оценка ее результатов организуется как единство двух форм:

- 1. самоконтроль и самооценка обучающегося;
- 2. контроль и оценка со стороны преподавателя.

### 9 Методические рекомендации при работе над конспектом во время проведения лекции

В ходе лекционных занятий вести конспектирование учебного материала. Обращать внимание на категории, формулировки, раскрывающие содержание тех или иных явлений и процессов, научные выводы и практические рекомендации, положительный опыт в ораторском искусстве. Желательно оставить в рабочих конспектах поля, на которых делать пометки из рекомендованной литературы, дополняющие материал прослушанной лекции, а также подчеркивающие особую важность тех или иных теоретических положений. Задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций.

В ходе подготовки к семинарам изучить основную литературу, ознакомиться с дополнительной литературой, новыми публикациями в периодических изданиях: журналах, газетах и т.д. При этом учесть рекомендации преподавателя и требования учебной программы. Дорабатывать свой конспект лекции, делая в нем соответствующие записи из литературы, рекомендованной преподавателем и предусмотренной учебной программой. Подготовить тезисы для выступлений по всем учебным вопросам, выносимым на семинар. Готовясь к докладу или реферативному сообщению, обращаться за методической помощью к преподавателю. Составить план-конспект своего выступления. Продумать примеры с целью

обеспечения тесной связи изучаемой теории с реальной жизнью. Своевременное и качественное выполнение самостоятельной работы базируется на соблюдении настоящих рекомендаций и изучении рекомендованной литературы. Студент может дополнить список использованной литературы современными источниками, не представленными в списке рекомендованной литературы, и в дальнейшем использовать собственные подготовленные учебные материалы при написании работ.

## 10 Методические рекомендации по подготовке к практическим занятиям

Практическое занятие — один из самых эффективных видов учебных занятий, на которых студенты учатся творчески работать, аргументировать и отстаивать свою позицию, правильно и доходчиво излагать свои мысли перед аудиторией. Основное в подготовке и проведении практических занятий — это самостоятельная работа студента над изучением темы. Студент обязан точно знать план занятия либо конкретное задание к нему. На занятии

обсуждаются узловые вопросы темы, однако там могут быть и такие, которые не были предметом рассмотрения на лекции. Могут быть и специальные задания к той или иной теме.

Готовиться к практической работе следует заранее. Необходимо внимательно ознакомиться с планом и другими материалами, уяснить вопросы, выносимые на обсуждение. Затем нужно подобрать литературу и другой необходимый, в т.ч. рекомендованный, материал (через библиотеку, учебно-методический кабинет кафедры и др.). Но прежде всего, следует обратиться к своим конспектам лекций и соответствующему разделу учебника. Изучение всех источников должно идти под углом зрения поиска ответов на выносимые на практико-ориентированные занятия вопросы.

Завершающий этап подготовки к занятиям состоит в выполнении индивидуальных заданий.

В случае пропуска занятия студент обязан подготовить материал и отчитаться по нему перед преподавателем в обусловленное время. Может быть предложено отдельным бакалаврам, ввиду их слабой подготовки, более глубоко освоить материал и прийти на индивидуальное собеседование.

Студент не допускается к промежуточной аттестации, если у него есть задолженность по практическим работам.