МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Невинномысский технологический институт (филиал) СКФУ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению практических работ по дисциплине «Искусство и культура принимать решения (ТРИЗ и другие методы)»

для направления подготовки 18.03.01 Химическая технология направленность (профиль) Технология неорганических веществ

Содержание

Введение	4
Практическое занятие №1. Традиционная технология решения задач	5
Практическое занятие №2. Обзор теории решения изобретательских	
задач (ТРИЗ)	6
Практическое занятие №3. Системный подход	8
Практическое занятие №4. Идеальность	9
Практическое занятие №5. Ресурсы в общем представлении	12
Практическое занятие №6. Противоречия в общем представлении	14
Практическое занятие №7. Приемы разрешения противоречий в общем	
представлении	16
Практическое занятие №8. Законы развития систем	19
Практическое занятие №9. Логика решения нестандартных задач	21
Практическое занятие №10. Система приемов разрешения	
противоречий	26
Практическое занятие №11. Ресурсы в системе классификации ТРИЗ	30
Практическое занятие №12. Эффекты в ТРИЗ	34
Практическое занятие №13. Вепольный анализ	37
Практическое занятие №14. Практический АРИЗ. Методы развития	
творческого воображения	40
Практическое занятие №15. Методы развития творческого	
воображения	42
Практическое занятие №16. Системное мышление. Эволюционное	
мышление. Мышление через противоречие. Ресурсное мышление.	
Моделирование.	46
Список рекомендуемой литературы	50

ВВЕДЕНИЕ

Решение — это выбор, который должен постоянно осуществлять любой социально и экономически активный, разумный человек — руководитель, специалист, инженер, врач, ученый, собственник, предприниматель, — чтобы выполнить работы различной природы, которые обусловлены его видом деятельности. Цель решения — обеспечение движения к поставленным целям через формулирование и выполнение задач.

Наиболее эффективным решением в условиях многофакторности и неопределенности можно признать выбор, который может быть реализован в материальном мире, экономически обоснован, а также внесет самый большой вклад в достижение конечной цели, ведет к общему прогрессу.

При разработке и принятии решений в любой профессии и деятельности необходимо использовать лучшие практики, опираться на научные знания, современные и проверенные методы и технологии.

Искусство и культура принимать решения — это учебная дисциплина, объединяющая важные результаты исследований ученых различных направлений. Она содержит элементы научной методологии, а также методы технических, естественных, общественных и гуманитарных наук.

Решение является результатом экспертной и научной деятельности. Принятие решений лежит в основе использования любых методов управления.

Практическое применение знаний всех научных направлений должно опираться на эффективные междисциплинарные методы и методологию. Теория решения изобретательских задач (ТРИЗ), созданная в СССР Г. С. Альтшуллером и его коллегами в 1946 году, и впервые опубликованная в 1956 году — это научная и практически ориентированная технология творчества.

Появление ТРИЗ было вызвано потребностью ускорить творческий и изобретательский процесс, заменив и дополнив элементы случайности созидания — внезапное и непредсказуемое озарение, слепой перебор и отбрасывание вариантов, зависимость от настроения и т. п., — мощным прикладным инструментарием. Кроме того, целью ТРИЗ является улучшение качества и увеличение уровня изобретений за счет снятия психологической инерции и усиления творческого воображения.

ТРИЗ осуществляет вычленение и применение правил, закономерностей и характера развития технических и бизнес систем. Теория способна развить и организовать творческий потенциал человека таким образом, чтобы он работал на саморазвитие и поиск решения задач в различных областях его жизни.

ТРИЗ в настоящее время снова набирает популярность. Это — мощный инструмент создания новшеств, основанный на длительных исследованиях закономерностей мышления и алгоритмизации при создании новых продуктов. Расширение использования подобных научных технологий творчества значительно ускоряет все виды прогресса.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №1

Традиционная технология решения задач

Цель: освоение вопросов темы и формирование компетенций при помощи практических заданий.

Планируемые результаты обучения:

- на основе знаний должен помнить и использовать социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе умений должен сохранять способность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе навыков должен поддерживать готовность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов).

В результате освоения темы формируются компетенции:

- ПК-3 (Способен организовать проведение научно-исследовательских и опытно-конструкторских разработок по отдельным разделам темы).

Занятие проводится в интерактивной форме: решение разноуровневых и проблемных задач.

Теоретическая часть

Потребность в изобретательстве была у человечества всегда.

Истоки изобретательства уходят своими корнями в глубокую древность. Для добычи пищи и защиты наши далекие предки первоначально пользовались объектами, «изготовленными» природой: камни, палки и т. д. Поэтому первые «изобретения» были ориентированы на применение известных в природе «устройств», веществ и способов. Процесс изобретательства в те далекие времена заключался в наблюдении и удаче (случайности) нашего предка. Кто-то обратил внимание, что острым камнем или рогом можно обрабатывать землю или шкуру животных, можно использовать огонь после лесных пожаров и т. д.

Так, судоходство, скорее всего, началось с момента, когда человек заметил, что бревно, находящееся в воде, может поддерживать его на плаву. А судостроение берет начало с изобретения первого плота. Еще в древности человек использовал водные пути рек и морское пространство для передвижения. Особенно интенсивно морское дело развивалось в рабовладельческом обществе.

Изобретение колеса в корне изменило способы передвижения по суше.

Изобретения характерны для многих областей деятельности: строительство, архитектура, литература, искусство, сельское хозяйство, спорт и т. д. В каждом из этих видов имеются свои нововведения. Так история нововведений в изобразительном искусстве связана с изобретением перспективы, новых видов красок, новых направлений и т. д.

Безусловно, особую роль изобретательство играет в инженерной деятельности.

Инженер происходит от французского «ingenieur» и латинского слова «ingenium» - изобретательность, а также врожденная способность, дарование, ум.

Изобретательские способности необходимы инженеру не только при разработке

принципиально новых решений, которые, как правило, оформляются в виде патентов, но и на этапах проектирования, создания опытных образцов, разработки серийных и массовых изделий, эксплуатации и утилизации оборудования возникают задачи, которые для решения требуют изобретательства.

В связи с этим актуальным становится знание методов изобретательства и умение использовать их в различных ситуациях.

Вопросы и задания

Задание 1.

Опишите, какое место занимает изобретательство в инженерной, управленческой, научной, производственной, учебной деятельности.

Задание 2.

Охарактеризуйте метод «проб и ошибок», его достоинства и недостатки.

Задание 3.

Сформулируйте, что такое психологическая инерция. Расскажите о природе психологической инерции. Какие виды психологической инерции вы можете привести?

Задание 4.

Приведите примеры на разные виды психологической инерции. Покажите возможность преодоления каждого из видов психологической инерции.

Вопросы к практическому занятию

- 1. Метод «проб и ошибок»
- 2. Психологическая инерция
- 3. Отсутствие системного мышления

Литература: [1-4]

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №2

Обзор теории решения изобретательских задач (ТРИЗ)

Цель: освоение вопросов темы и формирование компетенций при помощи практических заданий.

Планируемые результаты обучения:

- на основе знаний должен помнить и использовать социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе умений должен сохранять способность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);

- на основе навыков должен поддерживать готовность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов).

В результате освоения темы формируются компетенции:

- ПК-3 (Способен организовать проведение научно-исследовательских и опытно-конструкторских разработок по отдельным разделам темы).

Занятие проводится в интерактивной форме: решение разноуровневых и проблемных задач.

Теоретическая часть

Теория решения изобретательских задач (ТРИЗ) - наука, позволяющая не только выявлять и решать творческие задачи в любой области знаний, но и развивать творческое (изобретательское) мышление, развивать качества творческой личности. Нередко в основе решения задачи лежит на первый взгляд «дикая» идея. ТРИЗ дает возможность человеку не только быть готовым к таким идеям, но и получать их.

ТРИЗ разработал ученый из России Генрих Саулович Альтшуллер (1926-1998 гг.), известный также как писатель-фантаст Генрих Альтов.

Он первый осознал необходимость создания технологии, позволяющей отказаться от метода проб и ошибок и направленно искать решение.

Г. С. Альтшуллер проанализировал десятки тысяч патентов и выяснил, что техника развивается закономерно. Эти закономерности можно познать и использовать для развития систем и при решении изобретательских задач. Альтшуллером Г. С. была разработана система законов развития техники. Он также выяснил, что для решения сложных изобретательских задач необходимо выявить и разрешить противоречия. Им были сформулированы постулаты ТРИЗ, которые показывают принципиальное отличие изобретательского от рутинного мышления.

Вопросы и задания

Задание 1

Приведите примеры изобретений различного уровня для выполнения конкретных задач. Опишите постепенную трансформацию задач от уровня к уровню.

Вопросы

- 1. Кто автор ТРИЗ?
- 2. Перечислите постулаты ТРИЗ.
- 3. Опишите уровни изобретений. Опишите этапы творческого процесса. Опишите характерные черты для каждого из уровней изобретения. Приведите примеры на каждый из уровней изобретения.
- 4. Укажите наиболее характерные черты каждого из уровней изобретений. Приведите примеры на каждый из уровней изобретения.
 - 5. Какие основные функции ТРИЗ?
 - 6. Перечислите основные части ТРИЗ.
 - 7. Какие составные части входят в информационный фонд ТРИЗ?
 - 8. Для чего предназначена каждая из частей ТРИЗ?

- 9. Опишите структуру ТРИЗ для функции решение задач.
- 10. Опишите качества изобретательского мышления.

Вопросы к практическому занятию

- 1. Сущность ТРИЗ
- 2. Уровни изобретений
- 3. Функции ТРИЗ
- 4. Структура ТРИЗ
- 5. Использование инструментов ТРИЗ
- 6. Изобретательское мышление

Литература: [1-4]

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №3

Системный подход

Цель: освоение вопросов темы и формирование компетенций при помощи практических заданий.

Планируемые результаты обучения:

- на основе знаний должен помнить и использовать социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе умений должен сохранять способность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе навыков должен поддерживать готовность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов).

В результате освоения темы формируются компетенции:

- ПК-3 (Способен организовать проведение научно-исследовательских и опытно-конструкторских разработок по отдельным разделам темы).

Занятие проводится в интерактивной форме: решение разноуровневых и проблемных задач.

Теоретическая часть

Системное мышление - это мышление, которое использует системный подход и является одним из элементов изобретательского мышления.

Системный подход – рассмотрение объекта как целостного множества элементов в совокупности отношений и связей между ними, то есть рассмотрение объекта как системы.

Основным объектом рассмотрения в системном подходе является система.

Система (от латинского «systema», от греческого «σύστημα [sýstima] – «составленный», целое, составленное из частей, соединение) - это множество элементов,

взаимосвязанных и взаимодействующих между собой, которые образуют единое целое, обладающее свойствами, не присущими составляющим его элементам, взятым в отдельности.

Такое свойство называют системный эффект или эмерджентность.

Эмерджентность (от англ. «Emergent» – возникающий, неожиданно появляющийся) в теории систем - наличие у какой-либо системы особых свойств, не присущих ее подсистемам и блокам, а также сумме элементов, не связанных особыми системообразующими связями; несводимость свойств системы к сумме свойств ее компонентов; синоним – «системный эффект».

Часто такое свойство так же называют синергетический эффект (от греч. вместе действующий) — возрастание эффективности деятельности в результате интеграции, слияния отдельных частей в единую систему за счет так называемого системного эффекта.

Синергия (греч. сотрудничество, содействие, помощь, соучастие, сообщничество) — суммирующий эффект взаимодействия двух или более факторов, характеризующийся тем, что их действие существенно превосходит эффект каждого отделенного компонента в виде их простой суммы.

Вопросы и задания

Задание 1

Приведите примеры синергий, умножающих результаты, применительно к вашему опыту.

Задание 2

- 1. Приведите примеры технических систем.
- 2. Приведите примеры не системного подхода.
- 3. Используйте системный оператор для:
- лампы;
- компьютера;
- любой системы и/или процесса.
- 4. Покажите учет влияний в:
- природе.
- технике.
- в семье, обществе и т. д.

Вопросы.

- 1. Дайте определение системного мышления и системного подхода.
- 2. Дайте определение системы.
- 3. Опишите иерархию систем. Назовите иерархические уровни системы.
 - 4. Приведите понятия, сопутствующее понятию система.
 - 5. Опишите виды изменений.

Вопросы к практическому занятию

- 1. Основные определения системного подхода
- 2. Системность
- 3. Системный оператор

4. Учет влияний

Литература: [1-4]

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №4

Идеальность

Цель: освоение вопросов темы и формирование компетенций при помощи практических заданий.

Планируемые результаты обучения:

- на основе знаний должен помнить и использовать социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе умений должен сохранять способность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе навыков должен поддерживать готовность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов).

В результате освоения темы формируются компетенции:

- ПК-3 (Способен организовать проведение научно-исследовательских и опытно-конструкторских разработок по отдельным разделам темы).

Занятие проводится в интерактивной форме: решение разноуровневых и проблемных задач.

Теоретическая часть

Общее направление развития систем определяется законом увеличения степени идеальности. Это самый главный закон эволюции систем.

Г. Альтшуллер сформулировал это закон следующим образом: «Развитие всех систем идет в направлении увеличения степени идеальности».

Условно можно выделить четыре степени идеализации системы:

- 1. Появляться в нужный момент в нужном месте.
- 2. Самоисполнение.
- 3. Идеальная система функция.
- 4. Функция становится не нужной.

Идеальная система должна появляться в нужный момент в необходимом месте и нести полную (100 %) расчетную нагрузку.

В остальное (не рабочее) время этой системы быть не должно (она должна исчезнуть) или выполнять другую полезную работу (функцию).

Нужное действие должно появляться в нужный момент в необходимом месте или при необходимом условии.

Предмет должен появиться только в нужный момент в необходимом месте или при необходимом условии.

Идеальная информация — нет информации, а выполняется только ее функция — действие, процесс, которые должны происходить с использованием данной информации. Например, принято решение, для которого собиралась данная информация.

Вопросы и задания

Задание 1

Задача 1. Зоопарк

Условие задачи.

Зоопарку в Стокгольме не хватало бюджетных денег и денег, вырученных за билеты.

Как получить дополнительные деньги?

Разбор задачи

Идеальный конечный результат (ИКР). Деньги сами появляются.

Способы решения. Использование ресурсов.

Ресурсы. Основной ресурс зоопарка – его обитатели.

Решение

Стокгольмский зоопарк занимается довольно. необычной деятельностью – продает картины. Дело в том, что написаны они шимпанзе, и вырученные за них деньги идут в бюджет зоопарка.

Стоит упомянуть о старейшем примате Чита, игравшем в фильме «Тарзан». Он живет в специальном питомнике для животных кинозвёзд и любит играть на пианино, смотреть телевизор, совершать поездки на машине, гулять, смотреть на фотографии в журналах, и, самое главное, рисовать.

Он пишет абстрактные картины. Каждой картине выдается сертификат подлинности, они очень быстро раскупаются, и эти деньги идут на содержание питомника.

Задача 2. Продажа обуви

Условие задачи

В Коралио привезли большую партию башмаков, но оказалось, что жители не носят обувь.

Как продать обувь?

Разбор задачи

Идеальный конечный результат (ИКР). Все жители хотят купить обувь.

Способы решения. Необходимо создать потребность. Используем ресурсы.

Ресурсы. Колючки.

Решение

Улицы города плотно усеяли колючками. Не забыто было ни одно место, куда могла ступить нога человека. Все жители купили обувь.

Задание 2

- 1. Приведите примеры различных степеней идеальности.
- 1.1. Приведите примеры, когда система появляется в нужный момент в нужном месте.
- 1.2. Приведите примеры систем, которые все делают сами (самоисполняемые системы).

- 1.3. Приведите примеры, когда системы нет, а функция ее выполняется.
- 1.4. Приведите примеры, когда нет необходимости в выполнении функции.
 - 1.5. Опишите новую идеальную систему.
 - 2. Идеальный конечный результат (ИКР).
 - 2.1. Решите задачи используя ИКР.

Вопросы

- 1. Что такое идеальная система? Дайте определение.
- 2. Опишите виды степеней идеальности.
- 3. Приведите формулу показателя степени идеальности системы.
- 4. Что такое идеальный конечный результат (ИКР)? Приведите примеры.
- 5. Опишите свойства ИКР. Приведите примеры на каждое из свойств и на все свойства в целом.

Вопросы к практическому занятию

- 1. Идеальная система
- 2. Показатель степени идеальности
- 3. Идеальный конечный результат (ИКР)

Литература: [1-4]

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №5

Ресурсы в общем представлении

Цель: освоение вопросов темы и формирование компетенций при помощи практических заданий.

Планируемые результаты обучения:

- на основе знаний должен помнить и использовать социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе умений должен сохранять способность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе навыков должен поддерживать готовность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов).

В результате освоения темы формируются компетенции:

- ПК-3 (Способен организовать проведение научно-исследовательских и опытно-конструкторских разработок по отдельным разделам темы).

Занятие проводится в интерактивной форме: решение разноуровневых и проблемных задач.

Теоретическая часть

Ресурсы - раздел ТРИЗ, ответственный за выявление и использование ресурсов для решения задач или развития систем.

Использование ресурсов увеличивает степень идеальности системы, так как не нужно привносить что-то новое, а используется только то, что уже существует.

Использование ресурсов – это мощный инструмент улучшения систем и их удешевления.

В каждой области знания под ресурсами принято понимать, что- то определенное. Так, например, в экономике, прежде всего, говорят о финансовых и трудовых ресурсах, в информационных технологиях говорят об информационных ресурсах, подразумевая компьютерные технологии. Существует понятие природных ресурсов и т. д.

В общем, ресурсы могут быть материальные и не материальные, например, информационные ресурсы, в широком смысле этого слова, включая не только научные, технические и прочие знания, но и духовные ценности, музыка, искусство, человеческие отношения и т. п.

Под ресурсами мы будем понимать достаточно широкий сектор понятий.

Первоначально необходимо *выявить ресурсы*, а затем *использовать их*. Общий алгоритм показан на рис. 5.1.

Сначала определяют свойства системы, которые нужно улучшить. Затем выявляют, какие из имеющихся ресурсов обладают данными свойствами. В заключении используют необходимые свойства.

Под ресурсами мы будем понимать все, что окружает нас:

- Функции;
- Структура системы (ее элементы, связи между ними, форма системы);
- Вещество;
- Энергия, сила;
- Информация;
- Потоки (вещества, энергии и информации);
- Пространство;
- Время;
- Системный эффект.

Ресурсы могут находиться в самой системе, ее частях (подсистемах), более общей системе, в которую входит данная система, (надсистеме) и окружающей среде.

Вопросы и задания

Задание 1

Задача 1. Измерение температуры у младенца

Условия задачи

Измерить температуру младенца достаточно сложно. Необходимо градусник держать под мышкой или во рту. Это ребенку очень не нравится, и он плачет. Как быть?

Разбор задачи

ИКР: Ребенок хочет сам держать градусник во рту. Как этого добиться? Что ребенок любит держать во рту? Правильно — соску. Можно использовать эту функцию (функциональный ресурс). Решение использованием приема 6. Принцип универсальности.

Решение

Можно использовать соску, в которой встроен цифровой термометр (Baby Temp).

Задача 2. Конкуренция программных компаний Условия задачи

Крупнейшие программные компании (например, Borland International Inc., Microsoft Corp. и др.) создают новые языки программирования и другие программы. Этими программами пользуются многие программисты мира. Естественно, каждая компания хочет, чтобы ее интерфейс стал стандартом. Как победить в этой конкурентной борьбе?

Разбор задачи

Использовать функциональный ресурс.

Решение

Компания Borland International Inc. В комплект поставки своих языков программирования вводит комплект процедур, которые создают интерфейс любой программы – свой стандарт.

Использован «Принцип предварительного исполнения».

Вопросы

- 1. Что такое ресурсы? Дайте определение.
- 2. Где можно брать ресурсы?
- 3. Опишите виды ресурсов. Приведите примеры.

Вопросы к практическому занятию

- 1. Сущность ресурсов
- 2. Примеры ресурсов

Литература: [1-4]

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №6

Противоречия в общем представлении

Цель: освоение вопросов темы и формирование компетенций при помощи практических заданий.

Планируемые результаты обучения:

- на основе знаний должен помнить и использовать социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе умений должен сохранять способность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
 - на основе навыков должен поддерживать готовность применять

социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов).

В результате освоения темы формируются компетенции:

- ПК-3 (Способен организовать проведение научно-исследовательских и опытно-конструкторских разработок по отдельным разделам темы).

Занятие проводится в интерактивной форме: решение разноуровневых и проблемных задач.

Теоретическая часть

Различные технические средства создавались и создаются для удовлетворения тех или иных потребностей человека.

Потребности растут значительно быстрее возможностей их удовлетворения, что и является своего рода источником технического прогресса.

Проектирование новых объектов чаще всего подразумевает улучшение тех или иных параметров Системы.

Сложные изобретательские задачи (неизвестных типов) требуют нетривиального подхода, так как улучшение одних параметров системы приводит к недопустимому ухудшению других параметров. Возникает противоречие.

Противоречие - это одно из основных понятий ТРИЗ.

В ТРИЗ рассматриваются три вида противоречий:

- Административное противоречие (АП);
- Техническое противоречие (ТП);
- Физическое противоречие (ФП).

Вопросы и задания

Задание 1

Задача 1. Очки

Условие задачи

Людям с плохим зрением нужно иметь две пары очков. Одни, чтобы смотреть в даль и другие, чтобы смотреть вблизи, например, читать. Очень неудобно постоянно менять очки.

Как быть?

Разбор задачи

Административное противоречие (АП).

АП: Как улучшить удобства использования очков?

Техническое противоречие (ТП).

ТП: Противоречие между необходимостью хорошо видеть вдали и вблизи и удобством использования очков (смена очков).

Идеальный конечный результат (ИКР).

ИКР: Очки позволяют хорошо видеть вблизи и вдали, и удобны в использовании.

Физическое противоречие ($\Phi\Pi$).

ФП: Должно быть две пары очков (с разными типами линз), чтобы хорошо видеть вдали и вблизи, и должна быть одна пара очков, чтобы было удобно их использовать (не менять очки).

Способы разрешения ФП. Разделение противоположных свойств:

- в пространстве.

Решение задачи

Используются бифокальные очки. Большая часть линзы для дали, а сегмент нижней части линзы для близких расстояний (для чтения).

Задача 2. Пластырь

Условие задачи

Раны заклеивают пластырем, но когда его снимают, то образовавшаяся корочка сдирается.

Как быть?

Разбор задачи

АП: Как не допустить сдирание свежей корочки?

TП: Противоречие между необходимостью заклеивания ранки и сдиранием свежей корочки.

ИКР: Пластырь заклеивает ранки и не сдирает свежую корочку.

ФП: Пластырь должен быть клейким (должна быть хорошая адгезия), чтобы хорошо заклеивать ранку, и должен быть не клейким (не должно быть адгезии), чтобы не сдирать свежую корочку.

Способы разрешения ФП. Разделение противоположных свойств:

- в пространстве.

Решение задачи

Место, которое прикладывается к ранке не клейкое (там находится марля, пропитанная антисептиком), а по краям пластырь клейкий (адгезионный).

Задание 2

- 1. Приведите примеры разрешения физического противоречия.
- 1.1. В пространстве.
- 1.2. Во времени.
- 1.3. В структуре.
- 1.4. По условию.

Вопросы

- 1. Что такое противоречие? Дайте определение.
- 2. Опишите виды противоречий в ТРИЗ.
- 3. Что такое административное противоречие? Дайте определение.
- 4. Что такое техническое противоречие? Дайте определение.
- 5. Что такое физическое противоречие? Дайте определение.
- 6. Опишите способы разрешения физического противоречия. Приведите примеры.
- 7. Опишите цепочку противоречий, используемых в ТРИЗ. Приведите примеры.

Вопросы к практическому занятию

- 1. Понятие о противоречиях.
- 2. Путь к идеи решения.

Литература: [1-4]

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №7

Приемы разрешения противоречий в общем представлении

Цель: освоение вопросов темы и формирование компетенций при помощи практических заданий.

Планируемые результаты обучения:

- на основе знаний должен помнить и использовать социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе умений должен сохранять способность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе навыков должен поддерживать готовность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов).

В результате освоения темы формируются компетенции:

- ПК-3 (Способен организовать проведение научно-исследовательских и опытно-конструкторских разработок по отдельным разделам темы).

Занятие проводится в интерактивной форме: решение разноуровневых и проблемных задач.

Теоретическая часть

«Перечень типовых приемов — это своего рода настольный справочник изобретателя, но справочник особого рода: изобретатель должен рассматривать его как основу, которую необходимо самостоятельно пополнять по новым техническим и патентным публикациям» (Γ . С. Альтшуллер).

ТРИЗ рассматривает разные системы приемов. Мы пока рассмотрим только приемы разрешения технических противоречий.

Г. С. Альтшуллер создал систему 40 основных приемов устранения технических противоречий с подприемами (всего 91).

Из 40 основных приемов разрешения технических противоречий мы рассмотрим только 21 наиболее употребляемых приемов. Остальные приемы Вы можете изучить самостоятельно. Вся система приемов будет рассмотрена на следующих уровнях.

Рассмотрим следующие приемы:

- 1. Принцип дробления.
- 2. Принцип вынесения.
- 3. Принцип местного качества.
- 4. Принцип асимметрии.
- 5. Принцип объединения.
- 6. Принцип универсальности.
- 7. Принцип «матрешки».

- 10. Принцип предварительного исполнения.
- 11. Принцип «заранее подложенной подушки».
- 13. Принцип «наоборот».
- 15. Принцип динамичности.
- 16. Принцип частичного или избыточного решения.
- 17. Принцип перехода в другое измерение.
- 20. Принцип непрерывности полезного действия.
- 21. Принцип проскока.
- 22. Принцип «обратить вред в пользу».
- 24. Принцип «посредника».
- 25. Принцип самообслуживания.
- 26. Принцип копирования.
- 27. Дешевая недолговечность взамен дорогой долговечности.
- 32. Принцип изменения окраски.

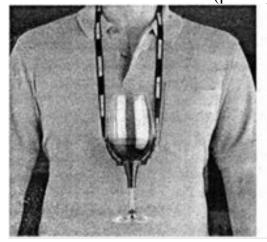
Вопросы и задания

Задание 1

Задача 1. Фуршет

Условия задачи

Во время фуршета приглашенные едят стоя. Часто у них заняты обе руки. В одной тарелка, в другой бокал. Неудобно пользоваться вилкой и приветствовать друг друга, рукопожатием. Как быть?


Разбор задачи

TП между необходимостью держать тарелку, вилку и бокал и возможностью поздороваться.

Руку с рюмкой можно освободить. Решение использованием приема 3. Принцип местного качества.

Решение

Бокал вешается на шею (рис. 1) или укрепляется на тарелке (рис. 2).

Задача 2. Долгоносик

Условия задачи

Однажды в институте зёрна академик Лисицын сказал изобретателю Анатолию Калугину, что намечено совещание по одной из важнейших проблем — борьбе с долгоносиком. Нужно исследовать условия

существования жука, в частности, определить температуру его тела.

В то время не было приборов, позволяющих решить такую задачу. Как быть?

Разбор задачи

TП между необходимостью измерения температуры, тела маленького жука и отсутствием миниатюрного термометра.

Воспользуемся приемом 5. Принцип объединения.

Решение

Качугин объяснил, как измерить температуру долгоносика обыкновенным термометром: надо набрать стакан долгоносиков и измерить их температуру.

Задача 3. Туман в аэропорту

Условия задачи

Туман создает проблемы для аэропортов, вызывая задержки рейсов, в связи с безопасностью взлетов и посадок и т. д.

Разбор задачи

Используем прием 22. Принцип «обратить вред в пользу».

Решение

Было предложено бороться с туманом, распыляя искусственный туман, насыщаемым заряженными частицами аэрозоля. Капли естественного тумана соединяются с искусственными, образуя дождь.

Задание 2

- 1. Приведите примеры разрешения физического противоречия.
- 2. Приведите по 2-4 примера на каждый из рассмотренных приемов (желательно из вашей области знаний).

Вопросы

- 1. Что такое противоречие? Дайте определение.
- 2. Опишите виды противоречий в ТРИЗ.
- 3. Что такое административное противоречие? Дайте определение.
- 4. Что такое техническое противоречие? Дайте определение.
- 5. Что такое физическое противоречие? Дайте определение.
- 6. Опишите способы разрешения физического противоречия. Приведите примеры.
- 7. Опишите цепочку противоречий для решения задач. Приведите примеры.
 - 8. Опишите общую систему приемов разрешения противоречий.
 - 9. Опишите систему приемов разрешения технических противоречий.
- 10. Опишите систему основных приемов разрешения технических противоречий. Сколько приемов в этой системе? Приведите примеры некоторых приемов.
- 11. Сколько наиболее- употребляемых приемов. Приведите примеры некоторых из них.

Вопросы к практическому занятию

- 1. Основные приемы устранения технических противоречий
- 2. Наиболее употребляемые приемы устранения технических противоречий
 - 3. Сочетание приемов устранения технических противоречий

Литература: [1-4]

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №8

Законы развития систем

Цель: освоение вопросов темы и формирование компетенций при помощи практических заданий.

Планируемые результаты обучения:

- на основе знаний должен помнить и использовать социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе умений должен сохранять способность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе навыков должен поддерживать готовность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов).

В результате освоения темы формируются компетенции:

- ПК-3 (Способен организовать проведение научно-исследовательских и опытно-конструкторских разработок по отдельным разделам темы).

Занятие проводится в интерактивной форме: решение разноуровневых и проблемных задач.

Теоретическая часть

Развитие любых объектов материального мира, природы, различных областей знаний, деятельности и мышления развиваются по своим определенным законам.

Законы носят объективный характер, выражая реальные отношения вещей, а также их отражение в сознании.

Законы развития систем - это основа ТРИЗ.

Закон – внутренняя существенная и устойчивая связь явлений, обуславливающая их упорядоченное изменение.

Техника развивается в тесном взаимодействии с общественным развитием и экосферой, вследствие чего наблюдаются значительное проникновение и обогащение законов развития общества, природы и техники. Например, развитие техники во многом зависит от потребностей общества и влияет на развитие природы.

Законы развития систем определяют направление и способы их развития.

Вопросы и задания

Задание 1.

- 1. Приведите примеры использования законов развития систем,
- 1.1. Закон S-образного развития.
- 1.2. Закон полноты системы.
- 1.3. Закон проводимости потоков.
- 1.4. Закон увеличения степени управляемости.
- 1.5. Закон увеличения степени динамичности.
- 1.6. Закон перехода на микроуровень.
- 1.7. Закон перехода в подсистему.
- 1.8. Закон увеличения степени согласованности.
- 1.9. Закон свертывания-развертывания:

Вопросы

- 1. Что такое закон? Дайте определение.
- 2. Что такое закон S-образного развития?
- 3. Что такое линии жизни систем?
- 4. Что такое огибающие кривые?
- 5. Опишите структуру законов развития технических систем.
- 6. Опишите структуру законов организации систем.
- 7. Для чего предназначены законы организации систем?
- 8. Опишите закон полноты системы.
- 9. Опишите закон проводимости потоков.
- 10. Опишите закон минимального согласования системы.
- 11. Опишите структуру законов эволюции систем.
- 12. Для чего предназначены законы эволюции систем?
- 13. Какой основной закон эволюции технических систем.
- 14. Опишите закон увеличения степени управляемости.
- 15. Опишите закон увеличения степени динамичности.
- 16. Опишите закон перехода на микроуровень.
- 17. Опишите закон перехода в надсистему.
- 18. Опишите закон увеличения степени согласованности.
- 19. Опишите закон свертывания-развертывания.
- 20. Опишите закон сбалансированного развития систем.
- 21. Опишите систему законов Г. С. Альтшуллера.

Вопросы к практическому занятию

- 1. Законы развития систем в общем представлении
- 2. Закон S-образного развития систем
- 3. Структура законов развития технических систем
- 4. Законы организации технических систем
- 5. Законы эволюции систем
- 6. Законы, разработанные Г. С. Альтшуллером

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №9

Логика решения нестандартных задач

Цель: освоение вопросов темы и формирование компетенций при помощи практических заданий.

Планируемые результаты обучения:

- на основе знаний должен помнить и использовать социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе умений должен сохранять способность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе навыков должен поддерживать готовность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов).

В результате освоения темы формируются компетенции:

- ПК-3 (Способен организовать проведение научно-исследовательских и опытно-конструкторских разработок по отдельным разделам темы).

Занятие проводится в интерактивной форме: решение разноуровневых и проблемных задач.

Теоретическая часть

«АРИЗ – комплексная программа алгоритмического типа, основанная на законах развития технических систем и предназначенная для анализа и решения изобретательских задач». (Г. С. Альтшуллер)

Под нестандартными задачами в ТРИЗ понимаются задачи, содержащие неизвестный тип противоречия.

Логика решения нестандартных задач основана на выявлении и разрешении противоречий. При выявлении и углублении противоречий выявляются причинно-следственные связи, определяя первопричину (корень) появления задачи. Устраняя первопричину получают решение без недостатков.

Административное противоречие (АП) — противоречие между потребностью и возможностью ее удовлетворения.

Его достаточно легко выявить. Оно часто задается администрацией или заказчиком и формулируется в виде: «Надо выполнить то-то, а как неизвестно», «Какой-то параметр системы плохой, нужно его улучшить или нужно устранить такой-то недостаток, но неизвестно, как», «Имеется брак в производстве изделий, а причина его неизвестна» и т. д. Это самое поверхностное противоречие.

Введем некоторое уточнение понятия АП в виде двух его видов:

- нежелательного эффекта (НЭ) что-то плохо;
- «улучшение необходимо создать что-то новое, но неизвестно каким образом».

Техническое противоречие (TП) – это противоречие между определенными частями, качествами или параметрами системы.

ТП возникает при улучшении одних частей (качеств или параметров) системы за

счет недопустимого ухудшения других.

Оно представляет собой причину возникновения административного противоречия (АП), углубляя его. В глубине одного АП, чаще всего, лежит несколько ТП.

Как правило, улучшая одни характеристики объекта, мы резко ухудшаем другие. Обычно приходится искать компромисс, то есть чем-то жертвовать.

Техническое противоречие возникает в результате диспропорции развития различных частей (параметров) системы. При значительных количественных изменениях одной из частей (параметров) системы и резком «отставании» другой (других) ее части возникает ситуация, когда количественные изменения одной из сторон системы вступают в противоречие с другими.

Физическое противоречие ($\Phi\Pi$) – предъявление диаметрально противоположных свойств (например, физических) к определенной части технической системы.

Оно необходимо для определения причин, породивших техническое противоречие, т. е. является дальнейшим его углублением. Уточнение (углубление) противоречий может продолжаться и дальше для выявления первопричины.

Для человека, незнакомого с ТРИЗ, формулировка ФП звучит непривычно и даже дико — некоторая часть системы должна находится сразу в двух взаимоисключающих состояниях: быть холодной и горячей, подвижной и неподвижной, длинной и короткой, гибкой и жесткой, электропроводной и неэлектропроводной, быть и не быть и т. д.

Одно из свойств удовлетворяет одному из параметров ТП, а другое свойство удовлетворяет другому параметру.

 $\Phi\Pi$ — своего рода необычное неравенство. Обычно с помощью неравенств указывается промежуток (или интервал), например, а < x < b.

Графически промежуток представлен на рис. 1

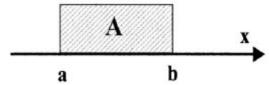


Рис. 1. Графическое представление промежутка

Этот промежуток представляет собой зону «А». Обычно в этой зоне и ищут «оптимальное» решение.

ТРИЗ идет совершенно другим путем.

Определяют, каким свойством «с» должна обладать система, чтобы параметр «А» (в ТП) был наилучшим. Обозначим это свойство «С». Далее определяют, каким свойством «с» должна обладать система, чтобы параметр «Б» был наилучший. Обозначим это свойство «анти-С».

Такое конфликтующее действие представляется в виде неравенства C>c>анти-C Изобразим для наглядности это неравенство на рис. 2.

Рис. 2. Изображение физического противоречия

Формулировка физического противоречия требует, чтобы «с» была одновременно в зоне «А» и в зоне «Б», что исходя из графика невозможно (рис. 2).

Цепочка выявления причинно-следственных связей:

$$A\Pi \longrightarrow T\Pi \longrightarrow \Phi\Pi$$

Для получения решения необходимо разрешить $\Phi\Pi$. Основные приемы разрешения физического противоречия ($\Phi\Pi$) - это способы разделения противоречивых свойств:

- в пространстве,
- во времени,
- в структуре, в частности, фазовые имения, например, агрегатное состояние.
- по условию.

 $\rm UKP-$ это решение, к которому следует стремиться при решении задачи. Близость полученного решения к идеальному определяет уровень и качество решения.

Основные свойства ИКР:

- 1. Улучшить плохой параметр, не ухудшая ХОРОШИЙ.
- 2. Улучшить параметры не усложняя систему.
- 3. Улучшить параметры, не вызывая вредных действий.
- 4. Улучшить параметры в нужный момент.
- 5. Улучшить параметры в НУЖНОМ месте.
- 6. Все действия должны выполняться самостоятельно.

Основная линия решения задач была описана в виде цепочки:

Ниже опишем логику взаимосвязи всех видов противоречий и ИКР по указанной цепочке. Эта логика характерна для всех основных версий АРИЗ, поэтому автор назвал ее «логика АРИЗ».

Иногда для разрешения $\Phi\Pi$, т. е. разделения противоречивых свойств, достаточно воспользоваться приемами, указанными выше (в пространстве, во времени, в структуре и по условию), а иногда нужно продолжить анализ противоречий. Главное, чтобы решение удовлетворяло требованиям ИКР.

Вопросы и задания

Задание 1.

Задача 1. Идеальная реклама

Представьте идеальную рекламу.

ИКР: Рекламы нет, а СМИ и общественность сами говорят о Вас.

Решение: Осенью 1999 г. в Санкт-Петербурге было выпущено новое пиво под маркой «Windows 99». Инициатор затеи - предприниматель Андрей Солонин. Марка пива без труда была зарегистрирована по классу напитков. Также был заимствован (но изменен) графический образ «Windows»: летящие форточки.

Так производители пива сознательно нарываются на скандал, рассчитывая завоевать моментальную популярность, ведь пробиться на российский рынок пива с обычной маркой без огромных вложений уже невозможно.

Задача 2. Кражи в гостиницах

В гостиницах крадут различные предметы. Как не оберегать предметы от кражи. Предложите решение.

ИКР: Не нужно оберегать предметы от краж.

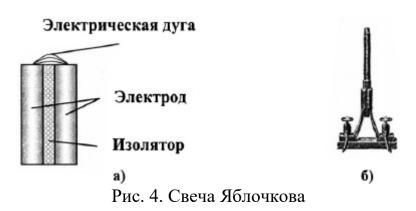
Решение: Постояльцы германских гостиниц тянут все, что не «прибито гвоздями» — от дорогой пепельницы до мешочков с ароматной травой и пульта от телевизора. Но менеджеры гостиниц не слишком огорчены этим. Во-первых, все расходы уже включены в цену номеров. Во-вторых, на все предметы нанесены эмблемы отеля, так что их похищение — дополнительная

реклама гостиницы. Ведь украденное зачастую проходит через несколько рук.

Задача 3. Свеча Яблочкова

Во второй половине XIX века улицы европейских столиц освещались дуговыми лампами. Между двумя угольными стержнями (электродами) при подаче напряжения возникала электрическая дуга, давая яркий свет. Электроды располагали так, что их необходимо было сближать по мере их сгорания (рис. 3). Это требовало сложных устройств (регуляторов), которые делали электрическое освещение с помощью дуговых фонарей неудобным и дорогим.

Рис.3. Принцип работы дуговой лампы


Как сделать идеальный механизм сближения стержней? Русский инженер П. Н. Яблочков решил эту задачу. Как?

ИКР: Электроды не нужно сближать. Расстояние между ними всегда одно и тоже.

Идеальный механизм – это механизм, которого нет, а функции его выполняются.

Решение: П. Н. Яблочков расположил электроды параллельно и поместил между ними электроизоляционную прокладку {рис. 4).

Использование ресурсов и геометрического эффекта.

Задача 4. Миллионы из ничего

Могут ли городские власти сделать миллион из ничего? Например, из нуля.

ИКР: Туристы сами хотят платить деньги.

Решение: В Мадриде на одной из центральных площадей, откуда отсчитывается километраж дорог Испании, в асфальт уложен бронзовый ноль. Большинство туристов, посещающих город, по традиции

фотографируются на мадридском нуле. Естественно, за плату, поступающую в городскую казну.

Использование ресурсов.

Задание 2.

Выполните задания

- 1. Приведите примеры разрешения физического противоречия.
- 1.1. В пространстве.
- 1.2. Во времени.
- 1.3. В структуре.
- 1.4. По условию.

Вопросы

- 1. Опишите виды противоречий в ТРИЗ.
- 2. Что такое административное противоречие? Дайте определение.
- 3. Что такое техническое противоречие? Дайте определение.
- 4. Что такое физическое противоречие? Дайте определение.
- 5. Опишите способы разрешения физического противоречия. Приведите примеры.
- 6. Опишите цепочку противоречий, используемых в ТРИЗ. Приведите примеры.
 - 7. Что такое логика АРИЗ?

Вопросы к практическому занятию

- 1. Нестандартные задачи в ТРИЗ
- 2. Практика использования ИКР с помощью ТРИЗ
- 3. Практика по основной линии решения задач с помощью ТРИЗ
- 4. Логика АРИЗ
- 5. Практика по логике АРИЗ

Литература: [1-4]

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №10

Система приемов разрешения противоречий

Цель: освоение вопросов темы и формирование компетенций при помощи практических заданий.

Планируемые результаты обучения:

- на основе знаний должен помнить и использовать социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе умений должен сохранять способность применять социальное взаимодействие и реализовывать свою роль в команде в сфере

искусства и культуры принятия решений (ТРИЗ и других методов);

- на основе навыков должен поддерживать готовность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов).

В результате освоения темы формируются компетенции:

- ПК-3 (Способен организовать проведение научно-исследовательских и опытно-конструкторских разработок по отдельным разделам темы).

Занятие проводится в интерактивной форме: решение разноуровневых и проблемных задач.

Теоретическая часть

Система приемов предназначена для разрешения технических и физических противоречий. На рис. 1 показаны эти две группы приемов.

Рис. 1. Схема приемов разрешения противоречий

Технические противоречия (ТП) разрешаются с помощью основных и дополнительных приемов. Данную группу приемов разработал Γ . С. Альтшуллер. Он создал 40 основных приемов разрешения технических противоречий с подприемами (всего 91). В английской литературе их называют «изобретательские принципы» (40 Inventive Principles). Позже Γ . С. Альтшуллером были разработаны дополнительные 10 приемов.

Физические противоречия ($\Phi\Pi$) разрешаются с помощью приемов - анти-приемов; приемов, разбитых на определенные группы (групповые) и способов разрешения противоречивых свойств.

Приемы разрешения технических противоречий были созданы для решения задач в основном из механики. В книге ТРИЗ первого уровня мы отобрали наиболее общие из 40 приемов, с помощью которых можно решать задачи из любой области. Автор адаптировал и остальные приемы, с помощью которых можно решать задачи из электроники, программирования и других областей ИТ, кроме того, эти приемы подходят практически для любой области знания.

Список 40 основных приемов решения ТП.

- 1. Принцип дробления.
- 2. Принцип вынесения.
- 3. Принцип местного качества.
- 4. Принцип асимметрии.
- 5. Принцип объединения.
- 6. Принцип универсальности.
- 7. Принцип «матрешки».
- 8. Принцип антивеса.
- 9. Принцип предварительного антидействия.

- 10. Принцип предварительного исполнения.
- 11. Принцип «заранее подложенной подушки».
- 12. Принцип эквипотенциальности.
- 13. Принцип «наоборот».
- 14. Принцип сфероидальности.
- 15. Принцип динамичности.
- 16. Принцип частичного или избыточного решения.
- 17. Принцип перехода в другое измерение.
- 18. Использование механических колебаний.
- 19. Принцип периодического действия.
- 20. Принцип непрерывности полезного действия.
- 21. Принцип проскока.
- 22. Принцип «обратить вред в пользу».
- 23. Принцип обратной связи.
- 24. Принцип «посредника».
- 25. Принцип самообслуживания.
- 26. Принцип копирования.
- 27. Дешевая недолговечность взамен дорогой долговечности.
- 28. Замена механической системы.
- 29. Использование пневмо- и гидроконструкций.
- 30. Использование гибких оболочек и тонких пленок.
- 31. Применение пористых материалов.
- 32. Принцип изменения окраски.
- 33. Принцип однородности.
- 34. Принцип отброса и регенерации частей.
- 35. Изменение агрегатного состояния объекта.
- 36. Применение фазовых переходов.
- 37. Применение теплового расширения.
- 38. Применение сильных окислителей.
- 39. Применение инертной среды.
- 40. Применение композиционных материалов.

Дополнительный список приемов:

- 41. Использование пауз
- 42. Принцип многоступенчатого действия
- 43. Применение пены
- 44. Применение вставных частей
- 45. БИ-принцип
- 46. Применение взрывчатых веществ и порохов
- 47. Сборка на (в) воде
- 48. «Мешок с вакуумом»
- 49. Диссоциация-ассоциация
- 50. Принцип самоорганизации

Задание 1.

Задача 1. Бетон

Условие задачи

Бетон хорошо выдерживает большие нагрузки на сжатие, но не выдерживает нагрузки на растяжение. Металл хорошо выдерживает нагрузки на растяжение, но плохо на сжатие.

Как быть?

ИКР: Нужно, чтобы были только нужные свойства, а не нужные исчезли бы. Должны выдерживаться нагрузки на сжатие и на растяжение.

Использовали прием 5. Принцип объединения.

Решение

Придумали железобетон, который объединил эти качества — внутри бетона имеется стальная арматура. Сначала делают сооружение из стальной арматуры, а потом его заливают бетоном. Железобетон стал хорошо выдерживать оба вида нагрузок. Однако при значительных растягивающих напряжениях железобетон не выдерживает.

Как быть?

Использовали прием 9. Принцип предварительного антидействия.

Предварительное антидействие создали путем сжатия железобетона. Это осуществлялось путем растягивания арматуры, которую потом заливали бетоном. Когда бетон застывал (отвердевал), арматуру высвобождали. За счет упругих свойств арматуры она сжималась и напрягала (сжимала) бетон.

Такой бетон получил название предварительно напряженный железобетон. Этот вид материала используют при необходимости выдерживания больших нагрузок, например, в мостовых конструкциях, различных перекрытиях в высотных домах, стенках атомного реактора и т. д.

Задача 2. Обещание короля

Условия задачи

Король одного из государств не имел наследника. Он долго молился Богу и обещал, что если у него родится сын, то он накормит бедняков, уменьшит налоги и уменьшит срок всем заключенным в два раза.

У него родился сын и он выполнил почти все обещания. Самому опасному преступнику дали пожизненный срок заключения. Никто не может сказать сколько он проживет.

Он не знал, как ему поступить.

Разбор задачи

- TП. Возникло противоречие между обещанием Богу, которое король должен выполнить и невозможностью узнать день смерти преступника.
- ФП. Король должен сократить срок преступнику в два раза, чтобы выполнить обещание, данное Богу, и не должен сократить срок в два раза, так как неизвестно, когда умрет преступник.

Разрешение противоречия

Разрешение противоречивых свойств:

- во времени

Использовать прием 41. Использование пауз.

Решение

Король издал приказ, что нужно чередовать: одни сутки преступник проводит в тюрьме, а другие на свободе.

Задание 2.

1. Приведите примеры разрешения физического противоречия.

- 1.1. Приведите по 2-4 примера на каждый из рассмотренных приемов устранения технического противоречия (желательно из вашей области знаний).
 - 1.2. Приведите примеры на приемы из дополнительного списка.
 - 1.3. Приведите примеры на приемы-антиприемы.
 - 1.4. Приведите примеры на групповые приемы.
 - 1.5. Приведите примеры разрешения противоречивых свойств.

Вопросы

- 1. Что такое противоречие? Дайте определение.
- 2. Опишите виды противоречий в ТРИЗ.
- 3. Что такое административное противоречие? Дайте определение.
- 4. Что такое техническое противоречие? Дайте определение.
- 5. Что такое физическое противоречие? Дайте определение.
- 6. Опишите способы разрешения физического противоречия. Приведите примеры.
- 7. Опишите цепочку противоречий для решения задач. Приведите примеры.
 - 8. Опишите общую систему приемов разрешения противоречий.
 - 9. Опишите систему приемов разрешения технических противоречий.
- 10. Опишите систему основных приемов разрешения технических противоречий. Сколько приемов в этой системе? Приведите примеры некоторых приемов.
- 11. Сколько наиболее употребляемых приемов. Приведите примеры некоторых из них.

Вопросы к практическому занятию

- 1. Система приемов разрешения противоречий
- 2. Приемы устранения технических противоречий
- 3. Использование таблицы приемов разрешения ТП
- 4. Приемы устранения физических противоречий

Литература: [1-4]

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №11

Ресурсы в системе классификации

Цель: освоение вопросов темы и формирование компетенций при помощи практических заданий.

Планируемые результаты обучения:

- на основе знаний должен помнить и использовать социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);

- на основе умений должен сохранять способность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе навыков должен поддерживать готовность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов).

В результате освоения темы формируются компетенции:

- ПК-3 (Способен организовать проведение научно-исследовательских и опытно-конструкторских разработок по отдельным разделам темы).

Занятие проводится в интерактивной форме: решение разноуровневых и проблемных задач.

Теоретическая часть

Ресурсы - это очень важный раздел ТРИЗ. Применение ресурсов увеличивает идеальность системы и решения задачи, поэтому использование ресурсов осуществляют практически с любым инструментом ТРИЗ.

Использование ресурсов - это мощный инструмент улучшения систем и их удешевления.

Первоначально необходимо выявить ресурсы, а затем использовать их. Общий алгоритм показан на рис. 1.

Рис. 1. Общий алгоритм выявления и использования ресурсов

Для решения задачи или развития системы, прежде всего необходимо определить свойства системы, которые должны быть улучшены. Затем выявить ресурсы, обладающие данными свойствами. Для этого определяют все свойства имеющихся ресурсов. В заключении используют необходимые свойства для решения задачи или развития системы свойства.

Примечание. Под свойством может также пониматься параметр системы.

Вопросы и задания

Задание 1.

- 1. Приведите примеры различных видов ресурсов.
- 1.1. Приведите примеры функциональных ресурсов.
- 1.2. Приведите примеры структурных ресурсов (элементов, связей и

формы).

- 1.3. Приведите примеры вещественных и полевых ресурсов.
- 1.4. Приведите примеры ресурсов потоков.
- 1.5. Приведите примеры ресурсов времени и пространства.
- 1.6. Приведите примеры системных ресурсов.
- 2. Выявите и примените ресурсы для использования системы по новому назначению.
 - 2.1. Предложите другие применения отработанных шин.
 - 2.2. Найдите новые применения пластмассовой бутылки.
 - 2.3. Найдите новое применение авторучки.
 - 2.4. Выберете самостоятельно систему и найдите ей новые применения.

Задание 2.

Задача 1. Кабаны

Условие задачи

В некоторых районах появились кабаны. Жители стали жаловаться в муниципалитет, что звери подходят к двери их домов. Животные крупные и, как правило, ходят стаями. Дети и взрослые боятся их, особенно в ночное время.

Муниципалитет не имеет средств, чтобы поймать животных.

Запрещено убивать кабанов или причинять им вред в любом случае.

С другой стороны, такая ситуация является неприемлемой.

Решите эту проблему.

Разбор задачи

Сначала проведем разбор с помощью логики АРИЗ.

АП: Кабаны стали приходить к домам жителей местности. Это опасно.

ТП: Противоречие между приходом кабанов к домам и нежеланием жителей иметь их рядом.

ИКР: Кабаны не хотят или даже боятся подойти на территорию поселения. Тем самым удовлетворяется желание жителей.

Что нужно сделать, чтобы кабаны боялись появиться на этой территории?

Кабаны боятся появления более крупных хищников, например, тигров.

ФП: На территорию поселения необходимо запустить тигра (хотя бы одного), чтобы кабаны боялись подходить к этой местности, и нельзя запускать тигра, так как это может привести к еще большей опасности.

Разделение противоречивых свойств.

Значит, тигра быть не должно, а образ присутствия тигра должен создаваться у кабана. Мы должны сделать безопасную «копию» тигра.

Мы воспользовались приемом 26. Принцип копирования.

Как животные создают эффект присутствия в данном районе. Конечно! Они метят данный район.

Давайте и мы «пометим» запахом тигра весь район по периметру.

Решение

В зоопарке взяли экскременты тигра и развели их водой, сделав слабый

раствор. Человек не чувствует этого запаха.

Этим раствором опрыскали район по периметру.

Задача 2. Геракл

Условие задачи

У царя Авгия, сына бога солнца Гелиоса, были неисчислимые стада, которые он держал в огромном загоне. Там было триста быков, белых как снег, двести красных, как пурпур, двенадцать белых, как лебеди. А один бык, самый красивый, сиял подобно звезде. Только с каждым годом все труднее было разобраться, какой бык какого цвета. Дело в том, что Авгий был страшный неряха. Никогда со скотного двора не убирал навоз! И все прекрасные животные казались одной масти — грязной...

Эврисфей велел герою расчистить авгиевы конюшни. Геракл пришел к Авгию и сказал:

— Я вычищу все за день. Но за это ты должен отдать мне десятую часть скота.

Он выполнил свое слово. Как это он сделал?

Разбор задачи

Геракл должен воспользоваться каким-то ресурсом, который быстро очистит скотный двор.

Это должен быть какой-то мощный поток воды.

Решение

Геракл своею палицей взломал с двух противоположных сторон каменную ограду загонов. Затем он завалил камнями русла двух рек. Вода хлынула в загоны, за несколько часов унесла всю грязь, омыла животных. Несчетные быки, коровы, кони предстали во всей своей красе! А Геракл при этом даже рук не замарал навозом! Он пришел к Авгию и сказал:

– Я выполнил свою работу, теперь расплачивайся, о Авгий!

А царь выгнал Геракла. И он ни с чем вернулся домой, потому что боги приказали ему служить Эврисфею, а не воевать с его союзниками, даже если речь шла о защите собственной чести и достоинства.

Задача 3. Искусственные рифы

Условие задачи

Примерно в двух километрах от побережья курортного города Форт-Лодердейл, что во Флориде, решили создать искусственный риф Осборн. Рифы служат местом обитания рыб и устриц.

С этой целью решили использовать изношенные шины. Проект всем казался великолепным. Не только создается искусственный риф, но и избавляются от двух миллионов шин.

Шины связывали нейлоновыми веревками и сбрасывали в воду, но морская вода разъела веревки и связки распались на отдельные шины. Они за счет течений, приливов и отливов перемещались и выбрасывались на; берег. Морские обитатели живут только в неподвижных местах. Кроме того, во* время штормов разбросанные шины начинали подниматься со дна и

ударяться о естественные коралловые рифы, нанося им повреждения.

После нескольких неудачных попыток решили ликвидировать риф. Такой проект обойдется более 3 миллионов долларов.

Как удешевить проект или сделать его бесплатным?

Разбор задачи

Когда нужно, что-то удешевить или сделать бесплатно, то нужно воспользоваться ресурсами.

Ресурсы должны обладать способностью поднимать со дна покрышки. Это способны делать аквалангисты.

Решение

Нужно договориться с ближайшими отделениями дайвинга, проводить тренировки и соревнования в этом районе. Кроме, того к этому можно подключить и тренировки военных.

Вопросы

- 1. Что такое ресурсы? Дайте определение.
- 2. Опишите классификацию системы ресурсов.
- 3. Какие имеются источники ресурсов? Где можно брать ресурсы?
- 4. Опишите виды ресурсов. Приведите примеры.
- 5. По каким критериям можно оценивать ресурсы? Приведите примеры оценок.
 - 6. Опишите способы изменения ресурсов.
 - 7. Как определяются свойства ресурсов?
- 8. Опишите последовательность применения ресурсов для решения задачи.
- 9. Опишите последовательность выявления и применения ресурсов для применения системы по новому назначению.

Вопросы к практическому занятию

- 1. Общие понятия использования ресурсов в ТРИЗ
- 2. Классификация системы ресурсов в ТРИЗ
- 3. Применение системы ресурсов по новому назначению в ТРИЗ
- 4. Выявление свойств системы ресурсов в ТРИЗ
- 5. Применение выявленных свойств системы ресурсов в ТРИЗ

Литература: [1-4]

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №12

Эффекты в ТРИЗ

Цель: освоение вопросов темы и формирование компетенций при помощи практических заданий.

Планируемые результаты обучения:

- на основе знаний должен помнить и использовать социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе умений должен сохранять способность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе навыков должен поддерживать готовность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов).

В результате освоения темы формируются компетенции:

- УК-3 (Способен осуществлять социальное взаимодействие и реализовывать свою роль в команде).

Занятие проводится в интерактивной форме: решение разноуровневых и проблемных задач.

Теоретическая часть

Эффектами также называют научные эффекты, технологические эффекты. Под эффектом будем понимать преобразователь одного действия (воздействия) или поля в другое, с использованием знаний физики, химии, биологии, математики.

В общем случае эффект можно представить в виде «черного ящика» с входным воздействием X, выходным воздействием Y, управляющим воздействием Z и носителем (преобразователем) U. Схема технологического эффекта изображена на рис. 1.

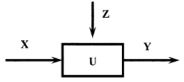


Рис. 1.1. Схема «черного ящика»

X - входное воздействие, Y - выходное воздействие, Z - управляющее воздействие, U - носитель (преобразователь)

Преобразуем схему (рис. 1), используя понятия вепольного анализа, тогда входные X, выходные Y и управляющие Z воздействий представим в виде поля (Пвх, Пвых и Пупр) различной природы, а носитель U - в виде вещества B. Тогда рис. 1 можно представить в виде рис. 2.

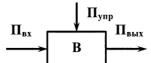


Рис. 1. Схема эффекта

 Π вх – входное поле, Π вых – выходное поле, Π упр – управляющее воздействие, B – носитель (преобразователь) – вещество, выполняющее эффект

Каждый эффект характеризуется соответствующими полями Пвх, Пвых и Пупр и видом вещества В, преобразующего входное воздействие в выходное. Носителем могут быть: физические объекты, химические вещества, биологические объекты, математические преобразования, геометрические формы и т. д.

Разработаны указатели эффектов и таблицы применения эффектов. В таких таблицах вид технологического эффекта определяется по выходному действию или функции (Пвых), которые необходимо выполнить. Применение эффектов позволяет получить более идеальное решение, так как при этом разрешается физическое противоречие.

Напомним, что эффекты включают:

- физические;
- химические;
- биологические;
- математические (в частности, геометрические).

Рис.3. Классификация эффектов

Вопросы и задания

Задание 1.

- 1. Приведите примеры на:
- 1.1. Физические эффекты.
- 1.2. Химические эффекты.
- 1.3. Биологические эффекты.
- 1.4. Математические эффекты.
- 1.4.1. В частности, на геометрические эффекты.

Задание 2.

Задача 1. Антенна для спутников

Условие задачи

Антенна для спутников и космических кораблей должна иметь точную параболическую форму. От этого зависит точность приема и передачи информации.

При запуске спутника на орбиту антенна должна быть свернута, а в космосе развернуться. С этой целью используется сложная система точной механики, разворачивающая отдельные элементы антенны.

Как упростить систему развертывания антенны?

Разбор задачи

ИКР. Антенна должна раскрываться сама.

Воспользуемся таблицей применения физических эффектов. Подходят пункты 15, 19, 21. Выбираем фазовые переходы второго рода — эффект памяти формы.

Решение

Было предложено сложный механизм свернуть до вещества - «умного» вещества с эффектом памяти формы.

В момент запуска антенна свернута в клубок. Когда спутник находится на орбите, отстреливаются крышки корпуса, закрывающие антенну. Под солнечными лучами материал антенны нагревается и вспоминает идеально точную параболическую форму.

Задача 2. Линия электропередач

Условие задачи

При эксплуатации линий электропередач (ЛЭП) происходит обледенение проводов. Борются с ним, нагревая ЛЭП током от специальных сильноточных трансформаторов при снятом рабочем напряжении. Такой метод требует отключения ЛЭП, дополнительного оборудования и т. д.

Требуется найти способ защиты проводов ЛЭП от обледенения без снятия рабочего напряжения.

Разбор задачи

ИКР. Среда сама препятствует образованию льда на поверхности стержня при понижении температуры.

Среда, окружающая провода, должна сама препятствовать конденсации паров или нагревалась при понижении температуры.

Из таблицы выбираем п. 3. Повышение температуры. Эффект – электромагнитная индукция.

Решение

Нужно ввести короткозамкнутый проводник, но нагрев от него будет слабым, так как рабочие токи в проводах ЛЭП невелики и магнитные поля незначительны. Можно усилить магнитные поля, выполнив короткозамкнутый виток в виде кольца из ферромагнитного материала.

Данное решение тоже имеет недостаток – кольца нагреваются во всем интервале изменения температуры окружающей среды.

Выбираем п. 1 таблицы «изменение температуры» подсказывает физический эффект переход через точку Кюри.

Используем материал с переходом через точку Кюри при повышении температуры выше $0^{\circ}\mathrm{C}$

Задача 3. Зарастание труб

Условие задачи

На одном из заводов по трубам подавали щелочную жидкость и трубы зарастали. Их приходилось чистить или заменять. По другим трубам текла кислая жидкость. Кислота разъедала стенки труб, в которых приходилось чинить, заваривая такие места.

Как быть?

Разбор задачи

ИКР. Трубы не зарастают и не разъедаются.

Воспользуемся таблицей применения химических эффектов (приложение 3). П. 14. Разрушение объекта. Химический эффект: - реакции окисления – восстановления.

Решение

Предложено подавать по каждой трубе поочередно то кислоту, то щелочь. Кислота разъедает осадок, образуемый щелочью. Труба не засоряется и не изнашивается.

Вопросы

- 1. Опишите понятие эффекта.
- 2. Если эффект представить в виде черного ящика, то что у него на входе, выходе и, что представляет сам черный ящик?
 - 3. Какие виды эффектов используются в ТРИЗ?

Вопросы к практическому занятию

- 1. Эффекты в интерпретации ТРИЗ
- 2. Физические эффекты в интерпретации ТРИЗ
- 3. Химические эффекты в интерпретации ТРИЗ
- 4. Биологические эффекты в интерпретации ТРИЗ
- 5. Математические эффекты в интерпретации ТРИЗ

Литература: [1-4]

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №13

Вепольный анализ.

Цель: освоение вопросов темы и формирование компетенций при помощи практических заданий.

Планируемые результаты обучения:

- на основе знаний должен помнить и использовать социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе умений должен сохранять способность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе навыков должен поддерживать готовность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов).

В результате освоения темы формируются компетенции:

- ПК-3 (Способен организовать проведение научно-исследовательских и опытно-конструкторских разработок по отдельным разделам темы).

Занятие проводится в интерактивной форме: решение разноуровневых и проблемных задач.

Теоретическая часть

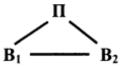
Структурный вещественно-полевой (вепольный) анализ -

раздел ТРИЗ, изучающий и преобразующий структуру систем. Вепольный анализ разработан Г. С. Альтшуллером.

Вепольный анализ - это язык схем, позволяющий представить исходную систему в виде определенной (структурной) модели. С помощью специальных правил выявляются свойства этой системы. Затем по конкретным закономерностям преобразовывают исходную модель задачи и получают структуру решения, которое устраняет недостатки

исходной системы.

Статистический анализ решений показал, что для повышения эффективности систем их структура должна быть определенной. Модель такой структуры называется веполем.


Веполь — модель минимально управляемой системы, состоящей из двух взаимодействующих объектов и их взаимодействий.

Взаимодействующие объекты условно названы веществами и обозначаются B_1 и B_2 , а само взаимодействие называется полем и обозначается Π .

Под «веществом» будем понимать любой объект, начиная с материала, его структуры, молекул, атомов, до самых сложных систем, например, космическая станция. В информационных системах это может быть элемент или данные.

Поле может представлять собой любое действие или взаимодействие, например, энергию, силу или информацию. В информационных системах это может быть алгоритм.

Веполь изображается схемой.

Термин Веполь образован от слов «Вещество» и «Поле».

Вепольный анализ включает в себя определенные правила и тенденции. Эти тенденции подчиняются закону увеличения степени вепольности.

Вепольный анализ предназначен для:

- представления исходной структуры задачи (системы);
- определения структурного решения задачи;
- выявления перспективы развития структуры системы.

Вопросы и задания

Задание 1.

- 1. Приведите примеры различных видов веществ и полей.
- 1.1. Приведите примеры различных веществ.
- 1.2. Приведите примеры различных полей.

Задание 2.

Построить вепольные структуры для примеров

Пример 1. Турбина реактивного двигателя

Турбины реактивных двигателей работают при высоких температурах. Чтобы сохранить прочностные свойства лопаток турбин, приходится в исходный материал добавлять легирующие добавки, например, кобальт, который увеличивает в значительной мере стоимость турбины, но придает ей устойчивость к высоким температурам. Компания «Пратт энд Уитни» (Pratt & Whitney) разработала технологию изготовления лопаток, позволяющую снизить содержание в них кобальта на 30%. Для этого лазером сверлят в лопатках мельчайшие отверстия. Воздух, проходящий через отверстия, лопатки, кроме того, снижается охлаждает И, аэродинамическое сопротивление. Таким образом, турбины можно изготовить из менее жаропрочного материала.

Пример 2. Борьба с кавитацией

Кавитация вызывает эрозию (разрушение) материала устройств, где она

происходит. С кавитацией пытаются бороться, при этом достаточно важно, чтобы кавитация подавлялась равномерно. Предложено для подавления воздействовать на кавитационные пузырьки ультразвуковыми колебаниями в диапазоне частот от 1 до 50 кГц31.

Пример 3. Измерение мощности

Калориметрический метод измерения мощности. Для измерения мощности, поглощаемой нагрузкой в сверхвысокочастотном (СВЧ) диапазоне, определяется количество тепла, отдаваемое нагрузкой рабочему телу (воде), причем, часто само рабочее тело используется как нагрузка. С помощью измерительного узла регистрируется температура рабочего тела и по ее значению определяется значение мощности32.

Пример 4. Декоративный светильник

Известны декоративные светильники, использующие оптоволокно. Такой светильник (рис. 1) состоит из лампы, рефлектора, температурного фильтра и светофильтра, соединительной головки и оптоволоконного кабеля. В этом светильнике светофильтр был один и жестко закреплен.

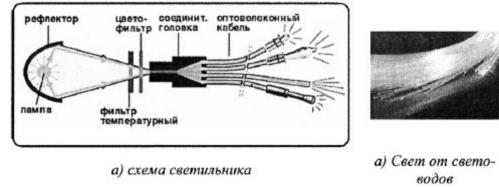


Рис. 1. Декоративный светильник из оптоволокна

Изобретен декоративный светильник, который с изменением атмосферного давления меняет цвет. В данном изобретении светофильтры закреплены на гофрированной вакуумной камере, которая меняет свой объем в зависимости от атмосферного давления и передвигает разноцветные светофильтры.

Вопросы

- 1. Что такое вепольный анализ? Дайте определение.
- 2. Что такое веполь? Дайте определение.
- 3. Что такое вещество в вепольном анализе? Дайте определение. Виды веществ.
- 4. Что такое поле в вепольном анализе? Дайте определение. Виды полей.
- 5. Назначение вепольного анализа. Виды использования ве- польного анализа. Представление исходной структуры задачи. Получение структурного решения задачи. Перспективы развития структуры системы.
 - 6. Виды связей.
 - 7. Виды вепольных структур. Назовите их.
 - 8. Что такое невепольная система? Дайте определение.

- 9. Что такое комплексный веполь? Виды комплексного вепо- ля.
- 10. Что такое внутренний комплексный веполь, внешний комплексный веполь, комплексный веполь на внешней среде, комплексный веполь на видоизмененной внешней среде? Приведите примеры.
 - 11. Что такое цепной веполь?
 - 12. Что такое двойной веполь?
 - 13. Виды устранения вредных связей.
 - 14. Нахождение технологического эффекта.

Вопросы к практическому занятию

- 1. Понятия вепольного анализа
- 2. Условные обозначения в вепольном анализе ТРИЗ
- 3. Виды вепольных систем в вепольном анализе ТРИЗ
- 4. Устранение вредных связей в вепольном анализе ТРИЗ
- 5. Нахождение нужного эффекта в вепольном анализе ТРИЗ

Литература: [1-4]

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №14

Практический АРИЗ

Цель: освоение вопросов темы и формирование компетенций при помощи практических заданий.

Планируемые результаты обучения:

- на основе знаний должен помнить и использовать социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе умений должен сохранять способность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе навыков должен поддерживать готовность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов).

В результате освоения темы формируются компетенции:

- ПК-3 (Способен организовать проведение научно-исследовательских и опытно-конструкторских разработок по отдельным разделам темы).

Занятие проводится в интерактивной форме: решение разноуровневых и проблемных задач.

Теоретическая часть

«АРИЗ — комплексная программа алгоритмического типа, основанная на законах развития технических систем и предназначенная для анализа и решения изобретательских

задач». Г.С. Альтшуллер

Изобретательская ситуация и изобретательская задача.

В ТРИЗ существуют понятия изобретательская ситуация и изобретательская задача. Наиболее точно эти понятия сформулировал автор ТРИЗ Г. С. Альтшуллер: «Исходную информацию, из которой предстоит выделить задачу, мы будем называть изобретательской ситуацией, или просто ситуацией. Ситуация — это описание устройства или процесса с указанием на какое-то недостающее качество.

Ситуации обычно лежат на виду, во всяком случае они хорошо известны каждому специалисту. Но ситуации (в отличие от задач) ничего не говорят о том, что допустимо менять и что менять не допустимо.

Вот типичная ситуация: «Парусный корабль при слабом ветре развивает малую скорость. Как быть?»

Такая ситуация порождает множество разных задач: как увеличить площадь парусов? Как лучше использовать имеющиеся паруса? Как вообще обойтись без парусов? Как уменьшить сопротивление воды?

... Часто говорят, что правильная постановка задачи — половина решения. Мысль справедливая, но незавершенная. Нужно уточнить: поскольку правильная постановка задачи — половина решения, «выправлять» задачу должен сам изобретатель. Нельзя требовать: «Поставьте задачу правильно, тогда я ее решу». Выработка правильных условий задачи — это и есть процесс решения. Абсолютно правильно поставленная изобретательская задача перестает быть задачей, ее решение становится очевидным.

Поначалу задача спрятана в изобретательской ситуации. Нужно уметь ее выделить. Бывает и так, что изобретателю предлагают уже выделенную задачу, но выделенную неправильно. В таких, случаях приходится возвращаться от неверной задачи к исходной ситуации и уже потом решать новую задачу».

Изобретательская ситуация — это нечеткое описание системы или ситуации с указанием цели, или недостатков {нежелательных эффектов — НЭ). Часто такое описание обладает неопределенностью формулировки. Одна изобретательская ситуация, как правило, содержит несколько разных изобретательских задач. Это могут быть максизадачи или мини-задачи.

Ситуация переводится в максимальную (макси-) или минимальную (мини-) задачи.

При решении макси-задачи: необходимо для определенной цели разработать принципиально новую TC.

Макси-задача - это:

- задача, требующая создания принципиально новой системы, например, замены ее физического принципа функционирования для определенной цели;
 - задача решается изменением надсистемы.

У мини-задачи другая цель: необходимо сохранить существующую систему, но обеспечить недостающее полезное действие или убрать имеющееся вредное свойство с минимальными изменениями.

Мини-задачу получают из изобретательской ситуации, вводя ограничения: все остается без изменений или упрощается, но при этом появляется требуемое действие (свойство), или исчезает вредное действие (свойство).

Вопросы и задания

Задание 1.

Задача. Мундир солдата

Ситуация. Времена Петра Первого. Солдаты после еды вытирали рукавом рот, а при насморке - нос. Как отучить солдат не портить мундирское сукно?

Это типовая изобретательская задача, имеющая много направлений решения, например:

- издать указ, запрещающий это делать;
- принимать строгие меры (вплоть до физических) к тем, кто нарушает указ;
 - поощрять солдат, которые этого не делают;
 - сделать так, чтобы солдаты не хотели этого делать;
 - сделать, чтобы солдаты не могли это делать;
 - другие варианты.

Решение

Петр Первый выбрал последнее направление для решения задачи. Как сделать, чтобы солдаты не могли вытирать рот и нос рукавом?

Указ Петра Первого, предписывал пришивать оловянные пуговицы к обшлагам рукавов солдатских мундиров с внешней стороны.

Вопросы

- 1. Что такое изобретательская ситуация?
- 2. Что такое изобретательская задача?
- 3. Что такое макси-задача?
- 4. Что такое мини-задача?
- 5. Что такое конфликтующая пара в АРИЗ?
- 6. Что такое изделие в АРИЗ?
- 7. Что такое инструмент в АРИЗ?
- 8. Что такое оперативные параметры?
- 9. Что такое оперативная зона?
- 10. Что такое оперативное время?
- 11. Что такое вещественно-полевой ресурс?

Вопросы к практическому занятию

1. Основные понятия практического АРИЗ

Литература: [1-4]

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №15

Методы развития творческого воображения

Цель: освоение вопросов темы и формирование компетенций при помощи практических заданий.

Планируемые результаты обучения:

- на основе знаний должен помнить и использовать социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
 - на основе умений должен сохранять способность применять

социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);

- на основе навыков должен поддерживать готовность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов).

В результате освоения темы формируются компетенции:

- ПК-3 (Способен организовать проведение научно-исследовательских и опытно-конструкторских разработок по отдельным разделам темы).

Занятие проводится в интерактивной форме: решение разноуровневых и проблемных задач.

Теоретическая часть

«Управление фантазией одно из качеств хорошо организованного мышления. И поскольку нет пределов улучшения организации мышления, нет пределов совершенствования фантазии». Г. С. Альтшуллер

Использование методов развития творческого воображения (РТВ) позволяет управлять психологической инерцией.

Психологическая инерция имеется у всех людей. Это положительное и отрицательное явление. Положительное, когда мы совершаем рутинные процессы и отрицательные в творческих процессах.

Существующая в ТРИЗ система РТВ представляет собой набор приемов фантазирования и специальных методов. Автор курса РТВ – писатель фантаст Генрих Альтов (Г. С. Альтшуллер). Он писал «Фантазия рассматривается как вектор («прыгучесть мысли»): важна не только длина прыжка, но и его направление. Курс РТВ нацелен, прежде всего, на получение УПРАВЛЯЕМОЙ ФАНТАЗИИ.

Творческое воображение для изобретателя также важно, как и общефизическое развитие для спортсмена. Какой бы великолепной техникой не владел спортсмен, но если у него не хватает сил (общефизической подготовки), то он никогда не покажет хорошего результата, а уж тем более рекорда. Точно также изобретателю, кроме знания методики изобретательства, необходима и «прыгучесть мысли», которая тренируется системой методов РТВ.

Пути преодоления психологической инерции существуют различные.

Так, Дж. Диксон утверждал, что «с ней относительно легко справиться, просто помня о ней!»

Постепенное снижение психологических барьеров осуществляется благодаря систематическому развитию творческого воображения с помощью специальных упражнений и чтения научно-фантастической литературы.

В качестве таких методов для тренировки воображения могут быть использованы простейшие приемы изобретательства {аналогия, инверсия, эмпатия и фантазия), некоторые методы активизации творческого процесса, например, такие как: мозговой штурм, морфологический анализ и метод фокальных объектов9. Для начала можно порекомендовать придумать с помощью этих методов фантастических животных, обитателей каких-то других планет и пр. Затем можно переходить к более реальным объектам, но не бояться, при этом, больше фантазировать. Постепенные занятия помогут Вам не бояться любых, даже кажущихся на первый взгляд нелепых или бредовых идей, и искать в них рациональное зерно. Такой путь может привести вас к новому применению некоторых вещей, понятий и к их более широкому толкованию. Систематические же занятия подобного рода приучат к рассмотрению объектов, процессов и понятий с самых разнообразных сторон.

В курс РТВ включены приемы фантазирования и методы РТВ10.

Перечислим основные методы РТВ:

- оператор «Размер-Время-Стоимость (РВС)» и параметрический оператор;
- метод моделирования маленькими человечками (ММЧ);
- фантограмма;
- ступенчатое конструирование;
- метод ассоциаций;
- метод тенденций;
- метод разложения и синтеза фантастических идей (метод «золотой рыбки);
- выявление скрытых свойств объекта;
- взгляд со стороны;
- изменение системы ценностей;
- ситуационные задания;
- шкала «Фантазия»;
- тесты Роршаха.

Вопросы и задания

Задание 1.

Задача 1. Землекопы (задача на преодоление психологической инерции) Условие задачи

Пять землекопов за 5 часов выкапывают 5 м канавы. Сколько потребуется землекопов, для того чтобы выкопать 100 м канавы за 100 часов? Ответ

Понадобятся те же пять землекопов, не больше. В самом деле, пять землекопов за 5 часов выкапывают 5 м канавы; значит, пять землекопов за 1 час вырыли бы 1 м канавы, а в 100 часов — 100 м.

Задача 2. Пострадавшие в ДТП (задача на преодоление психологической инерции)

Условие задачи

В больницу Сент-Джеймс (St. James's Hospital, Ireland) направляли всех пострадавших в результате несчастных случаев в городе. Больше всего было водителей и пассажиров, пострадавших в ДТП. Чтобы уменьшить их число, городские власти сделали обязательным пользование ремнями безопасности. Водители и пассажиры стали пристегиваться этими ремнями, но число ДТП осталось неизменным, а число пострадавших в них людей, которые поступали в больницу, даже увеличилось. Почему?

Ответ

Пользование ремнями безопасности уменьшило число погибающих при ДТП. Многие люди, которые без ремня безопасности погибли бы (и попали бы в морги), оставались в живых, но получали травмы, и им требовалось лечение. Поэтому число попадающих в больницу стало больше.

Это пример также и на системный подход.

Задание 2. Свет

Применить прием «наоборот» к объекту свет».

Для объекта свет, противоположное свойство «антисвет» - тьма.

Необходимо найти применение прибора, излучающего «антисвет». Например, такой источник может скрывать объекты, находящиеся под его излучением. Такой источник можно использовать, чтобы комфортно спать в освещенном месте, маскировка различных объектов, живых существ, в том числе и человека. Подумайте, как в этом случае изменилась стратегия и тактика военных действий. Можно было бы скрывать портящие пейзаж объекты, например, ремонт зданий и т. д.

Как бы изменился «Человек невидимка» Роберта Уэллса. Он бы мог динамично изменяться. Направляя источник антисвета, становиться невидимым во всем одеянии, и выключив этот источник, превращаться в обычного человека. Он мог бы направлять этот источник на кого-то другого или на какой-то объект.

Такой источник помог бы легче снимать фильмы, например, «Всадника без головы», инвалидов и т. д.

Такой прибор может вырезать или оставлять только определенный спектр света. Таким образом, можно изменять окраску предметов, создавать изображения и т. д. Как бы тогда изменилась живопись? Художнику нужно было бы только подбирать нужный спектр и расположить их в необходимых местах. Управляя источником, можно было бы сделать динамичную картину.

Подумайте, какие еще применения могут быть у антисвета? Как изменится окружающий мир?

Задание 3.

- 1. Регулярно развивайте творческое воображение. Желательно каждый день выбрать один из методов или приемов развития творческого воображения и применить его. Такая тренировка не займет у вас больше 10-15 минут в день.
- 2. Чередуйте приемы и методы. Постарайтесь использовать все приемы и методы.

Вопросы

- 1. Какова структура курса РТВ?
- 2. Назовите приемы фантазирования. Опишите их.
- 3. Назовите методы РТВ. Опишите их.
- 4. Что такое оператор PBC? Что такое параметрический оператор? В чем их отличие?
- 5. Что такое метод моделирования миленькими человечками (ММЧ)? Опишите правила пользования методом.

Вопросы к практическому занятию

- 1. Методы развития творческого воображения в общем представлении
- 2. Приемы фантазирования
- 3. Метод фантограмм
- 4. Метод ступенчатого конструирования
- 5. Метод ассоциаций

- 6. Метод тенденций
- 7. Метод разложения и синтеза фантастических идей (метод золотой рыбки)
 - 8. Метод выявления скрытых свойств объекта
 - 9. Метод взгляда со стороны
 - 10. Метод изменения системы ценностей
 - 11. Метод ситуационного задания
 - 12. Шкала «Фантазия»
 - 13. Тест Роршаха
 - 14. Другие виды развития творческого воображения
 - 15. Оператор РВС
 - 16. Метод ММЧ
 - 17. Прогноз на будущее

Литература: [1-4]

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №16

Системное мышление. Эволюционное мышление. Мышление через противоречие. Ресурсное мышление. Моделирование

Цель: освоение вопросов темы и формирование компетенций при помощи практических заданий.

Планируемые результаты обучения:

- на основе знаний должен помнить и использовать социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе умений должен сохранять способность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов);
- на основе навыков должен поддерживать готовность применять социальное взаимодействие и реализовывать свою роль в команде в сфере искусства и культуры принятия решений (ТРИЗ и других методов).

В результате освоения темы формируются компетенции:

- ПК-3 (Способен организовать проведение научно-исследовательских и опытно-конструкторских разработок по отдельным разделам темы).

Занятие проводится в интерактивной форме: решение разноуровневых и проблемных задач.

Теоретическая часть

Основные элементы системного подхода:

- 1. Система;
- 2. Иерархия;
- 3. Взаимосвязи и взаимовлияния;

- 4. Причинно-следственные связи;
- 5. Системность и системные требования;
- 6. Эволюционное развитие;
- 7. Учет изменений и их влияний;
- 8. Целеполагание;
- 9. Подход «Анти».

Система — это множество элементов, взаимосвязанных и взаимодействующих между собой, которые образуют единое целое, обладающее свойствами, не присущими составляющим его элементам, взятым в отдельности.

Такое свойство называют системный эффект или эмерджентность.

Иерархия системы:

- подсистемы;
- система;
- надсистема;
- внешняя среда.

В системном подходе необходимо учитывать влияние подсистем на систему, системы на надсистему и окружающую среду, и обратное воздействие надсистемы и окружающей среды на систему и подсистемы.

Системность — это свойство, заключающееся в согласовании всех взаимодействующих объектов, включая окружающую среду. Такое взаимодействие должно быть полностью сбалансировано.

Системные требования:

- 1. Система должна отвечать своему предназначению.
- 2. Система должна быть жизнеспособной.
- 3. Система не должна отрицательно влиять на расположенные рядом объекты и окружающую среду.
 - 4. При построении системы необходимо учитывать закономерности ее развития.

Системный подход подразумевает учет любых изменений и их влияний на систему. Изменения могут происходить во времени и по условию.

Решение сложных задач зачастую невозможно «в лоб», поэтому задачу разбивают на подзадачи. Это еще одна составляющая системного подхода.

Вопросы и задания

Задание 1.

- 1. Приведите примеры системного подхода.
- 1.1. В разработке новой техники.
- 1.2. В природе.
- 1.3. В различных науках.
- 1.4. В бизнесе.
- 1.5. В жизни, и т. д.

Задание 2.

Решите задачи, используя системный подход.

Задача 1. Капитан Блад

Условие задачи

Капитан Питер Блад, герой романа Рафаэля Саббатини «Одиссея капитана Блада», отправляется на вражеский корабль для переговоров.

Как ему обеспечить безопасность жизни его и его товарищей? Разбор задачи

Осуществим разбор по логике АРИЗ.

- АП. Посещение вражеского корабля опасно для жизни капитана Блада и его товарищей.
- ТП. Необходимость переговоров на корабле противника опасно для жизни капитана Блада и его товарищей.
- ИКР. Переговоры проводятся на корабле противника, но это безопасно для жизни капитана Блада и его товарищей.
- ФП. Капитан Блад и его товарищи должны быть на корабле противника, чтобы вести переговоры, и не должны быть на корабле противника, чтобы им не грозила опасность.

Способ разрешения противоречия - во времени.

Решение

Капитан Блад поручает помощнику через час произвести холостой выстрел из пушки. В критический момент переговоров раздается выстрел, и Блад объясняет, что это предупреждение, и если через десять минут парламентеры не вернутся, то вражеский корабль будет потоплен. Это спасло жизнь ему и его спутникам.

Капитан Блад учел причинно-следственные связи и заранее (прием 10. Принцип предварительного исполнения) предпринял действие, чтобы не было плохого результата.

Задача 2. Сигареты

Условие задачи

Как получить крупную сумму денег за выкуренные сигареты?

Разбор задачи

- АП. Необходимо получить крупную сумму денег за выкуренные сигареты.
- ТП. Противоречие между потребностью выкурить сигареты и за отсутствующие (выкуренные) сигареты получить крупную сумму.
 - ИКР. Сигареты выкурены и получена за них крупная сумма.
- ФП. Сигареты должны существовать, чтобы за них получить деньги, и не должны существовать, так как их выкурили.

Способ разрешения противоречия

- по условию.

Решение

Некий англичанин застраховал запас сигар от огня, выкурил их и пришел требовать страховку. Поскольку сигары сгорели, суд должен присудить выплату страховой премии.

Задача 2. Инквизиция

Условие задачи

Много веков тому назад в Испании очередного подозреваемого вызывают к инквизитору. Как правило, это был смертный приговор.

Инквизитор, улыбаясь, говорит подозреваемому: «У меня сегодня

хороший день, и я хочу оставить тебе шанс на жизнь. Вот две свернутые бумажки. На одной написано: «Жизнь», на другой – «Смерть». Тяни свой жребий».

Подозреваемый побледнел, сразу понял, что на обеих написано: «Смерть».

Как ему спасти свою жизнь?

Разбор задачи

- АП. Как спасти свою жизнь?
- ТП. Спасение жизни невозможно, так как на двух бумажках написано «Смерть».
- ИКР. Жизнь спасается при наличии двух бумажках, на которых написано «Смерть».
- ФП. На двух бумажках должно быть написано «Смерть», так как это сделал инквизитор, и на одной из них не должно быть написано «Смерть», так как необходимо спасти жизнь.

Способ разрешения противоречия

- по условию.

Решение

Увидел: «Смерть», а прочитал: «Жизнь» и съел бумажку, сказав, что он съел «Жизнь», чтобы жить, а если ему не верят, то можно посмотреть, что осталось на второй бумажке, а там написано «Смерть». Инквизитор ведь не признается.

Использовали прием 13. Наоборот.

Вопросы

- 1. Что такое системное мышление?
- 2. Перечислите основные понятия системного подхода.
- 3. Назовите основные элементы иерархии системы.
- 4. Что такое системный оператор?
- 5. Назовите основные оси системного оператора.

Вопросы к практическому занятию

- 16.1. Основные понятия системного подхода
- 17.1. Эволюционное мышление в общем представлении
- 17.2. Выявление закономерностей развития систем
- 17.3. Использование законов развития систем
- 18.1. Мышление через противоречие в общем представлении
- 19.1. Ресурсное мышление в общем представлении
- 20.1. Виды моделей
- 20.2. Инструменты моделирования в ТРИЗ

Литература: [1-4]

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Альтшуллер, Г. С. Найти идею. Введение в ТРИЗ-теорию решения изобретательских задач : [науч. изд.] / Г.С. Альтшуллер. М. : Альпина Бизнес Букс, 2007. 400 с. : ил. Прил.: с. 223-399. Библиогр. в подстроч. примеч. ISBN 978-5-9614-0534-7, экземпляров 8
- 2. Шпаковский, Н. А. ТРИЗ. Анализ технической информации и генерация новых идей: [учеб. пособие] / Н.А. Шпаковский. М.: ФОРУМ, 2010. 264 с.: ил. (Высшее образование). Прил.: с. 254-260. Библиогр.: с. 248-253. ISBN 978-5-911134-389-7, экземпляров 1
- 3. Тимофеева, Ю. Ф. Основы творческой деятельности. Часть 1. Эвристика, ТРИЗ Электронный ресурс: Учебное пособие / Ю. Ф. Тимофеева. Москва: Прометей, 2012. 368 с. Книга находится в премиум-версии ЭБС IPR BOOKS. ISBN 978-5-4263-0119-1, экземпляров неограничено
- 4. Научное творчество: инновационные методы в системе многоуровневого непрерывного креативного образования НФТМ-ТРИЗ: учебное пособие / М.М. Зиновкина, Р.Т. Гареев, П.М. Горев, В.В. Утемов. Киров: Изд-во ВятГГУ, 2013. 109 с.: ил. http://biblioclub.ru/. Библиогр.: с. 96-99. ISBN 978-5-85271-495-4, экземпляров неограничено

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Методические указания

по выполнению самостоятельной работы по дисциплине «Искусство и культура принимать решения (ТРИЗ и другие методы»

для студентов направления подготовки 18.03.01 Химическая технология, направленность (профиль) Технология неорганических веществ

(ЭЛЕКТРОННЫЙ ДОКУМЕНТ)

СОДЕРЖАНИЕ

Введение	.3
1 Общая характеристика самостоятельной работы студента при изучении	
дисциплины	.5
2 План-график выполнения самостоятельной работы	6
3 Контрольные точки и виды отчетности по ним	.7
4 Описание показателей и критериев оценивания компетенций на различных	
этапах их формирования, описание шкал оценивания	.7
5 Тематический план дисциплины	8
6 Вопросы для собеседования	9
7 Методические рекомендации по изучению теоретического материала1	1
8 Методические рекомендации по организации самостоятельной работы	
студентов1	2
9 Методические рекомендации при работе над конспектом во время	
проведения лекции1	2
10 Методические рекомендации по подготовке к практическим занятиям1	3

Введение

Настоящее пособие разработано на основе:

- Федерального закона от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- Федеральных государственных образовательных стандартов высшего образования (далее ФГОС ВО);
 - нормативно-методических документов Минобрнауки России;
 - Устава ФГАОУ ВО «Северо-Кавказский федеральный университет»;
- —Приказом Минобрнауки России от 06.04.2021 N 245 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры» (Зарегистрировано в Минюсте России 13.08.2021 N 64644);
- -локальных нормативных актов $\Phi\Gamma AOY$ BO «Северо-Кавказский федеральный университет».

На современном рынке труда конкурентоспособным может стать только квалифицированный работник соответствующего уровня и профиля, компетентный, свободно владеющей своей профессией и ориентированный в смежных областях деятельности, способный к эффективной работе по специальности на уровне мировых стандартов и готовый к постоянному профессиональному росту.

Самостоятельная работа студента направлена на достижение целей подготовки специалистов-профессионалов, активное включение обучаемых в сознательное освоение содержания образования, обеспечение мотивации, творческое овладение основными способами будущей профессиональной деятельности. Чтобы подготовить и обучить такого профессионала, высшим учебным заведениям необходимо скорректировать свой подход к планированию и организации учебно-воспитательной работы. Это в равной степени относится к изменению содержания и характера учебного процесса. В современных реалиях задача преподавателя высшей школы заключается в организации и направлении познавательной деятельности студентов, эффективность которой во многом зависит от их самостоятельной работы. В свою очередь, самостоятельная работа студентов должна представлять собой не просто самоцель, а средство достижения прочных и глубоких знаний, инструмент формирования активности и самостоятельности студентов.

В связи с введением в образовательный процесс новых образовательных стандартов, с уменьшением количества аудиторных занятий по дисциплинам возрастает роль самостоятельной работы студентов. Возникает необходимость оптимизации самостоятельной работы студентов (далее - СРС). Появляется необходимость модернизации технологий обучения, что существенно меняет подходы к учебнометодическому и организационно-техническому обеспечению учебного процесса.

Данная методическая разработка содержит рекомендации по организации, управлению и обеспечению эффективности самостоятельной работы студентов в процессе обучения в целях формирования необходимых компетенций.

Самостоятельная работа студентов является обязательным компонентом учебного процесса для каждого студента и определяется учебным планом. Виды самостоятельной работы студентов определяются при разработке рабочих программ и учебных методических комплексов дисциплин содержанием учебной дисциплины. При определении содержания самостоятельной работы студентов следует учитывать их уровень самостоятельности и требования к уровню самостоятельности выпускников для того, чтобы за период обучения искомый уровень был достигнут. Так, удельный вес самостоятельной работы при обучении в очной форме составляет до 50% от количества

аудиторных часов, отведённых на изучение дисциплины, в заочной форме - количество часов, отведенных на освоение дисциплины, увеличивается до 90%.

Самостоятельная работа определяется как индивидуальная или коллективная учебная деятельность, осуществляемая без непосредственного руководства педагога, но по его заданиям и под его контролем.

Самостоятельная работа — это познавательная учебная деятельность, когда последовательность мышления студента, его умственных и практических операций и действий зависит и определяется самим студентом. Самостоятельная работа студентов способствует развитию самостоятельности, ответственности и организованности, творческого подхода к решению проблем учебного и профессионального уровня, что в итоге приводит к развитию навыка самостоятельного планирования и реализации деятельности.

Целью самостоятельной работы студентов является овладение необходимыми компетенциями по своему направлению подготовки, опытом творческой и исследовательской деятельности.

На основании компетентностного подхода к реализации профессиональных образовательных программ, видами заданий для самостоятельной работы являются:

- для овладения знаниями: чтение текста (учебника, первоисточника, дополнительной литературы), составление плана текста, графическое изображение структуры текста, конспектирование текста, выписки из текста, работа со словарями и справочниками, ознакомление с нормативными документами, учебно-исследовательская работа, использование аудио- и видеозаписей, компьютерной техники и информационнотелекоммуникационной сети Интернет и др.
- для закрепления и систематизации знаний: работа с конспектом лекции, обработка текста (учебника, первоисточника, дополнительной литературы, аудио и видеозаписей), повторная работа над учебным материалом, составление плана, составление таблиц для систематизации учебного материала, ответ на контрольные вопросы, заполнение рабочей тетради, аналитическая обработка текста (аннотирование, рецензирование, реферирование, конспект-анализ и др.), завершение аудиторных практических работ и оформление отчётов по ним, подготовка мультимедиа сообщений/докладов выступлению на семинаре (конференции), материаловпрезентаций, подготовка реферата, составление библиографии, тематических кроссвордов, тестирование и др.
- для формирования умений: решение задач и упражнений по образцу, решение вариативных задач, выполнение чертежей, схем, выполнение расчетов (графических работ), решение ситуационных (профессиональных) задач, подготовка к деловым играм, проектирование и моделирование разных видов и компонентов профессиональной деятельности, рефлексивный анализ профессиональных умений с использованием аудио-и видеотехники и др.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, конкретной тематики самостоятельной работы, уровня сложности, уровня умений студентов.

Контроль результатов самостоятельной работы студентов может осуществляться в пределах времени, отведенного на обязательные учебные занятия по дисциплине и внеаудиторную самостоятельную работу студентов по дисциплине, может проходить в письменной, устной или смешанной форме.

Самостоятельная работа проводится в виде упражнений при изучении нового материала, упражнений в процессе закрепления и повторения, упражнений проверочных и контрольных работ, а также для самоконтроля.

Для организации самостоятельной работы необходимы следующие условия:

1. готовность студентов к самостоятельному труду;

- 2. наличие и доступность необходимого учебно-методического и справочного материала;
 - 3. консультационная помощь.

Самостоятельная работа может проходить в лекционном кабинете, компьютерном зале, библиотеке, дома. Самостоятельная работа способствует формированию компетенций, тренирует волю, воспитывает работоспособность, внимание, дисциплину и ответственность.

1 Общая характеристика самостоятельной работы студента при изучении дисциплины

Дисциплина «Искусство и культура принимать решения (ТРИЗ и другие методы)» относится к блоку части, формируемой участниками образовательных отношений учебного плана. Она направлена на формирование профессиональных компетенций обучающихся в процессе выполнения работ, определенных $\Phi \Gamma OC$ BO.

Наименование компетенций:

Код, формулировка	Код, формулировка	Планируемые результаты обучения
компетенции	индикатора	по дисциплине (модулю),
	•	характеризующие этапы
		формирования компетенций,
		индикаторов
УК-3 - Способен	ИД-1 участвует в межличностном	Пороговый уровень
осуществлять социальное	и групповом взаимодействии,	понимает: российской правовой
взаимодействие и	используя инклюзивный подход,	системы и российского
реализовывать свою роль в	эффективную коммуникацию,	законодательства, способы определения
команде	методы командообразования и	круга задач в рамках поставленной цели
, ,	командного взаимодействия при	и выбора оптимальных основы способов
	совместной работе в рамках	их решения, исходя из действующих
	поставленной задачи	правовых норм, имеющихся ресурсов и
		ограничений, содержание и границы
		пространства глобальной военно-
		политической безопасности
		Повышенный уровень
		понимает: методы межличностной
		коммуникации, обеспечивающие
		взаимодействие в команде; способы и
		нормы социального взаимодействия для
		реализации своей роли в команде;
		участвует в межличностном и
		групповом взаимодействии, используя
		инклюзивный подход, эффективную
		коммуникацию, методы
		командообразования и командного
		взаимодействия при совместной работе
		в рамках поставленной задачи
	ИД-2 обеспечивает работу	Пороговый уровень
	команды для получения	использует: круг задач в рамках
	оптимальных результатов	поставленной цели и выбирать
	совместной работы, с учетом	оптимальные способы их решения,
	индивидуальных возможностей её	исходя из действующих правовых норм,
	членов, использования	имеющихся ресурсов и ограничений
	методологии достижения успеха, методов, информационных	самостоятельно анализировать
	технологий и технологий	социально-политическую и научную
	форсайта	литературу, использовать этические и
	φοροιπτα	правовые нормы, регулирующие
		отношение человека к человеку,
		обществу, окружающей среде

Повышенный уровень использует: методы межличностной коммуникации, обеспечивающие взаимодействие в команде; способы и нормы социального взаимодействия для реализации своей роли в команде; обеспечивает работу команды для получения оптимальных результатов совместной работы, с учетом индивидуальных возможностей еë членов, использования методологии достижения успеха, методов, информационных технологий технологий форсайта ИЛ-3 обеспечивает выполнение Пороговый уровень поставленных задач на основе применяет: инструментарий мониторинга командной работы и сравнительного анализа значимости своевременного реагирования на «традиционных» и «новых» угроз, их существенные отклонения приоритетности, быть способным выявлять новые качества системы глобальной безопасности после окончания холодной войны Повышенный уровень **применяет**: методы участия в командной работе, в социальных проектах, распределения ролей в условиях командного взаимодействия; методами и способами социального взаимодействия для реализации своей роли в команде; обеспечивает выполнение поставленных задач на основе мониторинга командной работы и своевременного реагирования на существенные отклонения

В рамках курса дисциплины «Искусство и культура принимать решения (ТРИЗ и другие методы)» самостоятельная работа студентов находит активное применение и включает в себя различные виды деятельности:

- подготовка к практическим занятиям, в том числе работа с методическими указаниями, средствами массовой информации;
- подготовка к лекциям, в том числе самостоятельное углубленное изучение теоретического курса по рекомендованной литературе;
- подготовка к промежуточной аттестации.

Цель самостоятельной работы студента при подготовке к лекциям заключается в получении новых знаний, приобретенных при более глубоком изучении литературы по дисциплине.

Залачи:

- доработка и повторение конспектов лекции;
- осмысление содержания лекции, логической структуры, выводов.

Цель самостоятельной работы студента при подготовке к практическим занятиям заключается в углублении, расширении, детализировании знаний, полученных на лекциях в обобщенной форме.

Задачи:

- развить способность применять полученные знания на практике при решении конкретных задач;
- проверить знания студентов, полученные на лекциях и при самостоятельном изучении литературы.

2 План-график выполнения самостоятельной работы

Таблица 1 – Виды самостоятельной работы для очной формы обучения

Коды		Средства и	Объем ч	асов, в том ч	исле
реализуем		технологии	CPC	Контактн	Всего
ых	Вид деятельности	оценки		ая работа	
компетенц	студентов			c	
ий,	студентов			преподава	
индикатор				телем	
а(ов)					
		2 семестр			
ИД-1 УК-3	Подготовка к	Собеседование	15		15
ИД-2 УК-3	практическому занятию				
ИД-3 УК-3					
ИД-1 УК-3	Самостоятельное	Собеседование	15		15
ИД-2 УК-3	изучение литературы				
ИД-3 УК-3					
ИД-1 УК-3	Подготовка к зачету с	Вопросы к	15		15
ИД-2 УК-3	оценкой	зачету с			
ИД-3 УК-3		оценкой			
Итого за 2 семестр			45		45
		Итого	45		45

3 Контрольные точки и виды отчетности по ним

В рамках рейтинговой системы успеваемость студентов по каждой дисциплине оценивается в ходе текущего контроля и промежуточной аттестации.

4 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

формирования, описание шкал оценивания					
Уровни					
сформированности компетенци(ий), индикатора (ов)	омпетенци(ий), vpoвень не Минимальный		Средний уровень (хорошо) 4 балла	Высокий уровень (отлично) 5 баллов	
		омпетенция: УК-3			
Результаты обучения по дисциплине (модулю): Индикатор: ИД-1 УК-3 участвует в межличностном и групповом взаимодействии, используя инклюзивный подход, эффективную коммуникацию, методы командообразования и командного взаимодействия при совместной работе в рамках поставленной задачи	не понимает основы российской правовой системы и российского законодательства, способы определения круга задач в рамках поставленной цели и выбора оптимальных способов их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений, содержание и границы пространства глобальной военнополитической безопасности	не в достаточном объеме понимает основы российской правовой системы и российского законодательства, способы определения круга задач в рамках поставленной цели и выбора оптимальных способов их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений, содержание и границы пространства глобальной военнополитической безопасности	Понимает основы российской правовой системы и российского законодательства, способы определения круга задач в рамках поставленной цели и выбора оптимальных способов их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений, содержание и границы пространства глобальной военнополитической безопасности	Понимает методы межличностно й коммуникации, обеспечивающ ие взаимодействи е в команде; способы и нормы социального взаимодействи я для реализации своей роли в команде; участвует в межличностно м и групповом взаимодействи и, используя инклюзивный подход, эффективную коммуникацию, методы командообразо вания и командного взаимодействи я при совместной работе в рамках поставленной задачи	
ИД-2 УК-3 обеспечивает работу команды для получения оптимальных результатов совместной работы, с учетом индивидуальных возможностей её членов,	не применяет круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя	не в достаточном объеме применяет круг задач в рамках поставленной цели и выбирать оптимальные способы их решения,	применяет круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из	учитывает и оценивает методы межличностно й коммуникации, обеспечивающ	

использования методологии достижения успеха, методов, информационных технологий и технологий форсайта ИД-3 УК-3 обеспечивает	из действующих правовых норм, имеющихся ресурсов и ограничений самостоятельно анализировать социально-политическую и научную литературу, использовать этические и правовые нормы, регулирующие отношение человека к человеку, обществу, окружающей среде	исходя из действующих правовых норм, имеющихся ресурсов и ограничений самостоятельно анализировать социально-политическую и научную литературу, использовать этические и правовые нормы, регулирующие отношение человека к человеку, обществу, окружающей среде	действующих правовых норм, имеющихся ресурсов и ограничений самостоятельно анализировать социально-политическую и научную литературу, использовать этические и правовые нормы, регулирующие отношение человека к человеку, обществу, окружающей среде	ие взаимодействи е в команде; способы и нормы социального взаимодействи я для реализации своей роли в команде; обеспечивает работу команды для получения оптимальных результатов совместной работы, с учетом индивидуальны х возможностей её членов,
ид-3 УК-3 обеспечивает выполнение поставленных задач на основе мониторинга командной работы и своевременного реагирования на существенные отклонения	не использует инструментарий сравнительного анализа значимости «традиционных» и «новых» угроз, их приоритетности, быть способным выявлять новые качества системы глобальной безопасности после окончания холодной войны	не в достаточном объеме использует инструментарий сравнительного анализа значимости «традиционных» и «новых» угроз, их приоритетности, быть способным выявлять новые качества системы глобальной безопасности после окончания холодной войны	использует инструментарий сравнительного анализа значимости «традиционных» и «новых» угроз, их приоритетности, быть способным выявлять новые качества системы глобальной безопасности после окончания холодной войны	учитывает и оценивает методы участия в командной работе, в социальных проектах, распределения ролей в условиях командного взаимодействи я; методами и способами социального взаимодействи я для реализации своей роли в команде; обеспечивает выполнение поставленных задач на основе мониторинга командной работы и своевременног о реагирования на существенные отклонения

5 Тематический план ДИСЦИПЛИНЫ

N	Раздел (тема) дисциплины и краткое содержание	Формируемые	очная форма
---	---	-------------	-------------

			обуч преп /из н пра	ктная ра ающих одавате их в фо ктическ товки, ч	ся с лем рме ой	забота, часов
		компетенции, индикаторы	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа, часов
1	Традиционная технология решения задач	ИД-1 УК-3	1,5	3,0		
		ИД-2 УК-3 ИД-3 УК-3			-	7
2	Обзор теории решения изобретательских задач (ТРИЗ)	ИД-3 УК-3 ИД-1 УК-3 ИД-2 УК-3 ИД-3 УК-3	1,5	3,0	-	8
3	Системный подход	ИД-1 УК-3 ИД-2 УК-3 ИД-3 УК-3	3,0	6,0	-	7
	Ресурсы в общем представлении	ИД-1 УК-3 ИД-2 УК-3 ИД-3 УК-3	1,5	3,0	-	8
4	Законы развития систем	ИД-1 УК-3 ИД-2 УК-3 ИД-3 УК-3	1,5	6,0	-	7
5	Логика решения нестандартных задач	ИД-1 УК-3 ИД-2 УК-3 ИД-3 УК-3	3,0	3,0	-	8
	ИТОГО за 2 семестр		12	24	-	45
	ОТОГО		12	24	-	45

№ Темы	Наименование тем дисциплины, их краткое	Объем	Из них практическая
дисциплин	содержание	часов	подготовка, часов
ы			
2 семестр			
1	Традиционная технология решения задач 1.1. Метод «проб и ошибок» 1.2. Психологическая инерция 1.3. Отсутствие системного мышления	3,0	
	Обзор теории решения изобретательских задач (ТРИЗ) 2.1. Сущность ТРИЗ 2.2. Уровни изобретений 2.3. Функции ТРИЗ 2.4. Структура ТРИЗ 2.5. Использование инструментов ТРИЗ 2.6. Изобретательское мышление	3,0	
3	. Системный подход 3.1. Основные определения системного подхода	6,0	

	3.2. Системность		
	3.3. Системный оператор		
	3.4. Учет влияний		
4	Идеальность	3,0	
	4.1. Идеальная система	ŕ	
	4.2. Показатель степени идеальности		
	4.3. Идеальный конечный результат (ИКР)		
5	Тема 5. Ресурсы в общем представлении	6,0	
	5.1. Сущность ресурсов		
	5.2. Примеры ресурсов		
6	Тема 6. Противоречия в общем представлении	3,0	
	6.1. Понятие о противоречиях.	ŕ	
	6.2. Путь к идеи решения		
	Итого за 2 семестр	24	
	Итого	24	

6 Вопросы для собеседования

- 1. Традиционная технология решения задач. Приёмы и способы социализации личности и социального взаимодействия.
- 2. Обзор теории решения изобретательских задач (ТРИЗ) в командной работе
- 3. Системный подход в командной работе
- 4. Идеальность в командной работе
- 5. Ресурсы в общем представлении в командной работе
- 6. Противоречия в общем представлении в командной работе
- 7. Приемы разрешения противоречий в общем представлении в командной работе
- 8. Законы развития систем в командной работе
- 9. Логика решения нестандартных задач в командной работе
- 10. Система приемов разрешения противоречий в командной работе
- 11. Ресурсы в системе классификации ТРИЗ в командной работе
- 12. Эффекты в ТРИЗ в командной работе
- 13. Вепольный анализ. Практический АРИЗ в командной работе
- 14. Практический АРИЗ в командной работе
- 15. Методы развития творческого воображения в командной работе
- 16. Эволюционное мышление в командной работе, распределения ролей в условиях командного взаимодействия
- 17. Мышление через противоречие в командной работе
- 18. Мышление через противоречие в общем представлении
- 19. Ресурсное мышление в командной работе
- 20. Моделирование в командной работе

7 Методические рекомендации по изучению теоретического материала

Самостоятельная работа студента в ходе **лекционных** занятий включает изучение вопросов теории, вынесенных на самостоятельное изучение в соответствии с рабочей программой дисциплины, проработку лекционных материалов для подготовки к контролю знаний на лекционных занятиях (опрос) и подготовку вопросов для обсуждения при консультации с преподавателем.

Работа с лекционным материалом не завершается по окончании лекции. На 2 часа лекции необходимо затратить около часа на работу с конспектом. За это временя необходимо перечитать записи, пополнить их данными, которые удалось запомнить из речи преподавателя, но не удалось записать. Работая с конспектом, нужно отметить непонятные вопросы для выяснения которые у преподавателя на консультации. Отдельно следует выделить связанные с темой лекции вопросы, которые преподаватель поручил проработать самостоятельно.

Активно проработанный в течение семестра конспект лекций в дальнейшем служит основой для подготовки к экзамену.

Вопросы для самостоятельного изучения представлены в п. 5.

Самостоятельная работа в ходе **практикума** включает выполнение заданий к практическим занятиям, в частности решение задач различного уровня сложности. Задачи приведены в методических указаниях к практическим занятиям и фондах оценочных средств.

Зная тему практического занятия, необходимо готовиться к нему заблаговременно. Для эффективной подготовки к практическому занятию необходимо иметь методическое руководство к практическому занятию.

Критерии оценивания практических занятий представлен в фонде оценочных средств.

При проверке практического задания, оцениваются: последовательность и рациональность изложения материала; полнота и достаточный объем ответа; научность в оперировании основными понятиями; использование и изучение дополнительных литературных источников Критерии оценивания результатов самостоятельной работы: вопросы для собеседования и экзамена приведены Фонде оценочных средств по дисциплине

8 Методические рекомендации по организации самостоятельной работы студентов

Самостоятельная работа является одним из видов учебной деятельности обучающихся, способствует развитию самостоятельности, ответственности и организованности, творческого подхода к решению проблем учебного и профессионального уровня.

Аудиторная самостоятельная работа по учебной дисциплине осуществляется на учебных занятиях под непосредственным руководством преподавателя и по его заданию.

Внеаудиторная самостоятельная работа выполняется по заданию преподавателя без его непосредственного участия.

Виды заданий для внеаудиторной самостоятельной работы, их содержание и характер могут иметь вариативный и дифференцированный характер, учитывать специфику изучаемой учебной дисциплины, индивидуальные особенности обучающегося.

Контроль самостоятельной работы и оценка ее результатов организуется как единство двух форм:

- 1. самоконтроль и самооценка обучающегося;
- 2. контроль и оценка со стороны преподавателя.

9 Методические рекомендации при работе над конспектом во время проведения лекции

В ходе лекционных занятий вести конспектирование учебного материала. Обращать внимание на категории, формулировки, раскрывающие содержание тех или иных явлений и процессов, научные выводы и практические рекомендации, положительный опыт в ораторском искусстве. Желательно оставить в рабочих конспектах поля, на которых делать пометки из рекомендованной литературы, дополняющие материал прослушанной лекции, а также подчеркивающие особую важность тех или иных теоретических положений. Задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций.

В ходе подготовки к семинарам изучить основную литературу, ознакомиться с дополнительной литературой, новыми публикациями в периодических изданиях: журналах, газетах и т.д. При этом учесть рекомендации преподавателя и требования учебной программы. Дорабатывать свой конспект лекции, делая в нем соответствующие записи из литературы, рекомендованной преподавателем и предусмотренной учебной программой. Подготовить тезисы для выступлений по всем учебным вопросам, выносимым на семинар. Готовясь к докладу или реферативному сообщению, обращаться за методической помощью к

преподавателю. Составить план-конспект своего выступления. Продумать примеры с целью обеспечения тесной связи изучаемой теории с реальной жизнью. Своевременное и качественное выполнение самостоятельной работы базируется на соблюдении настоящих рекомендаций и изучении рекомендованной литературы. Студент может дополнить список использованной литературы современными источниками, не представленными в списке рекомендованной литературы, и в дальнейшем использовать собственные подготовленные учебные материалы при написании работ.

10 Методические рекомендации по подготовке к практическим занятиям

Практическое занятия — один из самых эффективных видов учебных занятий, на которых студенты учатся творчески работать, аргументировать и отстаивать свою позицию, правильно и доходчиво излагать свои мысли перед аудиторией. Основное в подготовке и проведении практических занятий — это самостоятельная работа студента над изучением темы. Студент обязан точно знать план занятия либо конкретное задание к нему. На занятии обсуждаются узловые вопросы темы, однако там могут быть и такие, которые не были предметом рассмотрения на лекции. Могут быть и специальные задания к той или иной теме.

Готовиться к практическому занятию следует заранее. Необходимо внимательно ознакомиться с планом и другими материалами, уяснить вопросы, выносимые на обсуждение. Затем нужно подобрать литературу и другой необходимый, в т.ч. рекомендованный, материал (через библиотеку, учебно-методический кабинет кафедры и др.). Но прежде всего, следует обратиться к своим конспектам лекций и соответствующему разделу учебника. Изучение всех источников должно идти под углом зрения поиска ответов на выносимые на практико-ориентированные занятия вопросы.

Завершающий этап подготовки к занятиям состоит в выполнении индивидуальных заданий.

В случае пропуска занятия студент обязан подготовить материал и отчитаться по нему перед преподавателем в обусловленное время. Может быть предложено отдельным бакалаврам, ввиду их слабой подготовки, более глубоко освоить материал и прийти на индивидуальное собеседование.

Студент не допускается к зачету, если у него есть задолженность по практическим занятиям.