Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ефанов Альмий Пистерет СТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Должность: Директор Невиномысского федеральное государе твенное автономное образовательное Дата подписания: 11.10.2022 15:24:47 vчреждение высшего образования

уникальный программный ключ: «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» 49214306dd433e7a1b0f8632f645f9d53c99e3d0

УТВЕРЖДАЮ: И.о. зав кафедрой ХТМиАХП Е.Н Павленко

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля успеваемости и промежуточной аттестации по дисциплине «Моделирование химико- технологических процессов»

(ЭЛЕКТРОННЫЙ ДОКУМЕНТ)

Направление подготовки Профиль Квалификация выпускника Форма обучения Год начала обучения Изучается в 7 семестре

18.03.01 Химическая технология

Химическая технология неорганических веществ

Бакалавр Заочная 2021

Предисловие

Назначение: для проведения текущего контроля и промежуточной аттестации по

1.

дисциплине «Моделирование химико- технологических проце направления подготовки 18.03.01 Химическая технология	ссов» для студентов
2. Фонд оценочных средств текущего контроля и промеж разработан на основе рабочей программы дисциплины «Мод технологических процессов» в соответствии с образовательной в образования по направлению подготовки 118.03.01 Хими утвержденной на заседании Учебно-методического совета СКФ «»	целирование химико- программой высшего ическая технология,
3. Разработчик Антипина Е.С., доцент кафедры ХТМиАХП.	
4. ФОС рассмотрен и утвержден на заседании кафедры XTMиAX Протокол № от «»г.	Ш.
 ФОС согласован с выпускающей кафедрой ХТМиАХП. Протокол № от «»	
6. Проведена экспертиза ФОС. Члены экспертной группы, провод экспертизу:	дившие внутреннюю
Председатель (Ф.И.О., до	лжность)
(Ф.И.О., до	олжность)
(Ф.И.О., до	олжность).
Экспертное заключение: фонд оценочных средств отвечает оси федерального государственного образовательного стандарта выси направлению подготовки 18.03.01 Химическая технология (Зарегистрирован в Минюсте России 12.11.2015 г., № 3 формированию профессиональных компетенций.	шего образования по (уровень бакалавра)
<u> </u>	(подпись)
7. Срок действия ФОС	

Паспорт фонда оценочных средств для проведения текущего контроля и промежуточной аттестации

ия технологических
Į

процессов

Направление подготовки 18.03.01 Химическая технология

Профиль Химическая технология синтетических

биологически активных веществ, химико-

фармацевтических препаратов и косметических

средств

 Квалификация выпускника
 Бакалавр

 Форма обучения
 Заочная

 Учебный план
 2021

Код	Этап	Средства	Вид	Тип	Наименование	Колич	ество
оцениваемой	формиро-	И	контроля,	контроля	оценочного	задани	й для
компетенции	вания	технологи	аттестация		средства	каждого	уровня,
	компетенции	и оценки				гш	r.
	(№ темы)					Базовый	Продви нутый
ПК-2	Темы 1-6	Контрольн ая работа	текущий	письменный	Комплект заданий для контрольной работы	1	1
		Собеседо вание	текущий	устный	Вопросы для собеседования	2	1
		Зачет	промежу точный	устный	Вопросы для собеседования		

Составитель		Е.С. Антипина
	(подпись)	
« »	2021 г.	

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

	\mathbf{y}	ТВЕРЖДАЮ:
И.о.	зав. кас	редрой ХТМиАХП
		E.H. Павленко
«	>>>	2021 г.

Вопросы для собеседования

по дисциплине «Моделирование химико-технологических процессов»

Базовый уровень

- 1. Что представляет собой модель технологического объекта?
- 2. Какие группы уравнений входят в состав математического описания технологического объекта?
- 3. Какие уравнения применяют в математическом описании технологического объекта?
- 4. Назовите основные стадии построения математической модели технологического объекта.
- 5. Приведите этапы построения статической модели простой гидравлической системы.
 - 6. Каким уравнением описывается скорость протекания жидкости через клапан?
- 7. С какой целью при моделировании простой гидравлической системы используется функция sgn(x)?
 - 8. Приведите формулу для определения давления жидкости в закрытой емкости.
- 9. Каково балансовое уравнение простой гидравлической системы при статическом режиме?
- 10. Опишите алгоритм поиска корня уравнения F(x)=0 методом деления интервала пополам.
 - 11. Чем отличается динамическая модель от статической?
 - 12. Каким уравнением описывается давление в замкнутом объеме?
 - 13. Каковы начальные условия при решении дифференциального уравнения?
- 14. Какая встроенная функция программы MathCad используется для решения дифференциального уравнения?
- 15. Какие этапы включает построение компьютерной модели прямоточного теплообменника?
- 16. Какие допущения принимаются при математическом описании процесса теплопередачи в теплообменнике типа «труба в трубе»?
 - 17. Приведите уравнение теплового баланса прямоточного теплообменника.
- 18. Почему решение системы дифференциальных уравнений прямоточного теплообменника относится к задаче Коши?

- 19. Как влияет поверхность теплообмена на температурный режим теплообменника?
- 20. Какие этапы включает построение компьютерной модели противоточного теплообменника?
 - 21. Каковы условия движения потока при режиме идеального вытеснения?
- 22. Каким образом можно определить значение температуры, соответствующее максимальному значению скорости окисления диоксида серы?
- 23. Как рассчитывается время контактирования для достижения заданной степени превращения?
- 24. В каких случаях применяется математическое описание на основе экспериментальных данных (эмпирическая модель)?
 - 25. Какие методы используют для поиски коэффициентов уравнения регрессии?
 - 26. Что понимается под адекватностью математической модели?
- 27. Как проверяется качественное соответствие модели реальному технологическому объекту?
- 28. Как сокращается текущий интервал локализации минимума в методе дихотомии?
- 29. Как сокращается текущий интервал локализации минимума в методе деления интервала пополам?
 - 30. Как преобразовать задачу на поиск максимума в задачу на поиск минимума?
 - 31. Характерные особенности организации одномерного поиска.
- 32. В чем сущность метода квадратичной аппроксимации, используемого для поиска экстремума заданной функции?
 - 33. Какие функции для поиска экстремума имеются в программе MathCad.

Продвинутый уровень

- 1. Перечислите методы составления математического описания объекта.
- 2. Какие значения может принимать функция sgn(x)?
- 3. С какой целью осуществляется построение информационной матрицы системы уравнений МО простой гидравлической системы?
- 4. Приведите балансовое уравнение простой гидравлической системы для динамического режима.
 - 5. Какие методы решения дифференциальных уравнений Вы знаете?
 - 6. Приведите уравнение теплового баланса противоточного теплообменника.
- 7. Какие функции программы MathCad можно использовать для решения системы обыкновенных дифференциальных уравнений?
- 8. Почему решение системы дифференциальных уравнений противоточного теплообменника относится к краевой задаче?
 - 9. Приведите алгоритм решения краевой задачи.
 - 10. Как можно определить максимальное значение функции в системе MathCad?
 - 11. Приведите характеристическое уравнение реактора идеального вытеснения.
 - 12. Укажите основные задачи, решаемые при построении эмпирической модели.
 - 13. Какие методы используются для построения эмпирической модели?
 - 14. В чем сущность метода наименьших квадратов?
- 15. Для чего нелинейные функции при поиске коэффициентов уравнения преобразуют к линейному виду?

- 16. Приведите функции, имеющиеся в программе MathCad для вычисления регрессии.
- 17. Как проверяется количественное соответствие модели реальному технологическому объекту?
- 18. Сравните методы золотого сечения, Фибоначчи и дихотомического поиска по числу вычислений значений функций для достижения заданной точности при локализации минимума.
 - 19. Дайте геометрическую интерпретацию выбора точек в методе золотого сечения.
 - 20. Укажите отличие метода золотого сечения от метода дихотомии.
 - 21. Что такое унимодальная функция?
- 22. Сформулируйте необходимые и достаточные условия минимума функции одной переменной?
 - 23. Дайте геометрическую интерпретацию выбора точек в методе Фибоначчи.

Критерии оценки ответов при собеседовании:

Оценка «зачтено» выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения. Допускаются некоторые неточности, недостаточно правильные формулировки в изложении программного материала, затруднения при выполнении практических работ.

Оценка «не зачтено» выставляется студенту, если он не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы.

1. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедура проведения данного оценочного мероприятия включает в себя: собеседование по заданной теме.

Предлагаемые студенту задания позволяют проверить компетенции: ПК-2. Принципиальные отличия заданий базового уровня от повышенного заключатся в том, что они раскрывают творческий потенциал студента более ярко.

При подготовке к ответу студенту предоставляется право пользования планом ответа. При проверке задания, оцениваются

- последовательность и рациональность изложения материала;
- полнота и достаточный объем ответа;
- научность в оперировании основными понятиями;
- использование и изучение дополнительных литературных источников.

Составитель		Е.С. Антипина
•	(подпись)	_
«»_	2020 г.	

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ:								
И.о.	И.о. зав. кафедрой ХТМиАХП							
		Е.Н Павленко						
~	>>	2021 г.						

Комплект заданий для текущего контроля

по дисциплине «Моделирование химико-технологических процессов»

Tema: Применение MathCad для моделирования технологических объектов

Вопросы для контроля:

- 1. С помощью какого оператора можно вычислить выражение?
- 2. Как вставить текстовую область в документ MathCad?
- 3. Какие виды встроенных функций в MathCad Вам известны?
- 4. Как вставить встроенную функцию в документ MathCad?
- 5. Как построить график в среде MathCad?
- 6. Что представляет собой модель технологического объекта?
- 7. Перечислите методы составления математического описания объекта.
- 8. Какие группы уравнений входят в состав математического описания технологического объекта?
- 9. Какие уравнения применяют в математическом описании технологического объекта?
- 10. Назовите основные стадии построения математической модели технологического объекта.

Задания:

- 1. Изучите влияние температуры в интервале 400-660 °C на значение константы равновесия.
- 2. Составьте программу для расчета равновесной степени превращения диоксида серы, используя метод деления интервала пополам. (Равновесная степень превращения изменяется в пределах $x_p = 0-1$).
 - 3. Постройте график зависимости равновесной степени превращения от температуры.
- 4. Определите влияние температуры на константу скорости реакции и постройте график зависимости $k_I t$.
- 5. Постройте график зависимости скорости реакции при заданном значении температуры от степени превращения в интервале 0.01-0.95.

Проведите анализ полученных результатов.

\

Таблица 1 – Варианты заданий

	Значения параметров									
Вариант	И	сходные дан	ные	Зад. 2 и 5	Зад. 6	Зада	ние 10			
	a , %	b , %	Е , Дж/моль	tzad, °C	XZ	XO	xk			
1	11	10	89000	530	0.74	0	60			
2	5	14	88800	540	0.80	64	90			
3	11	9	88600	550	0.85	0	50			
4	7	11	88400	560	0.90	0	55			
5	8	10	88200	570	0.76	0	70			
6	9	8	88000	580	0.81	10	60			
7	8	13	87800	530	0.86	50	90			
8	7.5	12	89400	540	0.91	60	80			
9	7	10	89200	550	0.77	20	70			
10	6	13	89000	560	0.82	20	60			
11	10	6,7	88800	570	0.87	30	70			
12	6	12	88600	580	0.92	40	90			
13	8	9	88400	570	0.78	45	75			
14	11	8	88200	540	0.83	85	92			
15	8	11	88000	560	0.88	10	75			

Тема: Моделирование простой гидравлической системы

Вопросы для контроля:

- 1. Приведите этапы построения статической модели простой гидравлической системы.
- 2. Каким уравнением описывается скорость протекания жидкости через клапан?
- 3. С какой целью при моделировании простой гидравлической системы используется ϕ функция sgn(x)?
- 4. Какие значения может принимать функция sgn(x)?
- 5. Приведите формулу для определения давления жидкости в закрытой емкости.
- 6. Каково балансовое уравнение, приведенной на рисунке 2.1?
- 7. С какой целью осуществляется построение информационной матрицы системы уравнений МО простой гидравлической системы?
- 8. Приведите последовательность построения информационной матрицы.
- 9. Опишите алгоритм поиска корня уравнения F(x)=0 методом деления интервала пополам
- 10. Чем отличается динамическая модель от статической?
- 11. Каким уравнением описывается давление в замкнутом объеме?
- 12. Приведите балансовое уравнение простой гидравлической системы для динамического режима.
- 13. Каковы начальные условия при решении дифференциального уравнения?
- 14. Какие методы решения дифференциальных уравнений Вы знаете?

15. Как влияют значения коэффициентов пропускной способности k1 и k2 на время выхода системы на стационарный режим?

Задание: Составить статическую и динамическую модель простой гидравлической системы. Исходные данные приведены в таблице 2.

Таблица 2 – Варианты задания

D	Значения параметров								
Вариант	Р1, МПа	Р2, МПа	k_1	k_2	Н, м	S, m ²			
1	2,0	0,150	0,010	0,020	5	0,5			
2	2,2	0,145	0,012	0,018	6	0,6			
3	2,4	0,140	0,014	0,016	7	0,7			
4	2,6	0,135	0,016	0,014	8	0,8			
5	2,8	0,130	0,018	0,012	9	0,9			
6	3,0	0,125	0,020	0,010	10	1,0			
7	3,2	0,120	0,018	0,020	11	1,1			
8	3,4	0,115	0,016	0,018	12	1,2			
9	3,6	0,120	0,014	0,016	5	1,3			
10	3,8	0,125	0,012	0,014	6	1,5			
11	4,0	0,130	0,010	0,012	7	1,6			
12	4,2	0,135	0,015	0,010	8	1,7			
13	4,4	0,140	0,013	0,013	9	1,8			
14	4,6	0,145	0,011	0,011	10	1,9			
15	5,0	0,150	0,017	0,017	12	2,0			

Тема: Моделирование процесса теплообмена

Вопросы для контроля:

- Как подразделяются теплообменники по способу передачи тепла?
- Какие теплообменники получили наибольшее распространение в химической промышленности?
- Каковы преимущества теплообменников «труба в трубе»?
- Какие этапы включает построение компьютерной модели теплообменника?
- Приведите схему прямоточного теплообменника типа «труба в трубе».
- Какие допущения принимаются при математическом описании процесса теплопередачи в прямоточном теплообменнике типа «труба в трубе»?
- Приведите уравнение теплового баланса теплообменника.
- Почему решение системы дифференциальных уравнений прямоточного теплообменника относится к задаче Коши?
- Приведите уравнение теплового баланса противоточного теплообменника.
- Почему решение системы дифференциальных уравнений противоточного теплообменника относится к краевой задаче?
- Приведите график изменения температур теплоносителей по длине теплообменника при прямотоке теплоносителей.

– Приведите график изменения температур теплоносителей по длине теплообменника при противотоке теплоносителей.

Задание 1:

- 1. Математически описать работу прямоточного теплообменника «труба в трубе».
- 2. Проанализировать систему уравнений и определить последовательность расчета, построив информационную матрицу системы уравнений МО.
- 3. Составить блок-схему (алгоритм) расчета системы уравнений.
- 4. Реализовать алгоритм на любом языке программирования или в системах MathCad, MathLab.
- 5. Провести изучение влияния поверхности теплообмена и скорости подачи воды на конечную температуру охлаждения кислоты.

Задание 2:

- 6. Математически описать работу противоточного теплообменника «труба в трубе».
- 7. Проанализировать систему уравнений и определить последовательность расчета, построив информационную матрицу системы уравнений МО.
- 8. Составить блок-схему (алгоритм) расчета системы уравнений.
- 9. Реализовать алгоритм на любом языке программирования или в системах MathCad, MathLab.
- 10. Провести изучение влияния поверхности теплообмена и скорости подачи воды на конечную температуру охлаждения кислоты.

Таблица 3 – Варианты для выполнения задания

	Значения параметров								
Вариант	v1,	v2,	F,	dтр,	L,	Kt,	to ₁ ,	to ₁ ,	
	M^3/q	м ³ /ч	M^2	MM	M	$BT/(M^2 \cdot K)$	°C	°C	
1	1,5	3,2	5,4	48	36	530	80	5	
2	1,6	3,3	5,0	38	42	550	81	6	
3	1,7	3,4	5,7	38	48	630	82	7	
4	1,8	3,5	6,4	38	54	650	83	8	
5	1,9	3,8	4,8	57	27	640	84	9	
6	2,0	3,9	7,5	57	42	700	85	10	
7	2,1	4,0	6,4	57	36	680	86	11	
8	2,2	4,5	7,2	38	60	660	87	12	
9	2,1	4,4	6,4	57	36	640	86	11	
10	2,0	4,3	5,4	38	45	620	85	10	
11	1,9	4,2	7,2	48	48	600	84	9	
12	1,8	4,1	6,3	48	42	580	83	8	
13	1,7	4,0	6,8	48	45	560	82	7	
14	1,6	3,8	5,4	57	30	540	81	6	
15	1,5	3,6	4,3	38	36	520	79	5	

 $Cp1 = 2,75 \ кДж/кг \cdot K - средняя теплоемкость раствора азотной кислоты;$

 $Cp2 = 4,19 \text{ кДж/кг} \cdot \text{К} - \text{средняя теплоемкость воды;}$

 $K_{\scriptscriptstyle T} = 500 \; B_T/\text{m}^2 \cdot K; \; \rho_1 \!\!=\!\! 1335 \; \text{kg/m}^3; \; \rho_2 \!\!=\!\! 1000 \; \text{kg/m}^3.$

Тема: моделирование работы абсорбера в стационарном режиме

Вопросы для контроля

- 1. Какой процесс называется абсорбцией, какой десорбцией?
- 2. За счет чего происходит поглощение газа?
- 3. Приведите примеры использования процесса абсорбции.
- 4. Каким образом происходит перенос вещества из одной фазы в другую?
- 5. За счет чего происходит перенос вещества внутри фазы?
- 6. Какова сущность пленочной теории абсорбции?
- 7. Приведите уравнения массоотдачи для жидкой и газовой фаз.
- 8. Какие модели гидродинамического режима используют при моделировании процесса абсорбции?
- 9. Приведите структуру потоков фаз в абсорбере для модели идеального вытеснения.
- 10. Каков алгоритм расчета материального баланса абсорбера при использовании модели идеального вытеснения?
- 11. Как представляют абсорбер при использовании ячеечной модели?
- 12. Каков алгоритм расчета материального баланса абсорбера при использовании ячеечной модели?

Тема: Экспериментально-статистический метод построения математической модели.

Вопросы для контроля:

В каких случаях используют экспериментально-статистический метод составления математической модели?

Чем отличается активный эксперимент от пассивного?

Каким образом определяют вид уравнения регрессии?

Как определяют коэффициенты уравнения регрессии?

Какие коэффициенты уравнения считаются значимыми?

Как проверяется адекватность уравнения регрессии с использованием дисперсии воспроизводимости и дисперсии адекватности?

Каким образом можно оценить качество аппроксимации принятым уравнением при отсутствии параллельных опытов?

Задания:

- 1. На основе исходных экспериментальных данных зависимости константы скорости реакции от температуры, приведенных в таблице 4, проведите структурную идентификацию и выберите регрессионное уравнение.
- 2. Рассчитайте коэффициенты уравнения, приведя его к линейному виду.
- 3. Проведите анализ уравнения. Постройте графики зависимости экспериментальных и расчетных данных константы скорости от температуры.
- 4. Проверьте адекватность модели.

Таблица 4 – Варианты для выполнения задания

Donwow	Значения константы скорости реакции k (1/c) от температуры T (K)						
Вариант	290	300	310	320	330	340	
1	0,01618	0,0638	0,3150	0,7755	2,1097	4,5379	

2	0.02796	0.1402	0.7269	1.0140	4.0246	10 (140
	0,03786	0,1493	0,7368	1,8140	4,9346	10,6140
3	0,00804	0,0317	0,1565	0,3853	1,0482	2,2546
4	0,02692	0,1063	0,5239	1,2899	3,5088	7,5473
5	0,03544	0,1397	0,7729	1,6981	4,6192	9,9357
6	0,02130	0,0840	0,4645	1,0205	2,4510	5,9710
7	0,00703	0,0277	0,1367	0,3367	0,9161	1,9704
8	0,00861	0,0339	0,1675	0,8080	1,7170	7,4740
9	0,01943	0,0766	0,3780	1,8240	3,8760	16,8720
10	0,01062	0,0719	0,3925	1,8918	4,0006	18,3582
11	0,00529	0,0358	0,1954	0,9419	1,9918	9,1400
12	0,01031	0,0698	0,3808	1,8354	3,8815	17,8114
13	0,00226	0,0153	0,0835	0,4025	0,8512	3,906
14	0,00434	0,01713	0,0848	0,4081	0,8678	3,7744
15	0,00639	0,0252	0,1245	0,6124	1,2752	5,5561

Тема: Математическое моделирование химических реакторов.

Вопросы для контроля:

- 1. В каких случаях применяется математическое описание на основе экспериментальных данных (эмпирическая модель)?
- 2. Какие методы используются для построения эмпирической модели?
- 3. Укажите основные задачи, решаемые при построении эмпирической модели.
- 4. Для чего нелинейные функции преобразуют к линейному виду?
- 5. Какие методы используют для поиски коэффициентов уравнения регрессии?
- 6. В чем сущность метода наименьших квадратов?
- 7. Приведите функции, имеющиеся в программе Mathcad для вычисления регрессии.
- 8. Что понимается под адекватностью математической модели?
- 9. Как проверяется качественное соответствие модели реальному технологическому объекту?
- 10. Как проверяется количественное соответствие модели реальному технологическому объекту?

Задание: Используя компьютерную модель процесса паровой конверсии оксида углерода:

- 1. Построить графики зависимости изменения концентрации СО и температуры от условного времени контактирования.
- 2. Определить равновесное содержание СО на выходе из реактора при различных значениях температуры подачи сырья на входе в реактор.
- 3. Определить время контактирования, при котором содержание СО в конвертированном газе менее 0,15%. Какова при этом температура реакционного газа?
- 4. Рассчитать требуемый объем катализатора, приняв коэффициент запаса равный 1,3. Варианты заданий приведены в таблицах 5 и 6.

Таблица 5 – Варианты заданий

Вариант	Вариант Объем газа, поступающего в реактор, м ³ /ч		t, °C	Р, МПа	Размер зерен катализатора, мм
1	360000	A	190	2,6	10

2	340000	В	200	2,9	8
3	320000	С	210	3,0	6
4	380000	D	220	2,8	5
5	280000	A	215	2,7	8
6	260000	В	190	2,5	6
7	240000	С	196	2,5	5
8	400000	D	200	3,0	10
9	250000	A	210	2,8	8
10	360000	В	220	3,0	6
11	340000	С	215	2,4	5
12	320000	D	190	2,4	10
13	380000	A	195	2,2	8
14	280000	В	200	2,5	6
15	260000	С	210	2,6	5
16	400000	D	220	2,8	10

Таблица 6 – Варианты состава газа, поступающего в реактор, % (об.)

Вариант	Компоненты газа						
	CO_2	СО	H_2	CH ₄	N_2	Ar	H ₂ O
A	10,48	2,31	42,02	0,20	14,3	0,18	30,51
В	10,09	2,46	41,24	0,20	14,03	0,18	31,80
С	9,85	2,34	40,36	0,16	14,29	0,18	32,82
D	10,17	2,25	41,30	0,18	14,4	0,19	31,51

Критерии оценивания компетенций

Оценка «отлично» выставляется студенту, если он без ошибок выполнил задание. Провел анализ и математическое описание объекта, составил алгоритм решения системы полученных уравнений, реализовал алгоритм в виде компьютерной программы, отладил ее и провел исследования. При защите задания свободно владеет материалом, умеет преподнести компьютерную модель объекта и исследования, проведенные на основе модели.

Оценка «хорошо» выставляется студенту, если он без ошибок выполнил задание. Провел анализ и математическое описание объекта, составил алгоритм решения системы полученных уравнений, реализовал алгоритм в виде компьютерной программы, отладил ее и провел исследования. При защите задания владеет материалом, и результатами исследований, проведенными на основе модели.

Оценка «удовлетворительно» выставляется студенту, если он с ошибками выполнил задание. Провел анализ и математическое описание объекта, составил алгоритм решения системы полученных уравнений, реализовал алгоритм в виде компьютерной программы,

отладил ее и провел исследования. При защите задания плохо владеет материалом, не умеет правильно преподнести компьютерную модель объекта и исследования, проведенные на основе модели.

Оценка «неудовлетворительно» выставляется студенту, если он с ошибками выполнил задание. Провел анализ и математическое описание объекта, составил алгоритм решения системы полученных уравнений, но не смог реализовать его в виде компьютерной программы, не провел исследования. При защите задания слабо владеет материалом, не умеет преподнести компьютерную модель объекта и исследования, проведенные на основе модели.

При защите задания учитываются:

- аккуратность оформления работы;
- соответствие выданному заданию;
- владение материалом при докладе и качество его выполнения.

Составитель		Е.С. Антипин		
	(подпись)			
« »	2021 г.			

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ:					
И.о. зав кафедрой ХТМиАХП					
		Е.Н. Павленко			
«	>>	2021 г.			

Комплект заданий для контрольной работы

по дисциплине «Моделирование химико-технологических процессов»

Целью выполнения контрольной работы является развитие у студентов навыка в <u>самостоятельном построении математической модели технологического объекта и</u> использования ее для исследования поведения объекта.

В качестве технологического объекта используется гидравлический объект с двумя закрытыми емкостями.

При построении математической модели ТО необходимо:

- составить математическое описание технологического объекта (ТО);
- выбрать оптимальный алгоритм расчета ТО;
- реализовать алгоритм в виде моделирующей программы, используя любой язык программирования;
- исследовать технологический объект с помощью составленной модели.

Задания выполняются индивидуально по вариантам с использованием методических указаний кафедры. Выполненную контрольную работу студент должен защитить и представить результаты исследования, проведенные с использованием составленной компьютерной модели.

Вопросы для контроля:

- Приведите этапы построения статической модели.
- Почему при построении алгоритмов решения задач рекомендуется использовать метод математической декомпозиции?
- Как и с какой целью строится информационная матрица системы уравнений математического описания?
- Какие методы решения уравнений с одной неизвестной Вам известны и чем они отличаются друг от друга?
- Каковы условия окончания итерационного процесса решения одного уравнения?
- Какие основные допущения принимаются при компьютерном моделировании простой гидравлической системы?
- Как описывается движение потока жидкости через клапан?
- Как описывается процесс заполнения закрытой емкости жидкостью?

Критерии оценивания компетенций

Оценка «зачтено» выставляется студенту, если он практически без ошибок выполнил контрольную работу и провел исследования. Достаточно свободно владеет материалом, умеет преподнести и проанализировать основные сведения, имеющиеся в работе, при этом показывает умение анализировать экспериментальные данные.

Оценка «не зачтено» выставляется студенту, если он с ошибками выполнил контрольную работу. Не умеет преподнести и проанализировать основные сведения, имеющиеся в работе.

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедура проведения данного оценочного мероприятия включает в себя все этапы работы над контрольной работой: изучение литературных источников с использованием Интернета, их анализ и обобщение, подготовка и выполнение работы. Контрольная работа выполняется в течение семестра с периодической проверкой и консультацией преподавателя.

Предлагаемые студенту задания позволяют проверить профессиональные компетенции ПК-2.

Контрольная работа оформляется на листах формата A4, материал представляется в распечатанном виде. Содержание контрольной работы должно полностью соответствовать требованиям, изложенным в методических указаниях и варианту, выданному преподавателем.

При защите контрольной работы оцениваются:

- аккуратность оформления работы;
- владение материалом при докладе и его информативность;
- ответы на вопросы.

Составитель		Е.С. Антипина
	(подпись)	_
«»	2021 г.	