Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ефанов Алексей В МРИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ Должность: Директор Невиномысского технологического института (филартистер АЦИИ

высшего образования 49214306dd433e7a1b0f8632f645f9d53c99e3d0

«СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ

Директор НТИ (филиал) СКФУ Ефанов А.В.

Ф.И.О. 2022 г. «___»_

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля успеваемости и промежуточной аттестации по дисциплине

Информационные технологии и программирование

Направление подготовки 15.03.02 Технологические машины и

оборудование

Направленность (профиль) Технологическое оборудование химических

и нефтехимических производств

Год начала обучения 2022 Форма обучения Заочная

Реализуется на 2 курсе

Ввеление

- 1. Назначение: обеспечение методической основы для организации и проведения текущего контроля по дисциплине «Информационные технологии и программирование». Текущий контроль по данной дисциплине вид систематической проверки знаний, умений, навыков студентов. Задачами текущего контроля являются получение первичной информацию о ходе и качестве освоения компетенций, а также стимулирование регулярной целенаправленной работы студентов. Для формирования определенного уровня компетенций.
- 2. ФОС является приложением к программе дисциплины «Информационные технологии и программирование» и в соответствии с образовательной программой высшего образования по направлению подготовки 15.03.02 Технологические машины и оборудование .
- 3. Разработчик: Кочеров Юрий Николаевич, доцент базовой кафедры Регионального индустриального парка, кандидат технических наук
- 4. Проведена экспертиза ФОС.

Члены экспертной группы:

Председатель:

Павленко Е.Н.-зав. кафедрой ХТМиАХП

Члены экспертной группы:

Романенко Е.С. – доцент кафедры ХТМиАХП

Свидченко А.И. – доцент кафедры ХТМиАХП

Представитель организации-работодателя:

Новоселов А.М., начальник отдела технического развития АО «Невинномысский Азот»

Экспертное заключение: фонд оценочных средств соответствует ОП ВО по направлению подготовки 15.03.02 Технологические машины и оборудование и рекомендуется для оценивания уровня сформированности компетенций при проведении текущего контроля успеваемости и промежуточной аттестации студентов по дисциплине «Информационные технологии и программирование».

05 марта 2022 г.

5. Срок действия ФОС определяется сроком реализации образовательной программы.

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код оцениваем ой компетенц ии, индикатора (ов)	Этап формирован ия компетенци и (№ темы) (в соответств ии с рабочей программой	Средства и технологии оценки	Вид контроля, аттестация (текущий/промежуточ ный)	Тип контроля (устный, письменный или с использовани ем технических средств)	Наименован ие оценочного средства
ИД-1 ОПК-4 ИД-1 ОПК- 14 ИД-2 ОПК- 14 ИД-3 ОПК- 14	<u>дисциплины)</u> 1-15	Собеседован ие	Текущий	Устный	Вопросы для собеседовани я
ИД-1 ОПК-4 ИД-1 ОПК- 14 ИД-2 ОПК- 14 ИД-3 ОПК- 14	1-15	Экзамен	Промежуточный	Устный	Вопросы к экзамену

2. Описание показателей и критериев оценивания на различных этапах их формирования, описание шкал оценивания

Уровни		Дескрипторы				
сформированнос ти компетенци(ий), индикатора (ов)	Минимальный уровень не достигнут (Неудовлетворитель но) 2 балла	Минимальный уровень (удовлетворитель но) 3 балла	Средний уровень (хорошо) 4 балла	Высокий уровень (отлично) 5 баллов		
	ОПК-4. Способен понимать принципы работы современных информационных технологий и использовать					
	ч профессиональной деят			_		
Результаты	He	Слабо понимает	Понимает	Понимает		
обучения по	удовлетворительно	основы	основы	основы		
дисциплине	понимает основы	разработки	разработки	разработки		
(модулю):	разработки	алгоритмов и	алгоритмов и	алгоритмов и		
ИД-1 ОПК-4	алгоритмов и	компьютерных	компьютерны	компьютерных		
ИД-1 ОПК-14	компьютерных	программ	х программ	программ в		
ИД-2 ОПК-14	программ	Слабо	Разрабатыва профессионал			
ИД-3 ОПК-14	He	разрабатывает	ет алгоритмы	ой области		
	удовлетворительно	алгоритмы и	и	Разрабатывает		
	разрабатывает	компьютерные	компьютерны	алгоритмы и		
	алгоритмы и	программы	е программы	компьютерные		
	компьютерные			программы,		
	программы	навыки	навыки	пригодные для		

	Не удовлетворительно применяет навыки разработки алгоритмов и компьютерных программ	разработки алгоритмов и компьютерных программ	разработки алгоритмов и компьютерны х программ	практического применения Применяет навыки разработки алгоритмов и компьютерных программ, пригодных для практического применения
--	---	--	---	---

Описание шкалы оценивания

В рамках рейтинговой системы успеваемость студентов по каждой дисциплине оценивается в ходе текущего контроля и промежуточной аттестации.

Текущий контроль

Текущий контроль осуществляется в течение семестра - на лабораторных и практических занятиях, по которым рабочими программами дисциплин предусмотрены отчетности

Промежуточная аттестация

Промежуточная аттестация в форме экзамена предусматривает проведение обязательной экзаменационной процедуры

Процедура зачета (зачета с оценкой) как отдельное контрольное мероприятие не проводится, оценивание знаний обучающегося происходит по результатам защиты лабораторных и практических занятий.

3. Типовые контрольные задания и иные материалы, характеризующие этапы формирования компетенций

Вопросы для собеседования

- 1. Информационные технологии для разработки алгоритмов со сложной логикой.
- 2. Что такое информационная среда программы?
- 3. Что такое программное средство (ПС)?
- 4. Что такое малая и большая системы?
- 5. Что такое жизненный цикл программного средства (ПС)?
- 6. Что такое внешнее описание ПС?
- 7. Что такое сопровождение ПС?
- 8. Что такое определение требований к программному средству (ПС)?
- 9. Что такое спецификации качества ПС?
- 10. Что такое устойчивость (robustness) ПС?
- 11. Функции

```
function F(x, y: integer): integer;
```

function G(x, y: integer): integer;

function R(x, y: integer): integer;

определены с помощью операционной семантики равенствами:

$$R(x, y) = x*(y-1),$$

$$F(x, y) = R(x + 1, y) - R(x, y - 1),$$

$$G(x, y) = F(x, R(x, y)).$$

Найти значения G(3, 3).

12. Функции

function F(n: integer): integer; function G(n: integer): integer;

определены с помощью операционной семантики равенствами:

F(0)=1, G(0)=2,

F(n)=G(n-1),

G(n)=F(n-1)+G(n-1).

Найти значения F(3) и G(3).

- 13. Что такое архитектура программного средства?
- 14. Что такое программный модуль?
- 15. Что такое прочность программного модуля?
- 16. Что такое структурное программирование?
- 17. Что такое триада Хоора?
- 18. Что такое отладка программного средства?
- 19. Что такое тестирование программного средства?
- 20. Что такое автономная отладка программного средства?
- 21. Что такое защитное программирование?
- 22. Какие виды защиты программного средства от искажения информации Вы знаете?
- 23. Какие задачи приходиться решать при обеспечении коммуникабельности ПС?
- 24. Какие возможности предоставляет пользователю графический пользовательский интерфейс?
- 25. Как нужно действовать для обеспечения эффективности ПС?
- 26. Что такое инсталятор программного средства (ПС)?
- 27. Что такое менеджер программного средства?
- 28. Что такое ординарный пользователь программного средства?
- 29. Что такое администратор программного средства?
- 30. Что такое управление разработкой ПС?
- 31. Что такое менеджер программного проекта?
- 32. Что такое неформальная демократическая бригада разработчиков ПС?
- 33. В чем заключается сущность объектного подхода к разработке программных средств (Π C)?
- 34. Какие категории объектов можно выделить с точки зрения разработчиков ПС?
- 35. Что такое объектная модель ПС?
- 36. Что такое программный инструмент разработки ПС?
- 37. Что такое аппаратный инструмент разработки ПС?
- 38. Что такое инструментальная среда разработки и сопровождения ПС?
- 39. Что такое инструментально-объектный подход к разработке программного средства?
- 40. Какие признаки классификации инструментальных сред разработки и сопровождения ПС Вы знаете?
- 41. Что такое интегрированность инструментальной среды разработки и сопровождения ПС?
- 42. Какие виды интегрированности инструментальной среды разработки и сопровождения ПС Вы знаете?
- 43. Что такое репозиторий инструментальной среды разработки и сопровождения ПС?
- 44. Что такое инструментальная среда программирования?
- 45. Что такое языково-ориентированная инструментальная среда программирования?
- 46. Что такое жизненный цикл ПС?
- 47. Основное назначение моделей ЖЦ ПС?
- 48. Перечислите основные процессы ЖЦ ПС.
- 49. Назовите вспомогательные процессы ЖЦ ПС.

- 50. Опишите структуру стандарта ГОСТ ISO/IEC 12207.
- 51. Перечислите основные подходы организации процессов создания ПС и назовите основные виды моделей ЖЦ ПС.
- 52. Языки программирования высокого и низкого уровня
- 53. Что такое ошибка в ПС?
- 54. Что такое надежность ПС?
- 55. Что такое технология программирования?
- 56. Что такое простая и сложная системы?
- 57. Что такое качество ПС?
- 58. Что такое смежный контроль?
- 59. Что такое защищенность (defensiveness) ПС?
- 60. Что такое коммуникабельность (communicativeness) ПС?
- 61. Что такое функциональная спецификация ПС?
- 62. Что такое ручная имитация внешнего описания ПС?
- 63. Формальные языки Е и Т определены над алфавитом

```
{'a', '*', '&', '<', '>'}
```

с помощью денотационной семантики равенствами

E = T Y''' T Y E''' T,

T= 'a' Y 'a*' Y '<' E '>'

Какие из следующих строк

'*a&*a*&a*',

'*a&<a&a*>',

'*<*a*&a>&<*a*>*'

принадлежат языку Е и какие из них не принадлежат языку Е.

64. Тип R определён с помощью следующей аксиоматической семантики.

Описания:

type R= record P1, P2, P3: CHAR end;

function READ(S: R): CHAR; $\{READ: R \rightarrow CHAR\}$

function SHIFT(S: R): R; $\{SHIFT: R \rightarrow R\}$

function ADD(S: R, C: CHAR): R; {ADD: $R * CHAR \rightarrow R$ }

function REMOVE(S: R): R; $\{REMOVE: R \rightarrow R\}$

var X, Y, Z: CHAR;

U: R;

Аксиомы:

SHIFT(ADD(ADD(ADD(U, X), Y), Z)) =

ADD(ADD(ADD(U,Y), Z), X);

REMOVE(U) = SHIFT(ADD(U, '#'));

READ(SHIFT(ADD(U, X))) = X;

Найти значение:

READ(SHIFT(SHIFT(REMOVE(ADD(ADD(U, 'a'), 'b'))))) =

- 65. Что такое архитектурная функция?
- 66. Что такое сцепление программного модуля?
- 67. Что такое пошаговая детализация программного модуля?
- 68. Что такое псевдокод?
- 69. Что такое свойство программы?
- 70. Что такое комплексная отладка программного средства?
- 71. Что такое ведущий отладочный модуль?
- 72. Что такое отладочный имитатор программного модуля?
- 73. Какие требования предъявляются к компьютеру, чтобы можно было обеспечить защиту программы от отказов другой программы в мультипрограммном режиме?
- 74. Что такое компьютерная подпись?
- 75. Что такое компьютерная печать?

- 76. Что такое управление конфигурацией ПС?
- 77. Что такое ядро ПС?
- 78. Что такое оболочка ПС?
- 79. Что такое руководство по инсталляции программного средства?
- 80. Что такое руководство по управлению программным средством?
- 81. Что такое руководство по сопровождению программного средства?
- 82. Что такое бригада ведущего программиста?
- 83. Что такое смотр программной компоненты (программного документа)?
- 84. Что такое аттестация ПС?
- 85. Что такое динамическая модель ПС?
- 86. Что такое диаграмма состояний класса?
- 87. Что такое функциональная модель ПС?
- 88. Что такое компонент ПС?
- 89. Что такое компьютерная технология (САЅЕ-технология) разработки ПС?
- 90. Какие отличия жизненного цикла ПС при компьютерной технологии программирования от жизненного цикла ПС при традиционной (ручной) технологии программирования (при водопадном подходе)?
- 91. Что такое рабочее место компьютерной технологии разработки и сопровождения ПС?
- 92. Что такое инструментальная система технологии программирования?
- 93. Что такое языково-зависимая инструментальная система технологии программирования?
- 94. Что такое ядро инструментальной системы технологии программирования?
- 95. Что такое встроенный инструмент инструментальной системы технологии программирования?
- 96. Что такое импортируемый инструмент инструментальной системы технологии программирования?
- 97. Что такое оболочка инструментальной системы технологии программирования?
- 98. Опишите суть водопадного подхода разработки ПС.
- 99. Опишите суть исследовательского программирования.
- 100. Опишите суть прототипирования при разработке ПС.
- 101. Опишите основные черты подходов формальных преобразований и сборочного программирования при разработке ПС.
- 102. Какие общие черты имеют инкрементная и эволюционная модели?
- 103. Как построить новую модель ЖЦ на основе стандарта ISO/IEC 12207?

1. Критерии оценивания компетенций

Оценка «отлично» выставляется студенту, если он:

Имеет высокие начальные сведения о стандартах проектирования, разработки, тестирования и эксплуатации программного обеспечения;

На высоком уровне выбирает технологию программирования и инструментальные программные средства высокого уровня

На высоком уровне использует основные алгоритмические структуры; знает основные способы записи алгоритмов и конструирования программ с использованием различных алгоритмических языков;

На высоком уровне использует стандартные и собственные структуры данных, базовые и собственные алгоритмы их обработки; использует современные методы и средства разработки алгоритмов при решении задач профессиональной деятельности

На высоком уровне использует современные методы и средства разработки программного обеспечения систем управления

Оценка «хорошо» выставляется студенту, если он:

Получил начальные сведения о стандартах проектирования, разработки, тестирования и эксплуатации программного обеспечения;

Выбирает технологию программирования и инструментальные программные средства высокого уровня

Использует основные алгоритмические структуры; знает основные способы записи алгоритмов и конструирования программ с использованием различных алгоритмических языков;

Использует стандартные и собственные структуры данных, базовые и собственные алгоритмы их обработки; использует современные методы и средства разработки алгоритмов при решении задач профессиональной деятельности

Использует современные методы и средства разработки программного обеспечения систем управления

Оценка «удовлетворительно» выставляется студенту, если он:

Получил слабые начальные сведения о стандартах проектирования, разработки, тестирования и эксплуатации программного обеспечения;

На низком уровне выбирает технологию программирования и инструментальные программные средства высокого уровня

Слабо использует основные алгоритмические структуры; знает основные способы записи алгоритмов и конструирования программ с использованием различных алгоритмических языков;

Слабо использует стандартные и собственные структуры данных, базовые и собственные алгоритмы их обработки; использует современные методы и средства разработки алгоритмов при решении задач профессиональной деятельности

Слабо использует современные методы и средства разработки программного обеспечения систем управления

Оценка «неудовлетворительно» выставляется студенту, если он:

Недостаточно получил начальных сведений о стандартах проектирования, разработки, тестирования и эксплуатации программного обеспечения;

На недостаточном уровне выбирает технологию программирования и инструментальные программные средства высокого уровня

Недостаточно использует основные алгоритмические структуры; знает основные способы записи алгоритмов и конструирования программ с использованием различных алгоритмических языков;

Недостаточно использует стандартные и собственные структуры данных, базовые и собственные алгоритмы их обработки; использует современные методы и средства разработки алгоритмов при решении задач профессиональной деятельности

Недостаточно использует современные методы и средства разработки программного обеспечения систем управления

2. Описание шкалы оценивания

Текущая аттестация в форме собеседования предусматривает защиту выполненных лабораторных и практических работ и оценивается в соответствии с критериями оценивания компетенций

3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Пример:

Процедура проведения данного оценочного мероприятия включает в себя:

Предлагаемые студенту вопросы позволяют проверить ИД-1 ОПК-14, ИД-2 ОПК-14, ИД-3 ОПК-14 компетенции.

Для подготовки к данному оценочному мероприятию необходимо 10 минут.

При подготовке к ответу студенту предоставляется право отчетами о выпиленных лабораторных и практических занятиях

При проверке задания, оцениваются последовательность и логика ответа и др. Бланк оценочного листа собеседования

№ п/п	ФИО студента	Критерий оценивания			
		правильность ответа	полнота раскрытия вопроса	умение аргументировать свой ответ	Итого
1					
2					

Вопросы к экзамену*

Вопросы (задача, задание) для проверки уровня обученности

- 1. Информационные технологии для разработки алгоритмов со сложной логикой.
- 2. Исторический и социальный контекст программирования
- 3. Программа как формализованное описание процесса обработки данных.
- 4. Неконструктивность понятия правильной программы.
- 5. Интеллектуальные возможности человека.
- 6. Неправильный перевод как причина ошибок в программных средствах.
- 7. Специфика разработки программных средств.
- 8. Жизненный цикл программного средства.
- 9. Понятие качества программного средства.
- 10. Обеспечение надежности основной мотив разработки программных средств.
- 11. Назначение внешнего описания программного средства и его роль в обеспечении качества программного средства.
- 12. Определение требований к программному средству.
- 13. Спецификация качества программного средства.
- 14. Основные подходы к спецификации семантики функций.
- 15. Метод таблиц решений.
- 16. Операционная семантика.
- 17. Понятие архитектуры программного средства.
- 18. Основные классы архитектур программных средств.
- 19. Цель модульного программирования.
- 20. Основные характеристики программного модуля.
- 21. Порядок разработки программного модуля.
- 22. Структурное программирование.
- 23. Обоснования программ. Формализация свойств программ.
- 24. Свойства простых операторов.
- 25. Основные понятия.
- 26. Принципы и виды отладки программного средства.
- 27. Заповеди отладки программного средства.
- 28. Функциональность и надежность как обязательные критерии качества программного средства.
- 29. Обеспечение завершенности программного средства.
- 30. Обеспечение точности программного средства.
- 31. Общая характеристика процесса обеспечения качества программного средства.
- 32. Обеспечение легкости применения программного средства.
- 33. Документация, создаваемая и используемая в процессе разработки программных средств.

- 34. Пользовательская документация программных средств.
- 35. Назначение и процессы управления разработкой программного средства.
- 36. Структура управления разработкой программных средств.
- 37. Особенности объектного подхода на этапе конструирования программного средства.
- 38. Особенности объектного подхода на этапе кодирования программного средства.
- 39. Инструменты разработки программных средств.
- 40. Инструментальные среды разработки и сопровождения программных средств и принципы их классификации.
- 41. Основные классы инструментальных сред разработки и сопровождения программных средств.
- 42. Водопадный подход разработки ПС. Каскадная модель ЖЦ ПС
- 43. Исследовательское программирование. Инкрементная модель ЖЦ ПС
- 44. Языки программирования высокого и низкого уровня
- 45. Надежность программного средства.
- 46. Технология программирования как технология разработки надежных программных средств.
- 47. Технология программирования и информатизация общества.
- 48. Модель перевода.
- 49. Основные пути борьбы с ошибками.
- 50. Методы борьбы со сложностью.
- 51. Обеспечение точности перевода.
- 52. Преодоление барьера между пользователем и разработчиком.
- 53. Контроль принимаемых решений.
- 54. Функциональная спецификация программного средства.
- 55. Методы контроля внешнего описания программного средства.
- 56. Денотационная семантика.
- 57. Аксиоматическая семантика.
- 58. Языки спецификаций.
- 59. Архитектурные функции.
- 60. Контроль архитектуры программных средств.
- 61. Методы разработки структуры программы.
- 62. Контроль структуры программы.
- 63. Пошаговая детализация и понятие о псевдокоде.
- 64. Контроль программного модуля.
- 65. Завершимость выполнения программы.
- 66. Пример доказательства свойства программы.
- 67. Автономная отладка программного средства.
- 68. Комплексная отладка программного средства.
- 69. Обеспечение автономности программного средства.
- 70. Обеспечение устойчивости программного средства.
- 71. Обеспечение защищенности программных средств.
- 72. Обеспечение эффективности программного средства.
- 73. Обеспечение сопровождаемости программного средства.
- 74. Обеспечение мобильности.
- 75. Документация по сопровождению программных средств.
- 76. Планирование и составление расписаний по разработке ПС.
- 77. Аттестации программного средства.
- 78. Объекты и отношения в программировании. Сущность объектного подхода к разработке программных средств.
- 79. Особенности объектного подхода к разработке внешнего описания программного средства.
- 80. Инструментальные среды программирования.

- 81. Понятие компьютерной технологии разработки программных средств и ее рабочие места.
- 82. Инструментальные системы технологии программирования.
- 83. Прототипирование
- 84. Основное назначение моделей ЖЦ ПС
- 85. Структура стандарта ГОСТ ISO/IEC 12207

1. Критерии оценивания компетенций

Оценка «отлично» выставляется студенту, если он:

Имеет высокие начальные сведения о стандартах проектирования, разработки, тестирования и эксплуатации программного обеспечения;

На высоком уровне выбирает технологию программирования и инструментальные программные средства высокого уровня

На высоком уровне использует основные алгоритмические структуры; знает основные способы записи алгоритмов и конструирования программ с использованием различных алгоритмических языков;

На высоком уровне использует стандартные и собственные структуры данных, базовые и собственные алгоритмы их обработки; использует современные методы и средства разработки алгоритмов при решении задач профессиональной деятельности

На высоком уровне использует современные методы и средства разработки программного обеспечения систем управления

Оценка «хорошо» выставляется студенту, если он:

Получил начальные сведения о стандартах проектирования, разработки, тестирования и эксплуатации программного обеспечения;

Выбирает технологию программирования и инструментальные программные средства высокого уровня

Использует основные алгоритмические структуры; знает основные способы записи алгоритмов и конструирования программ с использованием различных алгоритмических языков;

Использует стандартные и собственные структуры данных, базовые и собственные алгоритмы их обработки; использует современные методы и средства разработки алгоритмов при решении задач профессиональной деятельности

Использует современные методы и средства разработки программного обеспечения систем управления

Оценка «удовлетворительно» выставляется студенту, если он:

Получил слабые начальные сведения о стандартах проектирования, разработки, тестирования и эксплуатации программного обеспечения;

На низком уровне выбирает технологию программирования и инструментальные программные средства высокого уровня

Слабо использует основные алгоритмические структуры; знает основные способы записи алгоритмов и конструирования программ с использованием различных алгоритмических языков;

Слабо использует стандартные и собственные структуры данных, базовые и собственные алгоритмы их обработки; использует современные методы и средства разработки алгоритмов при решении задач профессиональной деятельности

Слабо использует современные методы и средства разработки программного обеспечения систем управления

Оценка «неудовлетворительно» выставляется студенту, если он:

Недостаточно получил начальных сведений о стандартах проектирования, разработки, тестирования и эксплуатации программного обеспечения;

На недостаточном уровне выбирает технологию программирования и инструментальные программные средства высокого уровня

Недостаточно использует основные алгоритмические структуры; знает основные способы записи алгоритмов и конструирования программ с использованием различных алгоритмических языков;

Недостаточно использует стандартные и собственные структуры данных, базовые и собственные алгоритмы их обработки; использует современные методы и средства разработки алгоритмов при решении задач профессиональной деятельности

Недостаточно использует современные методы и средства разработки программного обеспечения систем управления

2. Описание шкалы оценивания

Промежуточная аттестация в форме экзамена предусматривает проведение обязательной экзаменационной процедуры и оценивается в соответствии с критериями оценивания компетенций

3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедура проведения экзамена осуществляется в соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры - в СКФУ.

В экзаменационный билет включаются 2 вопроса Для подготовки по билету отводится 30 минут.