Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Невинномысский технологический институт (филиал) СКФУ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению практических работ по дисциплине «Энерго- и ресурсосберегающие технологии» для студентов направления подготовки 18.03.01 Химическая технология направленность (профиль) Технология неорганических веществ очной формы обучения

Методические указания разработаны в соответствии с требованиями ФГОС ВО и рабочей программы дисциплины «Энерго- и ресурсосберегающие технологии». Указания предназначены для студентов направления подготовки 18.03.01 Химическая технология

Содержат основные разделы изучаемого теоретического материала, перечень вопросов необходимых для проработки, а также список рекомендуемой литературы.

Составители

К.С. Сыпко, старший преподаватель

Содержание

Введение	5
Тема 1. Глобализация ресурсоэнергосбережения и ресурсные альтернативы	6
Практическое занятие 1.	6
Тема 1. Глобализация ресурсоэнергосбережения и ресурсные альтернативы	8
Практическое занятие 2.	8
Тема 2. Технико-технологические способы и средства ресурсоэнергосбережения	10
Практическое занятие 3.	10
Тема 2. Технико-технологические способы и средства ресурсоэнергосбережения	16
Практическое занятие 4.	16
Тема 2. Технико-технологические способы и средства ресурсоэнергосбережения	20
Практическое занятие 5.	20
Тема 2. Технико-технологические способы и средства ресурсоэнергосбережения	26
Практическое занятие 6.	26
Тема 2. Технико-технологические способы и средства ресурсоэнергосбережения	30
Практическое занятие 7.	30
Тема 2. Технико-технологические способы и средства ресурсоэнергосбережения	41
Практическое занятие 8.	41
Тема 2. Технико-технологические способы и средства ресурсоэнергосбережения	46
Практическое занятие 9.	46
Тема 2. Технико-технологические способы и средства ресурсоэнергосбережения	49
Практическое занятие 10.	49
Тема 2. Технико-технологические способы и средства ресурсоэнергосбережения	52
Практическое занятие 11.	52
Тема 2. Технико-технологические способы и средства ресурсоэнергосбережения	62
Практическое занятие 12.	62
Тема 2. Технико-технологические способы и средства ресурсоэнергосбережения	65
Практическое занятие 13.	65
Тема 2. Технико-технологические способы и средства ресурсоэнергосбережения	67
Практическое занятие 14.	67
Тема 2. Технико-технологические способы и средства ресурсоэнергосбережения	69
Практическое занятие 15.	69

Тема 2. Технико-технологические способы и средства ресурсоэнергосбережения	71
Практическое занятие 16.	71
Тема 2. Технико-технологические способы и средства ресурсоэнергосбережения	72
Практическое занятие 17.	72
Тема 3. Менеджмент ресурсоэнергосбережения.	73
Практическое занятие 18.	73

Введение

Методические указания составлены на современном научном уровне и рассчитаны на студентов, по направлению 18.03.01 Химическая технология

Последовательность тем соответствует логической структуре ее прохождения. Предлагаемые методические указания содержат материал, который рекомендуется использовать студентам при подготовке к практическим занятиям.

Для подготовки к практическим занятиям студент должен изучить материал по соответствующей теме, используя основную и дополнительную литературу, а также используя периодические издания СМИ.

ТЕМА 1. ГЛОБАЛИЗАЦИЯ РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ И РЕСУРСНЫЕ АЛЬТЕРНАТИВЫ.

Практическое занятие 1. Сущность и значение ресурсосбережения в

современных условиях Основные понятия.

Цель занятия: изучить теоретические положения по теме занятия.

Теоретическая часть

Экономический потенциал — это категория, позволяющая наиболее полно определить всю совокупность экономических возможностей конкретного объекта (региона, предприятия).

Материальные ресурсы – совокупность предметов труда, которые участвуют в процессе производства (сырьё, материалы, топливо, энергия, полуфабрикаты и т.п.).

Рациональное использование материальных ресурсов — это качественная характеристика их потребления на разумном уровне. «Рационально использовать» — это так расходовать материальные ресурсы, чтобы произведённые затраты обеспечили бы максимальный результат.

Экономия материальных ресурсов — повышение уровня их полезного использования, выражающееся в снижении удельного расхода материалов на единицу потребительского свойства выпускаемой продукции при повышении или сохранении качества и технического уровня продукции

Режим экономии — это совокупность организационных, технических, экономических, воспитательных и других мероприятий, направленных на бережное и рациональное использование всех видов ресурсов в интересах эффективного развития как экономики в целом, так и отдельных производств и предприятий.

Вопросы и задания:

Базовый уровень

- 1 Объясните значение основных понятий дисциплины: экономический потенциал, материальные ресурсы, рациональное использование материальных ресурсов, экономия материальных ресурсов, режим экономии в разрезе производственного предприятия и государства в целом.
- 2 Как соотносятся категории: рациональное использование и экономия материальных ресурсов?
- 3 Как уровень рациональности потребления материальных ресурсов влияет на формирование оборотных средств предприятия, цен на товары и услуги и другие показатели хозяйственной деятельности промышленного предприятия?

Повышенный уровень

- 1 Каковы состав и содержание нормативной базы, используемой при ресурсосбережении в логистической деятельности?
- 2 Проанализируйте ресурсосберегающую деятельность конкретного предприятия промышленности.

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М.: Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст] : учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев : Авиац. ин-т, 1981. - 116 с.

Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст] : учеб. / А. П. Баскаков , В. А. Мунц. - М. : ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 https://openedu.ru Открытое образование

ТЕМА 1. ГЛОБАЛИЗАЦИЯ РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ И

РЕСУРСНЫЕ АЛЬТЕРНАТИВЫ.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 2. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

РЕСУРСОСБЕРЕЖЕНИЯ ОСНОВНЫЕ ПОНЯТИЯ

Цель занятия: изучить теоретические положения по теме занятия.

Теоретическая часть

Нормирование материальных ресурсов – процесс установления меры затрат материальных ресурсов на производство единицы продукции или для выполнения определённого объёма работ.

Норма расхода материальных ресурсов — это максимально допустимое количество сырья, материалов, топлива, энергии на производство единицы продукции или для выполнения определённого объёма работ заданного качества при существующих организационно-технических условиях производства.

Нормативы – поэлементные составляющие норм, характеризующие удельный расход сырья или материалов на единицу площади, объёма или длины, при выполнении конкретного технологического процесса в заданных условиях производства, а также размеры технологических отходов и потерь по видам промышленной продукции, измеримые в натуральных или относительных единицах (например, в процентах).

Вопросы и задания:

Базовый уровень

- 1. Какие основные направления включает процесс нормирования расхода материальных ресурсов на предприятии?
- 2. Приведите трактовку нормы расхода и поясните её содержание с точки зрения обоснованности и прогрессивности.
- 3. Перечислите и поясните содержание состава нормообразующих элементов нормы расхода.

- 4. В чём существенное различие понятий «норма расхода» и «норматив расхода»?
- 5. Перечислите и прокомментируйте общие нормы и нормативы, применяемые на промышленных предприятиях.
- 6. Приведите классификацию изделий и работ как объектов нормирования расхода материальных ресурсов.
- 7. Каковы причины проведения классификации норм расхода материальных ресурсов и требования, предъявляемые к ней?
- 8. Поясните содержание классификации норм по полноте данных и виду материальных ресурсов?

Повышенный уровень

- 1. На какие виды классифицируют нормы по степени дифференциации продукции и укрупнённости номенклатуры ресурсов?
- 2. Поясните содержание классификации норм по степени их детализации и масштабу применения в планировании.
- 3. На какие виды классифицируют нормы по периоду их действия и степени агрегации?

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М.: Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст] : учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев : Авиац. ин-т, 1981. - 116 с.

Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст] : учеб. / А. П. Баскаков , В. А. Мунц. - М. : ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 <u>https://openedu.ru</u> Открытое образование

ТЕМА 2. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ.

Практическое занятие 3. Экономические нормативы и методы

ресурсосбережения

Цель занятия: изучить теоретические положения по теме занятия.

Теоретическая часть

Критериями уровня прогрессивности норм, установленных на производство конкретной продукции, уровня применяемой технологии и технологичности отдельных деталей изделия выступает система показателей рациональности использования материальных ресурсов.

Все показатели можно подразделить на три основные группы:

- 1) показатели рационального использования сырья и материалов в производстве готового продукта;
- 2) показатели рациональности использования топлива, тепловой и электрической энергии;
- 3) комплексные показатели рационального использования материальных ресурсов.

Все показатели обычно делятся на плановые (нормативные) и отчётные (фактические).

К первой группе относятся показатели выхода годного и разновидности коэффициентов использования материалов.

Показатели выхода годного (коэффициенты извлечения продукции из исходного сырья и материалов) определяются в обосновании прогрессивности норм и использовании исходного сырья.

Как правило, они рассчитываются во всех случаях, когда сырьё потребляется в виде различных смесей и по своим природным свойствам содержит различные примеси и естественные пороки, непригодные для получения необходимой продукции (например, железная руда, кроме элементного железа, содержит до 60 % примесей, которые определяют качество руды и выход из неё железа). Неоднородными свойствами обладают шихтовые материалы, химическое, кожевенное, пищевое сырьё, натуральная древесина в виде круглого леса и т.д.

Выход годного и показывает, насколько эффективно расходуется сырьё для получения из него готовой продукции. Этот показатель обычно рассчитывается в процентном отношении по следующей формуле:

$$B_{z} = \frac{Q_{z}}{Q_{ucx}} \cdot 100\%, \tag{1}$$

где B_{ε} – выход годного (коэффициент извлечения продукции из годного сырья или материалов);

 $Q_{\scriptscriptstyle\mathcal{Z}}$ – количество готового продукта;

 Q_{ucx} – количество исходного сырья, затраченного на производство готового продукта.

Коэффициенты использования материалов могут быть плановыми (нормативными) и фактическими (отчётными). Обычно они определяются в долях единицы. Он характеризует долю отходов по отношению к норме расхода или общему фактическому расходу. Плановый коэффициент использования материала определяется по формуле

$$K_u^{n\pi} = \frac{Q_u}{H_p},\tag{2}$$

где $K_u^{\ \ nn}$ – плановый (нормативный) коэффициент использования материала;

 $Q_{\scriptscriptstyle q}$ – чистый вес (масса) или полезный расход материала на деталь (изделие);

 H_{p} – норма расхода материала на деталь (изделие).

Фактический (отчётный) коэффициент использования материала рассчитывается по формуле

$$K_u^{\ \phi} = \frac{Q_u}{Q_\phi},\tag{3}$$

где $K_u^{\ \phi}$ – фактический (отчётный) коэффициент использования материала;

 Q_{ϕ} – фактический расход материала на деталь (изделие).

В хозяйственной практике применяется много различных разновидностей коэффициентов использования. Так, в заготовительных цехах рассчитывается коэффициент раскроя и определяется он как отношение веса заготовки к норме расхода. В общем виде он рассчитывается по формуле

$$K_{pac\kappa p} = \frac{Q_{3az}}{H_p},\tag{4}$$

где $K_{\it packp}$ – коэффициент раскроя материала на заготовки;

 $Q_{\scriptscriptstyle 3\mathit{AZ}}$ – вес (объём, площадь) заготовки.

Чаще всего коэффициент раскроя представляет собой соотношение площадей и определяется по формуле

$$K_{pac\kappa p} = \frac{F_{non}}{F_{ucx}},\tag{5}$$

где F_{non} – площадь полезно используемого материала;

 F_{ucx} – площадь раскраиваемого (исходного) материала.

При разной толщине материала используются соотношения объёмов, тогда коэффициент раскроя определяется по формуле

$$K_{pac\kappa p} = \frac{F_{no\pi}}{F_{ucx}} \cdot \frac{t_o}{t_{ucx}} = \frac{V_{no\pi}}{V_{ucx}},\tag{6}$$

где t_o – толщина материала в обработке;

 t_{ucx} – толщина раскраиваемого (исходного) материала;

 V_{non} – объём полезно используемого материала;

 V_{ucx} – объём раскраиваемого (исходного) материала.

Для нормирования расхода и анализа рационального использования металла на производство проката, а также в машиностроении и металлообработке часто применяется расходный коэффициент. Он наиболее удобен для применения в мелкосерийном и единичном производстве.

Нормативный (плановый) расходный коэффициент представляет собой отношение нормы расхода к чистому весу (массе) детали и рассчитывается по формуле

$$K_p^{nn} = \frac{H_p}{Q_u},\tag{7}$$

где $K_p^{\ \ nn}$ – нормативный (плановый) расходный коэффициент;

Фактический (отчётный) расходный коэффициент рассчитывается как отношение фактического расхода к чистому весу (массе) данного материала:

$$K_p^{\ \phi} = \frac{Q_{\phi a \kappa}}{Q_q},\tag{8}$$

Расходный коэффициент является величиной, обратной коэффициенту использования, т.е.:

$$K_p = \frac{1}{K_u},\tag{9}$$

Как плановый коэффициент использования, так и плановый расходный коэффициент определяют относительный размер нормируемых отходов и потерь. Расходный коэффициент характеризует долю отходов по отношению к полезному расходу.

При количественном измерении эффективности использования материальных ресурсов оценивается: материалоёмкость; материалоотдача; коэффициент соотношения темпов роста объёма производства и материальных

затрат; удельный вес материальных затрат в себестоимости продукции.

Материалоёмкость продукции представляет собой величину затрат материальных ресурсов на производство единицы продукции или работ. Это определение в самом общем виде характерно для любого уровня управления.

Материалоёмкость товарной продукции является обобщающим стоимостным показателем и представляет величину материальных затрат на один рубль товарной продукции предприятия, объединения, подотрасли, отрасли:

$$ME = \frac{M3}{B\Pi},\tag{10}$$

где МЕ – материалоёмкость продукции;

МЗ – материальные затраты на производство продукции;

ВП – стоимость произведённой продукции.

Материалоотдача определяется делением стоимости произведённой продукции на сумму МЗ. Этот показатель характеризует отдачу материалов, т.е. сколько произведено продукции с каждого рубля потреблённых материальных ресурсов (сырья, материалов, топлива и энергии и т.д.):

$$MO = \frac{B\Pi}{M3}. (11)$$

Вопросы и задания:

Базовый уровень

- 1. В чём суть расчётно-аналитического метода определения норм расхода материальных ресурсов?
- 2. Каково содержание отчётно-статистического метода расчёта норм расхода материальных ресурсов?
- 3. Поясните содержание опытного (опытно-лабораторного и опытно-производственного) метода расчёта норм расхода материальных ресурсов.
- 4. В чём суть методов расчёта норм расхода материальных ресурсов по укрупнённым нормативам и с помощью переводных коэффициентов?
- 5. Сформулируйте понятия материалоёмкости общественного производства и продукции отрасли (подотрасли).

6. Каково содержание понятия материалоёмкости промышленного производства?

Повышенный уровень

- 1. В чём суть показателей материалоёмкости единицы произведённой продукции?
- 2. Каково содержание показателей материалоёмкости единицы технической характеристики продукции?
- 3. Поясните содержание показателей материалоёмкости единицы эксплуатационной характеристики продукции.
- 4. Назовите основные показатели степени использования материальных ресурсов в производстве.

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М.: Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст] : учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев : Авиац. ин-т, 1981. - 116 с. Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст] : учеб. / А. П. Баскаков , В. А. Мунц. - М. : ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 <u>https://openedu.ru</u> Открытое образование

ТЕМА 2. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА

РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ.

Практическое занятие 4. Экономические нормативы и методы

ресурсосбережения (продолжение)

Цель занятия: изучить теоретические положения по теме занятия.

Вопросы и задания:

Базовый уровень

Задача 1

Величина полезного расхода в производстве изделия равна 10 кг, отходы составляют 25 % от чистого веса. Определить норму расхода, коэффициент использования материала и расходный коэффициент при изготовлении изделия.

Задача 2

Определить, на каком предприятии более рационально используются материальные ресурсы при изготовлении аналогичных деталей с одинаковыми нормами расхода, равными 2,5 кг, если известно:

- а) отходы на первом предприятии составляют 0,75 кг;
- б) расходный коэффициент на втором предприятии равен 1,15.

Задача З

Изменится ли уровень рациональности использования материалов, если известно, что в базовом году чистый расход составил 5 кг, коэффициент использования равен 0,7, а в плановом году полезный расход уменьшится на 0,5 кг, сумма отходов и потерь уменьшится на 0,15 кг.

Задача 4

Производственная программа в базовом году составила 11,5 тыс. шт. изделий. За счёт уменьшения отходов коэффициент использования увеличился к концу года с 0,8 до 0,85. Сколько дополнительных изделий можно будет произвести в плановом году при объёме ресурсов базового года?

Задача 5

На 1 т металлопроката расходуется 1 130 кг чёрного металла. Определить расходный коэффициент и коэффициент использования.

Задача 6

Полезный расход материала на деталь равен 30 кг. Отходы составляют 25 % от полезного расхода. Определить норму расхода материала, коэффициент использования, расходный коэффициент.

Задача 7

Определить, на каком машиностроительном заводе более прогрессивная технология, сравнивая удельные расходы материалов на потребительские свойства (производительность ткацкой машины), приведённые в таблице 1.

Таблица 1 – Исходные данные для расчёта удельного расхода

	1-й завод 2-й завод						
Показатель	Вид ткацких машин						
	1-й	2-й	3-й	4-й			
Производительной ткацкой машины h , м 2 /ч	50	40	60	90			
Объём производства ткацких машин за определённый период q , шт.	4	3	4	5			
Расход металла на каждую ткацкую машину m , кг	60	30	60	70			

Задача 8

На сколько процентов можно увеличить выпуск продукции при неизменной потребности в материале, если коэффициент использования в базовом периоде равен 75 %, а в плановом – 80 %? Считать, что полезный расход является величиной неизменной.

Задача 9

Материальные затраты на производство изделия составляют 60 руб., себестоимость равна 80 руб. Определить материалоёмкость изделия и дать характеристику применения этого показателя на отраслевом уровне.

Задача 10

Определить чистую массу детали, если известно, что норма расхода равна 11 кг, а расходный коэффициент 125 %.

Задача 11 По десяти электростанциям известны следующие данные:

Таблица 2 – Исходные данные для расчёта удельного расхода топлива

Электростанции/	Отпуск электроэнергии за	=	повного топлива на ектроэнергию, т
вариант	год, тыс. кВт∙ч	Фактический	По норме, на 1 000 кВт·ч
1	489 759	251 054	0,5
2	43 943	41 245	0,9
3	44 254	45 975	1,0
4	8 584	9 045	0,7
5	59 430	38 140	0,6
6	54 590	35 684	0,55
7	23 879	12 400	0,5
8	173 881	115 468	0,8
9	54 620	23 840	0,4
10	167 113	93 451	0,65

Определить каждой электростанции удельный расход топлива на 1 000 кВт-ч отпущенной электроэнергии и экономию (перерасход) топлива на годовой отпуск электроэнергии.

Задача 12

Два предприятия выпускают одинаковое количество автопокрышек. Общий расход резины на производство автопокрышек на первом предприятии — 1 200 т. При этом потери резины составляют 15 % от чистого расхода. На втором предприятии общий расход резины ниже на 50 т, а чистый — меньше на 5 % по сравнению с соответствующими показателями первого предприятия. Сравнить коэффициенты потерь резины на этих предприятиях.

Повышенный уровень

Задача 1

Общий расход металла на производство партии деталей — 60 т. При этом потери составляют 15 % общего расхода. В результате мероприятий по модернизации производства абсолютная величина потерь металла снизится на 15 т (объём производства и чистый расход металла на одно изделие не уменьшались). Сравнить коэффициенты использования металла до и после модернизации.

Задача 2

Производство может быть осуществлено двумя технологиями: при первой – чистый расход электроэнергии составляет 750 кВт·ч, потери электроэнергии – 30 % чистого расхода; другая технология предполагает увеличение чистого и общего расхода электроэнергии на 110 кВт·ч по сравнению с первой. Какая технология выгоднее с точки зрения сокращения потерь?

Задача З

Определите примерный размер экономии металла в одной из отраслей машиностроения, если известно, что в 2011 году её предприятия произведут 120 тыс. машин со средним удельным расходом металла на машину 2,2 т.

TT ~ 3	T T	`	`	••			
Таблица 3 –	MCYOOHHO	$\Lambda \Pi \Pi \Pi \Pi \Pi \Omega$	Λ η η	nacuema	nazmena	2KOHOMIIII	метаппа
I aonana s	ricaconidic	Ounnoic	$O_{J}U_{J}U$	pac ichia	pasmepa	JKOHOMUU	michiani

Наименование использованного металла	Коэффициент полезного использования, %	Чистая масса деталей, кг	Величина отходов, кг
Чугунное литьё	75	2 200	900
Стальное литьё	70	1 000	480

Сталь:			
- листовая	68	500	300
- прутковая	74	425	120
- в слитках	72	490	140
Бронза	90	35	4

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М.: Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст]: учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев: Авиац. ин-т, 1981. - 116 с. Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст]: учеб. / А. П. Баскаков, В. А. Мунц. - М.: ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 https://openedu.ru Открытое образование

ТЕМА 2. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ.

Практическое занятие 5. Нормирование расхода и пути экономии металлов и сплавов в промышленном производстве

Цель занятия: изучить теоретические положения по теме занятия.

Теоретическая часть

Нормирование расхода шихтовых материалов в литейном производстве

В изделиях машиностроения и металлообработки около 50 % готовых деталей представляют собой отливки.

В литейных цехах машиностроительных заводов получают как готовые детали, так и заготовки. При современной технологии литейного производства можно изготовлять заготовки нужных форм и размеров, близких к формам и размерам готовых деталей.

Особенности нормирования расхода материалов для литейного производства машиностроительных предприятий связаны с его четырёхфазным характером (рисунок 1).

Рисунок 1 – Схема технологического процесса получения отливок получение годной отливки

Массу отливки, литниковой системы и прибылей определяют опытнопроизводственным методом. При этом количество одновременно взвешиваемых деталей зависит от массы каждой детали.

Прогрессивные технологические процессы изготовления литейных форм, по сравнению с сухими песчаными формами, имеют значительную экономическую эффективность. Так литьё в формы из быстротвердеющих смесей позволяет снизить трудозатраты на 1 т литья на 25 %, массу отливок – на 10 %, припуски на механическую обработку – на 50 %.

Подетальные нормативы угара при плавке металлов зависят от марки сплава и плавильного агрегата.

Нормативная база расходных литейных материалов состоит из техникоэкономических показателей производства литья (баланс литья), норм расхода металлической шихты на 1 т годного литья и норм расхода вспомогательных огнеупорных и других материалов.

Измерителем расхода литейных материалов является 1 т годного литья, 1 т жидкой стали, 1 т обработанного литья, выплавляемого с помощью данной модельной оснастки.

Технологический процесс определения нормы расхода состоит из следующих этапов:

<u>Первый этап</u> — определение подетально-специфицированной нормы расхода сырья на изделие по формуле

$$M_{\mathcal{H}.M.} = \sum |M_{\mathcal{I}.om\pi.} + M_{num.}| \cdot n, \qquad (12)$$

где $M_{\mathcal{H}.M.}$ – масса жидкого металла на изделие;

 $M_{e,omn}$ – масса годных отливок;

 $M_{\text{лит.}}$ – масса литниковой системы;

n – количество одноимённых деталей в изделии.

<u>Второй этап</u> – определение массы металлозавалки на изделие в разрезе марок сплавов по формуле

$$M_{u3\partial.} = \frac{M}{\left[\left(\frac{1 - \alpha}{100} \right) \cdot \left(\frac{1 - \beta}{100} \right) \right]},\tag{13}$$

где α – коэффициент, учитывающий брак деталей;

 β – коэффициент, учитывающий безвозвратные отходы.

<u>Третий этап</u> – определение средневзвешенной нормы расхода шихтовых материалов на 1 т годного литья по формуле

$$H_{1m \ z.om\pi.} = \frac{\left(\sum M_{u3\partial} \cdot X \cdot \Pi_{u3\partial.}\right)}{\left(100 \cdot \sum M \cdot \Pi_{u3\partial.}\right)},\tag{14}$$

где $\Pi_{us\partial.}$ – план производства изделий;

X – удельный вес данного шихтового материала в шихте.

Методические указания по расчёту нормы расхода компонентов шихты

Масса металлической завалки (М) складывается из следующих элементов:

$$M = M_{omn.} + M_{e.o.} + M_{o.n.}, (15)$$

где $M_{\mathit{om}\scriptscriptstyle{\it{I}}\scriptscriptstyle{\it{I}}}$ – масса годной отливки, кг;

 $M_{\rm {\it 6.0.}}$ – масса всех возвратных отходов, приходящихся на одну отливку, кг;

 $M_{6.n.}$ – масса безвозвратных потерь.

Массу металлической завалки (M) можно определить и по следующей формуле

$$M = M_{\mathcal{H}, M} + M_{\tilde{\rho}, n}, \tag{16}$$

где $M_{\mathcal{H}.M.}$ – масса жидкого металла, залитого в формы;

Масса жидкого металла (кг) включает:

$$M = M_{\partial em.} + M_{np.} + M_{num.} + M_{\delta p.} + M_{c.n.}, \tag{17}$$

где $M_{\partial em.}$ – масса детали по чертёжным размерам;

 $M_{np.}$ – масса металла на припуски;

 $M_{\text{лит.}}$ – масса металла на литники и прибыли;

 $M_{\it бр.}$ – масса бракованных отливок;

 $M_{c.л.}$ – масса металла на сливы, сплески, заливы.

Обычно возвратные отходы и безвозвратные потери выражаются в процентах к массе металлозавалки. В этом случае масса металлической завалки определяется по следующей формуле

$$M = M_{omn.} + \left[\left(\frac{M \cdot a}{100} \right) + \left(\frac{M \cdot b}{100} \right) \right], \tag{18}$$

где a — возвратные отходы (литники, прибыли, брак и др.), в % к массе металлозавалки; b — безвозвратные потери, в % к массе металлозавалки.

Норма расхода компонентов шихты определяется по формулам: а) в составе металлозавалки:

$$H_i = \frac{\left(M \cdot r_i\right)}{100},\tag{19}$$

где M — масса металлозавалки;

 r_i – процентное содержание *i*-го компонента в шихте (%).

б) на 1 т годных отливок:

$$H_i = \frac{\left(100 \cdot M \cdot r_i\right)}{M_{om\pi}},\tag{20}$$

Коэффициент выхода годного литья ($B_{z.л.}$) определяется по формуле

$$B_{e.n.} = \left(\frac{M_{omn.}}{M}\right) \cdot 100\%, \tag{21}$$

Вопросы и задания:

Базовый уровень

- 1. В чём суть методики определения норм расхода листового металлопроката при индивидуальном и групповом раскрое?
- 2. Определите порядок расчёта норм расхода сортового проката при механической обработке.
- 3. Дайте определения понятий «отливка», «шихта», «металлозавалка», используемых в литейном производстве.
- 4. Какие материальные ресурсы входят в состав металлозавалки при производстве литых заготовок?
 - 5. Перечислите основные виды литья и охарактеризуйте каждый из них.
- 6. Определите порядок расчёта норм расхода металла в литейном производстве.
- 7. Какие составляющие входят в норму расхода металла в кузнечноштамповочном производстве?

Повышенный уровень

- 1. Что входит в понятие «отходы и потери» в кузнечно-штамповочном производстве? Как их определяют?
- 2. В чём суть методики нормирования расхода металла на изготовление деталей при ковке и штамповке?

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М.: Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст] : учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев : Авиац. ин-т, 1981. - 116 с.

Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст] : учеб.

/ А. П. Баскаков , В. А. Мунц. - М. : ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 <u>https://openedu.ru</u> Открытое образование

ТЕМА 2. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ.

Практическое занятие 6. Нормирование расхода и пути экономии металлов и

сплавов в промышленном производстве (продолжение)

Цель занятия: изучить теоретические положения по теме занятия.

Вопросы и задания:

Базовый уровень

Задача 1

Определить норму расхода шихтовых материалов на изготовление 20 отливок с общим черновым весом 800 кг. Исходные данные:

- 1. Вес литников и прибыли 180 кг.
- 2. Безвозвратные потери -3 %.

- 3. Возвратные потери -5 %.
- 4. Брак 2 %.
- 5. Рецепт шихты:
 - а) чугунный лом -40 %;
 - б) стальной лом -8%;
 - в) чугун зеркальный -30 %;
 - г) литейный коксовый чугун 15 %;
 - д) ферросилиций -2%;
 - е) возвратные отходы -5 %.

Задача 2

Определить норму расхода шихтовых материалов на партию деталей из 18 штук и выход годного литья, а также экономию материалов в результате внедрения организационно-технических мероприятий на основе следующих исходных данных:

- 1. Суммарный черновой вес отливки составляет 820 кг.
- 2. Вес литников и прибыли 228 кг.
- 3. Состав шихты (в %):
 - а) литейный коксовый чугун 18,0;
 - б) стальной лом -10.0;
 - в) ферросилиций доменный -0.7;
 - Γ) чугун зеркальный 4,0;
 - д) чугун лом зеркальный и возвратные отходы 47,3;
- 4. Безвозвратные потери -5 %.
- 5. Брак литья 4 %.
- 6. Прочие возвратные потери 3 %.
- В результате внедрения организационно-технических мероприятий безвозвратные потери снизились до 4%, брак и прочие возвратные отходы до 5%, вес литников и прибылей на 20%.

Задача 3

Определить норму расхода шихтовых материалов на 1 т годного литья на отливку деталей из серого чугуна марки СЧ20, используя данные таблицы 4.

Таблица 4 – Исходные данные для расчёта нормы расхода шихтовых материалов

Показатель					Ba	риан	Γ			
Показатель	1	2	3	4	5	6	7	8	9	10
Масса одной отливки, кг	30	40	50	60	70	80	90	100	110	120
Масса литниковой системы, кг	8	10	12	14	15	15	16	20	20	20
Безвозвратные отходы, %	8	10	12	14	15	16	14	15	16	14
Брак, %	1	1	2	3	4	5	6	3	4	5
Количество деталей, шт	20	25	30	35	40	45	40	40	20	25

Шихта принята следующего состава, %:

- а) литейный чугун 30;
- б) передельный чугун –11;
- в) зеркальный чугун -7;
- Γ) доменный чугун 5;
- д) лом углеродистых сталей 32;
- е) возврат собственного производства 15.

Задача 4

Рассчитать норму расхода шихтовых материалов до и после внедрения организационно-технических мероприятий, а также экономию металла при производстве 1 000 штук деталей. Вес каждой отливки на деталь равен 400 кг, безвозвратные потери равны -8%, брак -4%. Рецепт шихты (в %) приведён в таблице 5.

Таблица 5 – Рецепт шихты для расчёта нормы расхода

Науманаранна кампананар					Bapı	иант				
Наименование компонентов	1	2	3	4	5	6	7	8	9	10
1. Литейный чугун Л-1	28	26	20	25	27	25	24	23	27	26
2. Литейный чугун Л-2	10	11	20	15	11	13	14	12	11	12
3. Передельный чугун П-1	10	10	10	10	10	9	5	8	14	13
4. Ковкий чугун КЧ30-6	1	2	1	3	1	3	5	4	7	2
5. Доменный ферросилиций	3	4	3	2	3	5	3	3	3	3
6. Лом углеродистых сталей	18	19	16	20	18	15	20	31	15	18
7. Собственные возвратные	30	28	30	25	30	30	29	19	24	26
отходы	30	20	30	23	30	30	29	19	24	20
Итого:	100	100	100	100	100	100	100	100	100	100

Задача 5

Определить норму расхода шихтовых материалов на изготовление коленчатого вала из серого чугуна. Отливка вала производится в землю. Рецепт шихты приведён в таблице 6.

Таблица 6 – Рецепт шихты (%)

Наименование	Вариант									
компонента	1	2	3	4	5	6	7	8	9	10
1. Чугун литейный	42	40	41	39	35	37	45	41	46	43
2. Лом стальной	12,5	14,5	13,5	18,5	19,5	15,5	11,5	13,0	10,5	12,0
3. Лом чугунный покупной и возврат собственного производства	43,4	43,4	43,4	40,4	43,4	45,4	41,1	43,9	41,4	42,9
4. Ферросилиций доменный	0,9	0,9	1	1	1,2	1,2	0,9	0,8	0,7	1
5. Ковкий чугун	1,2	1,2	1,1	1,1	0,9	0,9	1,2	1,3	1,4	1,1
Итого:	100	100	100	100	100	100	100	100	100	100
Чистый вес отливки, кг	60	65	62	61	63	67	66	31	32	39

Литники и прибыли составляют 25 % от веса отливки. Припуски на механическую обработку отливок составляют 8 % от веса готовой детали. Возвратные потери -6 %, брак -5 %.

Рассчитать экономию металла от замены литья в землю оболочковым литьем. Вес детали оставался прежним. Вес литников и прибылей сократился до 12% от веса отливки, припуски на механическую обработку сократились до 5%, безвозвратные потери – до 2,5%, брак – до 1%.

Повышенный уровень

Задача 1

Определить массу металлозавалки на изделие А при массе жидкого металла равной 180 кг и сумме всех технологических отходов и потерь литья не более 21 кг.

Задача 2

Рассчитать возврат собственного производства литейного цеха на деталь Б в процентах от металлозавалки и в массе при известных выходе годного литья – 77 %, технологических отходах и потерях равных 5 % и массе детали – 3,3 кг.

Задача 3

Определить степень использования сырья, если известно, что содержание в нём чистого металла составляет 32 %, а коэффициент выхода годного – 28 %.

Список литературы, рекомендуемый к использованию по данной теме

Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М.: Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст] : учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев : Авиац. ин-т, 1981. - 116 с. Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст] : учеб. / А. П. Баскаков , В. А. Мунц. - М. : ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 https://openedu.ru Открытое образование

ТЕМА 2. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ. ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 7. НОРМИРОВАНИЕ РАСХОДА МЕТАЛЛА НА ПРОИЗВОДСТВО ПОКОВОК

Цель занятия: изучить теоретические положения по теме занятия.

Теоретическая часть

Поковки и штамповки получаются путём давления металла в горячем или холодном состоянии на различном кузнечном оборудовании.

Основные этапы технологического процесса получения детали из поковки или штамповки представлены на рисунке 2.

Рисунок 2 – Основные этапы технологического процесса получения детали из поковки или штамповки

При определении норм расхода металла в кузнечно-прессовом производстве исходными данными являются: конструкторско-технологическая документация: ГОСТы, ОСТы, нормы, ТУ; нормативы технологических потерь; таблицы размеров канавок и штамповочных уклонов при штамповке; прейскуранты цен на металл.

Определение нормы расхода металла на изготовление деталей свободной ковкой или штамповкой заключается в расчёте размеров и массы исходной заготовки.

В норму расхода металла при этом включаются масса поковки или штамповки, а также заготовительные и технологические отходы металла.

$$H_p = M_n + M_{3.o.} + M_{m.o.} + M_y, (22)$$

где M_n – масса поковки;

 $M_{3.o.}$ – масса заготовительных отходов или потерь металла;

 $M_{m.o.}$ – масса технологических отходов при ковке или штамповке;

 M_{y} – масса металла, теряемого на угар при нагреве заготовки.

Масса поковки определяется по формуле

$$M_n = M_{\partial em.} + M_{np.} + M_{\partial on.} + M_H,$$
 (23)

где $M_{\partial em.}$ – масса чертёжной (чистой) детали;

 $M_{np.}$ – масса металла на припуски;

 $M_{\partial on}$ – масса металла на допуски;

 $M_{\scriptscriptstyle H\!.}$ – масса металла на напуск, если он предусмотрен технологическим процессом.

Нормирование расхода металла при свободной ковке

Исходными заготовками при изготовлении деталей методом свободной ковки могут служить:

- а) стальные слитки;
- б) прокат.

Если исходной заготовкой служит слиток стали, то объём слитка, необходимого для изготовления детали методом свободной ковки, определяется по формуле

$$V = V_n + V_{np\delta.} + V_{\partial H.} + V_{o\delta p.} + V_e + V_v, \tag{24}$$

где V_n – объём поковки;

 $V_{np6.}$ — объём обрубаемой прибыльной части слитка, равный 20—25 % массы слитка;

 $V_{\it \partial H.}$ — объём обрубаемой донной части слитка, равный 5—7 % массы слитка;

 $V_{oбp.}$ – объём металла на обрубки;

 V_{e} – объём металла на высечки (выдры);

 V_{ν} – объём металла на угар (зависит от способа нагрева).

Масса слитка (кг) рассчитывается умножением его объёма на плотность металла:

$$M_{cn.} = \frac{\left(V_{cn} \cdot q\right)}{1000},\tag{25}$$

где q – плотность металла, г/см³.

Если из слитка изготовляется одна поковка, то норма расхода металла (кг) будет равна массе слитка:

$$H_p = M_{c\pi}, \tag{26}$$

Если из слитка изготавливается несколько одинаковых поковок, то норма расхода на одну деталь определяется:

$$H_p = \frac{M_{cn}}{n},\tag{27}$$

где n — число поковок.

Методом ковки детали чаще всего изготавливаются из проката. Норма расхода металла в этом случае складывается из массы технологической заготовки и заготовительных отходов.

$$H_p = M_{3ae.} + M_{3.o.},$$
 (28)

где M_{3az} – масса заготовки;

 $M_{\scriptscriptstyle 3.o.}$ – масса заготовительных отходов на обрубки конца прутка, на стружку при обрезке не кратность прутка.

Массу заготовки определяют по формуле

$$M_{3az.} = \frac{\left(V_{3az.} \cdot q\right)}{1000}.$$
 (29)

Или используют для расчётов формулы из таблицы 7.

Таблица 7 – Формулы для расчёта массы заготовки в зависимости от вида материала

Материал	Формула расчёта	Обозначения			
1	2	3			

Лист, лента или полоса	$M = \frac{a \cdot b \cdot L \cdot q}{10^6}$	M — масса, кг; a, b — площадь сечения материала, мм 2 ;
		L – длина листа, ленты или полосы, мм;
		q – плотность материала, г/см ² ; 10^6 – переводной коэффициент.

Продолжение таблицы 7

1	2	3
Квадратный пруток	$M = \frac{a^2 \cdot L \cdot q}{100}$	a^2 – площадь сечения, мм ² .
1 3	10^{6}	
Круглый пруток	$M = \frac{0.7854 \cdot a^2 \cdot L \cdot q}{}$	
	$M = \frac{10^6}{10^6}$	
Шестигранный	$M = \frac{0.866 \cdot S^2 \cdot L \cdot q}{}$	S^2 – размер под ключ, мм ² .
пруток	10^{6}	
Труба	$M = \frac{0.7854 \cdot (\partial^2 - d^2) \cdot L \cdot q}{1 + (\partial^2 - d^2) \cdot L \cdot q}$	$0,7854(д^2-d^2)$ – площадь
	$M = \frac{10^6}{10^6}$	материала, мм ² .

Объём технологической заготовки складывается из следующих элементов:

$$V_{3az.} = V_n + V_{oбp.} + V_{\varepsilon} + V_{v}, \tag{30}$$

где V_n – объём поковки;

 $V_{\mathit{oбp.}}$ – объём металла на обрубки;

 V_{e} – объём металла на высечки (выдры);

 V_{y} – объём металла на угар (зависит от способа нагрева).

Объём поковки (см³) рассчитывается:

$$V_n = V_{\partial} + V_{np.} + V_{\partial on.} + V_{H}, \tag{31}$$

где V_{∂} – объём готовой детали по чертежу;

 $V_{np.}$ – объём металла на припуски;

 $V_{\partial on}$ – объём металла на допуски;

 $V_{\scriptscriptstyle H.}$ – объём металла, идущего в напуск.

Практически объём поковки определяется таким образом: поковка разбирается на геометрические фигуры, объём которых определяется по соответствующим формулам.

Размеры припусков и допусков регламентированы государственным стандартом. При свободной ковке на молотах припуски на механическую обработку определяют так:

на толщину поковки или диаметр поковки (Д)

$$\delta_1 = 0.06 \mathcal{I} + 0.0017 L + 2.8;$$
 (32)

на длину поковки (L)

$$\delta_2 = 0.08 \mathcal{A} + 0.002 L + 10. \tag{33}$$

При свободной ковке на прессах припуски на механическую обработку определяются так:

на толщину или диаметр поковки (Д)

$$\delta_1 = 0.06 \mathcal{A} + 0.002 L + 23; \tag{34}$$

на длину поковки (L)

$$\delta_2 = 0.05 \mathcal{I} + 0.05 L + 26. \tag{35}$$

Допуски на кузнечную обработку (мм) при изготовлении деталей ковкой на молотах можно определять по следующим формулам:

на толщину поковки или диаметр поковки (Д)

$$\pm \Delta_1 = 0.028 \Pi + 0.004 L + 0.5;$$
 (36)

на длину поковки (L)

$$\pm \Delta_2 = 0.03 \Pi + 0.003 L + 1.2. \tag{37}$$

Предельный диаметр или толщина поковки

$$\mathcal{A}_n = \mathcal{A} + \delta_1 \pm \Delta_1 \tag{38}$$

Предельная длина поковки L

$$L_n = L + \delta_2 \pm \Delta_2 \tag{39}$$

После определения объёма поковки рассчитывают составляющие элементы отходов.

Объём обрубок заготовки (см³) рассчитывается:

- 1) для прямоугольных сечений:
 - а) при ковке под молотом

$$V_{o\delta p} = 0.30b^2 \cdot h; \tag{40}$$

б) при ковке под прессом

$$V_{o\delta p} = 0.26b^2 \cdot h; \tag{41}$$

где b — ширина заготовки;

h — высота заготовки.

- 2) для цилиндрических сечений:
 - а) при ковке под молотом

$$V_{o\delta p.} = 0.23 \mathcal{I}^3; \tag{42}$$

б) при ковке под прессом

$$V_{o\delta\nu} = 0.21 \mathcal{I}^3. \tag{43}$$

Для определения отходов на обрубку можно воспользоваться данными таблицы 8.

Таблица 8 – Ориентировочные значения отходов на угар и обрубки при

получении поковок

Тип поковок	Потери металла от массы поковки, %
1	2
Глухие фланцы, пластины, кубики, бруски	1,5–2,5
Фланцы с отверстием, хомуты, подвески, гайки	2,0
Кольца	2,5
Гладкие валы, вилки	5,0–7,0

Продолжение таблицы 8

Валы и валики с односторонними уступами или	7,0–10,0
фланцами, болты, шпонки, траверсы	
Валы и валики с двухсторонними уступами или	10,0–15,0
бортиками, шпиндели, серьги, скобы	
Гаечные ключи, поковки типа шатунов	15,0–18,0
Рычаги сложные шатуны, кривошипы	18,0–25,0
Коленчатые валы, рычаги	25,0-30,0

Объём высечки (выдры) при образовании отверстия в поковках зависит от способа изготовления поковок.

Если применяется прошивка с подкладными кольцами, то объём выдры (cm^3)

$$V_{g} = (0.5 + 0.6)d^{2}_{np.} \cdot h, \tag{44}$$

где $d_{np.}$ – диаметр прошивки;

h – высота прошиваемой заготовки.

Если применяется прошивка без подкладного кольца с кантовкой прошиваемой заготовки, то объём выдры находится следующим образом:

$$V_{g} = (0.15 + 0.20)d^{2}_{np.} \cdot h. \tag{45}$$

Объём потерь металла на угар (cm^3) зависит от способа нагрева и определяется так:

$$V_{y} = \frac{\left[\alpha \left(V_{n} + V_{o\delta p.}\right)\right]}{100},\tag{46}$$

где α – потери металла на угар, % к массе заготовки;

 $V_{\it oбp.}$ – потери на обрубки, на облой при штамповке и высечке, если они имеются.

Значение коэффициента α зависит от способа нагрева (таблица 9).

Таблица 9 – Значения коэффициента α в зависимости от способа нагрева

	Потери за один
Способ нагрева	нагрев для заготовки
	из стали
Нагрев в камерной печи с нефтяным отоплением	2,5
Нагрев в методической печи с нефтяным отоплением	2,0
Нагрев в камерной газовой печи	2,0
Нагрев в методической газовой печи	1,5
Нагрев в печи с восстановительной средой	0,1
Электронагрев печной	1,0
Электронагрев контактный	0,25
Индукционный нагрев т.в.ч.	0,2
Нагрев в расплавах солей и металлов	0,1

При мелкосерийном и единичном производстве норму расхода металла при изготовлении деталей ковкой рассчитывают с применением укрупнённых коэффициентов, характеризующих отходы и потери металла в кузнечном и заготовительном цехах:

$$H_p = M_{3az.} \cdot K_{3az.}, \tag{47}$$

где M_{3az} – масса технологической заготовки, кг;

 $K_{\it 3az.}$ — коэффициент заготовительных потерь, характеризующих отходы металла при резке заготовок.

$$M_{3az.} = M_n \cdot K_o, \tag{48}$$

где $M_{n.}$ – масса поковки;

 K_o – коэффициент технологических отходов при ковке в зависимости группы сложности и способа производства.

Значение K_o для свободной ковки даются в справочниках по 12 группам поковок. Часть из них приведена в таблице 10.

Таблица 10 – Значения коэффициента технологических отходов при ковке

№ группы поковок	Вид поковок, изготовляемых из проката	Ko
1	Поковки, изготовляемые без обсечки (фланцы глухие, круглые, овальные, пластины)	1,02–1,03
2	Поковки, изготовляемые протяжкой с последующей гибкой в приспособлении (вилки, скобы)	1,03
3	Поковки, изготовляемые протяжкой с односторонними уступами (болты с круглой и квадратной головкой, шпонки)	1,07–1,09
4	Поковки, изготовляемые свободной ковкой с обсечкой краев (державки)	1,09–1,012
5	Поковки, изготовляемые осадкой с последующей подшивкой (фланцы, шестерни, гайки)	1,10–1,15
6	Поковки, изготовляемые комбинированными приемами свободной ковки	1,15–1,2

Вопросы и задания:

Базовый уровень

Задача 1

Определить норму расхода и коэффициент использования металла при изготовлении детали методом свободной ковки под прессом. Исходные данные: чистый вес детали 89,2 кг. Деталь изготавливается из квадратной стали. Длина детали 860 мм, сторона — 120 мм, диаметр отверстия, пропиливаемого без подкладного кольца — 40 мм, высота — 60 мм. Объём допусков и напуска составляет 408 см³. Нагрев заготовки осуществляется в методической печи с газовым отоплением. Заготовительные отходы составляют 3,8 кг.

Задача 2

Определить норму расхода и коэффициент использования металла при изготовлении поковки вала методом свободной ковки под молотом. Исходные данные:

- 1. Чистый вес детали 13,6 кг.
- 2. Деталь изготавливается из круглой стали.
- 3. Размеры детали: L 280 мм, d 80 мм.
- 4. Диаметр отверстия, прошиваемого с подкладным кольцом 16 мм.
- 5. Нагрев заготовки индукционный.
- 6. Заготовительные отходы составляют 0,4 кг.

Задача 3

Определить норму расхода и коэффициент использования металла при изготовлении заготовки детали методом свободной ковки под прессом.

Исходные данные:

- 1. Чистый вес детали 3,6 кг.
- 2. Деталь изготавливается из круглой стали.
- 3. Длина детали 160 мм, диаметр 60 мм.
- 4. Диаметр прошиваемого сквозного отверстия 18 мм.

Повышенный уровень

Задача 1

Определить норму расхода металла при изготовлении поковки из слитка стали. Исходные данные:

- 1. Macca поковки 12,5 кг.
- 2. Объём металла на обрубки составляет 12,8 см³.
- 3. Слиток нагревают в камерной печи с нефтяным отоплением.

Задача 2

Рассчитать норму расхода металла в условиях единичного производства. Поковка изготовляется путем обсечки краев. Масса поковки - 12,6 кг. Коэффициент заготовительных потерь - 1,2.

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М.: Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст] : учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев : Авиац. ин-т, 1981. - 116 с. Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст] : учеб. / А. П. Баскаков , В. А. Мунц. - М. : ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 https://openedu.ru Открытое образование

ТЕМА 2. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ.

Практическое занятие 8. Нормирование расхода металла при штамповке Цель занятия: изучить теоретические положения по теме занятия.

Теоретическая часть

Норма расхода металла при штамповке на молотах и прессах определяется по формуле

$$H_p = M_{3az.} \cdot M_{3.o.}, \tag{49}$$

где M_{3a2} – масса заготовки;

 $M_{3.o.}$ – масса заготовительных отходов.

Массу заготовки определяют, исходя из объёма заготовки:

$$M_{3a2.} = \frac{V_{3a2.} \cdot q}{100}.$$
 (50)

Объём заготовки (см³) рассчитывают с учётом отходов металла на заусенец (облой), высечки (выдры) при прошивке отверстий, клещевины, потерь на угар и образование окалины при нагреве:

$$V_{3a2.} = V_n + V_{oбn.} + V_{\kappa n.} + V_{\varepsilon} + V_{v}, \tag{51}$$

где V_{n} – объём поковки (штамповки);

 $V_{oбл.}$ – объём металла, идущего в облой;

 $V_{\scriptscriptstyle \it KJL}$ – объём металла на клещевину;

 $V_{e.}$ – объём металла на высечку (выдру);

 $V_{y.}$ – объём металла на угар.

Объём поковки определяется по чертежу и складывается из объёма готовой детали плюс припуск на механическую обработку и напуск при горячей штамповке:

$$V_n = +V_{\partial em.} + V_{np.} + V_{han.} + V_{\partial on.},$$
 (52)

где $V_{\partial em.}$ – объём готовой детали;

 $V_{np.}$ – объём металла на припуски;

 $V_{\it Han.}$ – объём металла на напуски;

 $V_{\partial on.}$ – объём металла на допуски.

Объём металла на внешний облой ($V_{\text{обл.}}$) может быть установлен по следующей формуле

$$V_{o\delta n} = f \cdot S_o + k_{3.\kappa.} \cdot F_{o\delta n} \cdot S_o', \tag{53}$$

где f – площадь сечения мостика облойной канавки;

 S_{o} – длина линии, описанной вокруг штампованной заготовки центром тяжести мостика;

 $k_{3.\kappa}$ – коэффициент заполнения металлом магазина облойной канавки;

 S_o' – длина линии, описанной вокруг штампованной заготовки центром тяжести выплава облоя в магазин;

F – площадь сечения канавки, мм²;

Масса облоя (кг) определяется путём умножения его объёма на плотность металла.

В случаях, когда штамповка заготовки без клещевины невозможна, её величина предусматривается в норме расхода металла. Потеря на клещевину начисляется только при массе поковок 3,5 кг и выше.

При массе поковок от 3,5 кг до 20 кг объём металла на клещевину ($V_{\kappa n}$) находится умножением площади поперечного сечения заготовки на 0,5–0,8, её диаметра или стороны квадрата.

Масса отходов металла на клещевину (кг):

$$M_{\kappa \pi} = \frac{M_n \cdot P_{\kappa}}{100},\tag{54}$$

где P_{κ} – отношение массы клещевины к массе поковки, %, принимается по данным таблицы 11.

Таблица 11 – Отходы металла на клешевину при штамповке на молотах

Macca	Клещевина	Отношение массы
-------	-----------	-----------------

поковки, M_n ,	Диаметр d ,	Длина L ,	Macca $M_{\kappa n}$,	клещевины к массе
КГ	MM	MM	ΚΓ	поковки P_{κ} , %
До 0,5	_	_	_	_
0,5–1	30–34	24–26	0,13-0,20	26–20
1–2	35–38	27–29	0,22-0,27	22 12,5
2–3,5	38–43	30–36	0,27-0,45	13,5–13
3,5–5	45–48	37–40	0,45-0,55	13–11
5–12	50-60	40–45	0,58-1,00	11,5–8,5
12–20	65–70	48–55	1,2–1,65	10–8
20–35	75–80	75–80	2,6–3,15	13–9
35–60	85–110	85–110	3,78-8,2	13,5–11
60–110	115–120	115–120	9,3–10,6	15,5–9,5
110–190	125–140	125–140	12,1–17,0	11–9

Вопросы и задания:

Базовый уровень

Задача 1

Определить норму расхода металла и коэффициент использования при штамповке на прессах. Исходные данные: масса детали по чертежу — 29,4 кг; деталь изготавливается из круглой стали и имеет размеры: L — 260мм, диаметр отверстия — 16 мм. Припуск на механическую обработку детали по сечению — 3 мм, по длине детали — 4 мм. Площадь сечения облойной канавки — 10 см², периметр штамповки по листу облоя — 40 см. Коэффициент заполнения облойной канавки — 0,8. Нагрев заготовки осуществляется в камерной печи с нефтяным отоплением.

Задача 2

Рассчитать экономию металла при замене свободной ковки под молотом штамповкой. Определить коэффициент использования металла и во втором случае. Исходные данные:

- 1. Чистый вес детали 22,4 кг.
- 2. Деталь изготавливается из круглой стали.
- 3. Размеры детали: L 500 мм, общий диаметр детали 75 мм, диаметр сплошного отверстия 22 мм.
- 4. Припуски на механическую обработку при штамповке на 40 % меньше, чем при свободной ковке.

- 5. Масса заготовительных отходов при свободной ковке -0.4 кг, при штамповке -0.28 кг.
- 6. Форма мостика облойной канавки цилиндр с радиусом в основании 20 мм.
- 7. Длина линии, описываемой вокруг штампуемой детали центром тяжести мостика облойной канавки 125 мм.
 - 8. Коэффициент заполнения облойной канавки 0,8.
 - 9. Площадь сечения магазина облойной канавки 140 мм².
- 10. Длина линии, описываемой вокруг штампуемой заготовки центром тяжести выплава облоя в магазины 218 мм.
 - 11. Нагрев заготовки как при ковке, так и при штамповке индукционный.

Повышенный уровень

Задача 1

Рассчитать норму расхода металла на изделие и общий коэффициент использования металла при условии, что изделие включает детали, изготавливаемые штамповкой, свободной ковкой и литьём. Исходные данные:

- чистый вес штампованных деталей в изделии 120 кг;
- чистый вес деталей, получаемых свободной ковкой 210 кг;
- чистый вес литых деталей 320 кг;
- коэффициент использования металла при штамповке 0,75;
- при свободной ковке -0.68;
- при литье -0.6.

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М.: Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст] : учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев : Авиац. ин-т, 1981. - 116 с.

Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст]: учеб.

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 https://openedu.ru Открытое образование

ТЕМА 2. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ. ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 9. НОРМИРОВАНИЕ РАСХОДА ТОПЛИВНО-ЭНЕРГЕТИЧЕСКИХ РЕСУРСОВ И ПУТИ ИХ ЭКОНОМИИ

Цель занятия: изучить теоретические положения по теме занятия.

Теоретическая часть

Топливогорючие вещества выделяют при сжигании значительное количество теплоты, которая используется непосредственно в технологических процессах или преобразуется в другие виды энергии. К топливу, как правило, относят те горючие вещества, которые достаточно широко распространены в

природе и основной составной частью которых является углерод: торф, бурый и каменный уголь, нефть и нефтепродукты (мазут, бензин), природный газ.

Направления расхода топлива и электроэнергии на технологические цели представлены на рисунке 5.

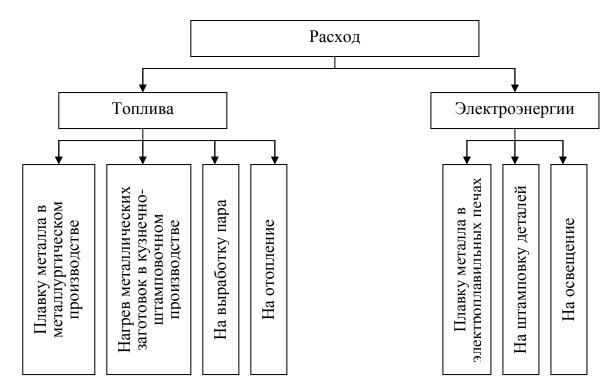


Рисунок 5 — Направления расхода топлива и электроэнергии Расход, топлива нормируется в условном топливе (при сжигании 1 кг такого топлива выделяется 7 000 ккал тепла). В расчётах все виды натурального топлива приводятся к условному через калорийные эквиваленты (расход натурального топлива умножается на калорийный эквивалент). Калорийные эквиваленты определяется отношением теплотворной способности натурального топлива к теплотворной способности условного топлива. Теплотворная способность натурального топлива различна, определяется по соответствующим справочникам. Например, теплотворная способность донецкого длиннопламенного угля составляет 5 000—5 700 ккал/кг, тощего — 6 300—6 700 ккал/кг и т.д.

Вопросы и задания:

Базовый уровень

- 1. Опишите порядок расчёта нормы расхода топлива на плавку металла и на выработку пара.
- 2. В чём заключается расчёт норм расхода топлива на отопление помещений? Опишите последовательность расчёта.
- 3. Назовите основные составляющие норм расхода электроэнергии на освещение.
- 4. Охарактеризуйте пути экономии топливно-энергетических ресурсов на производственных предприятиях и в быту.

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М.: Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст] : учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев : Авиац. ин-т, 1981. - 116 с. Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст] : учеб. / А. П. Баскаков , В. А. Мунц. - М. : ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 https://openedu.ru Открытое образование

ТЕМА 2. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ.

Практическое занятие 10. НОРМИРОВАНИЕ РАСХОДА ТОПЛИВНО-ЭНЕРГЕТИЧЕСКИХ РЕСУРСОВ И ПУТИ ИХ ЭКОНОМИИ (ПРОДОЛЖЕНИЕ)

Цель занятия: изучить теоретические положения по теме занятия.

Теоретическая часть

Методические указания к выполнению задач

1. Общее количество топлива, сжигаемого в плавильной печи определяют по формуле

$$B_{m} = \frac{q_{1} \cdot Q_{M} + q_{5} \cdot t_{nn}}{Q_{H}^{p} - (q_{2} + q_{3} + q_{4})},$$
(84)

где B_m – общее количество топлива, сжигаемого в плавильной печи, кг;

 q_1 – норматив полезного расхода тепла, ккал;

 $Q_{\scriptscriptstyle M}$ – вес металлозавалки, т;

 q_5 – норматив потерь тепла в окружающую среду, ккал/ч;

 $t_{n\pi}$ — время плавки, час;

 $Q_{\scriptscriptstyle H}^{\scriptscriptstyle p}$ – теплотворная способность натурального топлива, ккал/кг;

 q_2 , q_3 , q_4 — нормативы потерь тепла соответственно с уходящими газами, от химической неполноты сгорания топлива, от механической неполноты сгорания топлива, ккал/кг.

2. Расход топлива в нагревательных печах определяется по формуле

$$B_m = \frac{q_1 \cdot Q_3 + q_5 \cdot t_{\text{\tiny H.3A2.}}}{Q_{\text{\tiny H}}^p \cdot K_m},\tag{85}$$

где B_m — общее количество топлива, необходимое для осуществления технологического процесса нагрева металла, кг;

 Q_3 – вес металла нагреваемой заготовки, кг;

 K_m — коэффициент, учитывающий отъём тепла в топке нагревательной печи;

 $t_{H.3a2.}$ — время нагрева заготовки, час.

3. Норматив полезного расхода тепла определяют по формуле

$$q_1 = C(t_{\kappa} - t_{_H}), \tag{86}$$

где С – теплоёмкость металла, ккал/гр-кг;

 t_{κ} – конечная температура нагрева металла, °C;

 t_{H} – начальная температура нагрева металла, °С.

Вопросы и задания:

Базовый уровень

Задача 1

Рассчитать расход топлива, сожжённого за одну плавку в плавильной печи, если норматив полезного расхода тепла на плавку 1 т металлозавалки — 369,6 ккал, вес металлозавалки — 1 т, норматив потерь тепла в окружающую среду — 74 300 ккал/ч, время плавки — 2 часа, теплотворная способность натурального топлива — 9 300 ккал/кг, норматив потерь тепла с уходящими газами — 4 750 ккал/кг, норматив потерь тепла от химической неполноты сгорания топлива — 1 080 ккал/кг, норматив потерь тепла от механической неполноты сгорания топлива — 2 080 ккал/кг.

Задача 2

Рассчитать расход мазута на нагрев 1 т металлических заготовок. Длительность нагрева — 2 ч. Начальная температура нагрева металла — 18° С, конечная температура нагрева металла — $1~250^{\circ}$ С. Теплотворная способность мазута — 9~330~ккал/кг. Теплоёмкость металла — 0.3~ккал/гр \cdot кг, коэффициент, учитывающий отъём тепла в топке печи — 0.38, потери в окружающую среду — 79~566~ккал/ч.

Повышенный уровень

Задача 1

Определить норматив полезного расхода тепла в нагревательной печи термического цеха, если:

- 1) теплоемкость металла 0,4 ккал/гр·кг;
- 2) конечная температура нагрева металла 1.180°C;
- 3) начальная температура нагрева металла 22°C.

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М. : Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст]: учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев: Авиац. ин-т, 1981. - 116 с. Баскаков. А. П. Нетрадиционные и возобновляемые источники энергии [Текст]:

Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст] : учеб. / А. П. Баскаков , В. А. Мунц. - М. : ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 https://openedu.ru Открытое образование

ТЕМА 2. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ.

Практическое занятие 11. НОРМИРОВАНИЕ РАСХОДА ТОПЛИВНО-ЭНЕРГЕТИЧЕСКИХ РЕСУРСОВ И ПУТИ ИХ ЭКОНОМИИ (ПРОДОЛЖЕНИЕ)

Цель занятия: изучить теоретические положения по теме занятия.

Вопросы и задания:

Базовый уровень

Задача 1

Рассчитать норму расхода топлива на выработку 1 т стандартного пара, если коэффициент полезного действия котельной установки принят -0.68.

Задача 2

Определить потребность в топливе на отопительный сезон для здания, если: его наружный объём $-47~860~\text{м}^3$, удельная тепловая характеристика $-0.350~\text{ккал/ч·м}^3$, продолжительность отопительного сезона -230~дн., средняя температура наружного воздуха отопительного сезона -14°C , требуемая внутренняя температура $-+18^{\circ}\text{C}$, КПД отопительной установки -0.8.

Методические указания к выполнению задач 1, 2

1. Норма расхода топлива на выработку 1 т стандартного пара определяется по формуле

$$H = \frac{P \cdot 1000}{7000},\tag{87}$$

где Н – норма расхода топлива на выработку 1 т стандартного пара, кг/т;

P — расход натурального топлива на производство 1 т стандартного пара, ккал/кг.

Расход натурального топлива на производство 1 т стандартного пара:

$$P = \frac{640}{\gamma},\tag{88}$$

где 640 – количество ккал, необходимых для получения стандартного пара с 1 кг жидкости;

у – коэффициент полезного действия котельного агрегата.

Подставив значение P в формулу, определим норму расхода топлива на выработку 1 т стандартного пара:

$$H = \frac{640 \cdot 1000}{7000 \cdot \gamma} = 91,4\gamma. \tag{89}$$

2. Потребность в топливе на отопительный сезон рассчитывается по формуле

$$\Pi = V \cdot \mathcal{A}(t_{\scriptscriptstyle gH} - t_{\scriptscriptstyle H}) \cdot H_{\scriptscriptstyle y} \cdot 10^{-3}, \tag{90}$$

где Π – потребность в топливе на отопительный сезон, т;

V – наружный объём здания, м³;

 t_{H} – средняя температура наружная, °C;

 $t_{\it вн}$ — внутренняя температура, °C;

 H_y – норматив расхода топлива за сутки на 1 м³ объёма здания и перепад температур в 1°C, кг;

 10^{-3} – переводной коэффициент, кг в т.

Норматив расхода топлива определяют по формуле

$$H_{y} = \frac{24 \cdot q}{7000 \cdot \eta},\tag{91}$$

где 24 – количество часов в сутках, час;

q – удельная тепловая характеристика здания, ккал/ч·м³;

7000 – теплота сгорания условного топлива, ккал/кг;

 $\eta - K\Pi Д$ котельной установки.

Чем больше кубатура здания и теплее климатический район, тем меньше удельная тепловая характеристика здания, а, следовательно, и норматив расхода топлива за сутки.

Для зданий современной застройки (с большим объёмом остекления и т.д.) удельная тепловая характеристика выше, чем для зданий старой застройки.

Задача 3

Определить световой поток, излучаемый всеми лампами, если освещённость рабочего места по норме освещённости — 16 лк, площадь освещения — 250 м², коэффициент запаса — 1,8; коэффициент использования светового потока — 0,5.

Задача 4

Рассчитать мощность ламп, требуемых для освещения, при условии, что:

- 1) световой поток, излучаемый всеми лампами 150 000 лм;
- 2) мощность каждой лампы 150 Вт;
- 3) световой поток, излучаемый одной лампой 1 785 лм.

Задача 5

Определить норму расхода электроэнергии для освещения цеха, если имеется следующие данные:

1) мощность всех ламп для освещения – 20 000 Вт;

- 2) время горения ламп 287 час;
- 3) коэффициент, учитывавший неравномерность горения ламп в рассматриваемый период 0,9.

Методические указания к выполнению задач 3-5

Величину светового потока, излучаемого всеми лампами, определяют по формуле:

$$F = \frac{E \cdot S \cdot K_{_3}}{K_{_u}},\tag{92}$$

где F – световой поток, излучаемый всеми лампами, лм;

E – освещённость рабочего места (по норме освещённости), лк;

S – площадь освещения, M^2 ;

 K_3 – коэффициент запаса;

 K_u – коэффициент использования светового потока.

Люмен (лм) – единица светового потока (световой поток, испускаемый точечным источником при силе света в 1 свечу).

Люкс (лк) — единица освещённости (освещённость поверхности площадью 1 м 2 при световом потоке падающего на неё излучения 1 лм).

Для расчёта мощности ламп, используемых на освещение, применяется формула

$$P = \frac{F \cdot p}{f},\tag{93}$$

где P – мощность ламп для освещения, B_{T} ;

р – мощность каждой лампы, Вт;

f — световой поток, излучаемый одной лампой данной мощности и напряжения, лм.

Норма расхода электроэнергии на освещение рассчитывается по формуле

$$H = P \cdot t \cdot K_{_H} \cdot 10^{-3}, \tag{94}$$

где H – норма расхода электроэнергии, кBт;

P – мощность всех ламп для освещения, Вт;

t – время горения ламп в рассматриваемый период, час;

 K_{H} — коэффициент, учитывающий неравномерность горения ламп в рассматриваемый период времени;

 10^{-3} – переводной коэффициент, Вт в кВт.

Задача б

Определить норму расхода электроэнергии на получение 1 т жидкой стали, если полезно используемая мощность электропечи при плавке $-800~{\rm kBt}$, продолжительность плавки $-2,5~{\rm y}$, коэффициент полезного действия печи -0,9, мощность при работе печи на холостом ходу $-420~{\rm kBt}$, время вспомогательных операций $-0,2~{\rm y}$.

Задача 7

Определить норму расхода электроэнергии при штамповке деталей на механических прессах, если расход электроэнергии на один рабочий ход -50 кВт·ч; площадь штампуемых деталей -1 200см; площадь неподвижной подштамповочной плиты -400 см²; коэффициент заполнения площади плиты -0.9; расход электроэнергии на один холостой ход -20 кВт·ч; мощность при холостом ходе -10 кВт·ч, время на вспомогательные операции -0.4 ч.

Методические указания к выполнению задач 6, 7

1. Норма расхода электроэнергии для получения 1 т жидкой стали рассчитывается по формуле

$$H = \frac{N_0}{\eta} \cdot t_0 \cdot N_x \cdot t_x, \tag{95}$$

где H – норма расхода электроэнергии, кBт·ч;

 N_0 – полезно используемая мощность электропечи при плавке, кВт;

 t_0 — продолжительность плавки, ч;

 η – коэффициент полезного действия печи;

 N_x – мощность при работе печи на холостом ходу, кВт;

 t_{x} – время от конца плавки до освобождения печи от металла, ч.

2. Норму расхода электроэнергии при штамповке деталей определяют следующим образом:

$$H = P_{px} + P_{xx} + P_{ecn}, \tag{96}$$

где P_{px} – расход электроэнергии на рабочие ходы при штамповке деталей, кВт·ч;

 P_{xx} – расход электроэнергии на холостые ходы, кВт·ч;

 $P_{\it scn}$ – расход на вспомогательные операции, кВт·ч.

Расход электроэнергии на рабочие ходы:

$$P_{nx} = a_{nx} \cdot n_{x}, \tag{97}$$

где a_{px} – расход электроэнергии на один рабочий ход, кВт·ч; n_x – число рабочих ходов при штамповке деталей.

Число рабочих ходов при штамповке деталей:

$$n_x = \frac{F_g}{F_n \cdot K_{3n}},\tag{98}$$

где F_g – площадь штампуемых деталей, см²;

 F_n – плошадь неподвижной подштамповочной плиты, см²;

 K_{3n} – коэффициент заполнения площади плиты.

Расход электроэнергии на холостые ходы:

$$P_{xx} = a_{xx} \cdot n_x, \tag{99}$$

где a_{xx} – расход электроэнергии на один холостой ход, кВт·ч; n_x – число ходов.

Число холостых ходов и рабочих ходов одинаковое.

Расход электроэнергии на вспомогательные операции:

$$P_{ecn} = N_{xx} \cdot t_{ecn}, \tag{100}$$

где N_{xx} – мощность при холостой ходе, кВт;

 t_{ecn} – время на вспомогательные операции, ч.

Задача 67

Определить потребность в топливе на отопительный сезон для отопления зданий современной и старой застройки, которые находятся во II климатическом районе.

- 1. Наружный объём здания по вариантам представлен в таблице 19.
- 2. КПД отопительной установки определяется по данным таблицы 20.
- 3. Продолжительность отопительного сезона 235 дней.
- 4. Средняя температура наружного воздуха минус 12°С.
- 5. Требуемая внутренняя температура плюс 16°C.
- 6. Удельная тепловая характеристика здания определяется по данным таблицы 21.

Здание современной застройки отапливается районной котельной, работающей на твёрдом топливе, здание старой застройки – домовой котельной, работающей на твёрдом топливе.

Таблица 19 – Наружный объём здания по вариантам

Начальная буква фамилии студента	Наружный объём здания, м ³
A	210
Б	250
В	310
Γ	350
Д	420
E, Ë	470
Ж	480
3	520
И	640

К	680
Л	660
M	870
Н	820
O	900
П	910
P	930
C	950
T	5 500
У	1 500
Ф	1 700
X	20 000
Ц, Ч, Ш, Щ	20 500
R, OI, E	21 000

Таблица 20 – Коэффициент полезного действия отопительных установок

Виды отопительных установок	КПД отопительных установок, работающих		
	на твёрдом	на природном	
	топливе	газе	
Котлы центрального			
теплоснабжения:	0,83	0,90	
районные котельные	0,68	0,75	
домовые котельные	0,70	0,75	
Отопительные печи			

Tаблица 21-Удельная тепловая характеристика зданий по климатическим районам, ккал/ч·м 3

			Удельная тепловая характеристика зданий объёмом, м ³									
Климати- ческий район	Характер застройки	До 200	201– 300	301– 400	401– 500	501– 1 000	1 001 - 2 000	2 001 - 5 000	5 001 - 10 000	10 001 - 15 000	15 001 - 25 000	Свыше 25 000
T	Здания современной застройки	0,902	0,857	0,796	0,730	0,649	0,541	0,463	0,411	0,381	0,363	0,349
ı	Здания старой застройки	0,835	0,795	0,738	0,672	0,595	0,485	0,383	0,325	0,287	0,258	0,234
II	Здания современной застройки	1,163	0,973	0,846	0,841	0,746	0,683	0,592	0,504	0,440	0,391	0,350
11	Здания старой застройки	0,870	0,818	0,712	0,695	0,622	0,521	0,426	0,367	0,328	0,302	0,281

Задача 68

Определить экономию электроэнергии при штамповке деталей в результате изменения организационно-технических условий производства, если имеются данные:

- 1) расход электроэнергии на один рабочий ход 50 кВт·ч;
- 2) площадь штампуемых деталей, площадь неподвижной подштамповочной плиты, коэффициент заполнения площади плиты по вариантам приводятся в таблице 22;
 - 3) расход электроэнергии на один холостой ход 20 кВт⋅ч;
- 4) мощность при холостом ходе $10~{\rm \kappa Bt}$ -ч; время на вспомогательные операции $0.5~{\rm y}$.

Таблица 22 – Исходные данные для расчёта норм расхода электроэнергии

11		Площадь не штамповочно	TC 1.1	
Начальная буква фамилии студента	Площадь штампуемых деталей, см ²	До изменения организационно- технических условий	После изменения организационно-технических условий	Коэффициент заполнения площади плиты
А, Б	500 000	20 000	45 000	0,80
В, Г	425 000	18 000	45 000	0,85
Д, Е, Ё	550 000	22 000	45 000	0,80
Ж, 3, И	500 000	25 000	45 000	0,90
К, Л	600 000	18 000	45 000	0,75
M, H	520 000	15 000	45 000	0,85
О, П, Р, С	900 000	40 000	45 000	0,90
Т, У, Ф, Х	480 000	21 000	45 000	0,90
Ц, Ч, Ш,	500 000	20 000	45 000	0,90
Щ	480 000	21 000	45 000	0,90
Э, Ю, Я				

Повышенный уровень

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М. : Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст]: учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев: Авиац. ин-т, 1981. - 116 с. Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст]: учеб. / А. П. Баскаков, В. А. Мунц. - М.: ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 https://openedu.ru Открытое образование

ТЕМА 2. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ.

Практическое занятие 12. Нормирование расхода сырья и продукции химической промышленности и пути их экономии

Цель занятия: изучить теоретические положения по теме занятия.

Основой технологии химического производства являются химические методы воздействия на предмет труда, которые позволяют изменить их вещественный состав, агрегатное состояние и в результате получать вещества и материалы с иными физико-химическими свойствами. Процессы химического воздействия протекают в специальных аппаратах и комплексах специфического назначения. Большинство химических производств относится к производствам непрерывного типа. Для них характерны достаточно узкая специализация и высокая концентрация производства. Исходя из требований охраны окружающей среды, вредные производства, в том числе химическая промышленность, организованы по замкнутому циклу.

По характеру потребления химическую продукцию можно классифицировать на два вида — сырьё, материалы, полуфабрикаты, изделия, которые производятся и потребляются в самой химической промышленности; продукция, которая производится в отраслях химической промышленности, но потребляется в других отраслях. К первому виду относятся, например, кислоты, щёлочи, ко второму — пластические массы, лакокрасочные покрытия. Такое разделение носит условный характер. Оно необходимо для того, чтобы показать различия в методах и способах нормирования расхода химического сырья, материалов и продукции, получаемой из них.

Норма расхода лакокрасочных материалов на изделие определяется по формуле

$$H = K_n \cdot F \cdot n \cdot d, \tag{101}$$

где H – норма расхода лакокрасочных материалов, г/изделие;

n — количество слоёв покрытия;

d – удельный расход лакокрасочного материала рабочей вязки, г/м 2 ;

 K_n – коэффициент потерь, определяемый по формуле

$$K_n = \frac{100}{100 - \alpha},\tag{102}$$

где α – доля потерь, %.

Удельный расход лакокрасочного материала определяется либо экспериментальным путём, либо расчётно-аналитическим методом.

По расчётно-аналитическому методу удельный расход определяется по формуле

$$d = \frac{\mu - \gamma \cdot 100}{\rho},\tag{103}$$

где μ – толщина сухой плёнки, мк;

 γ – объёмный вес сухой плёнки, г/см³;

 ρ – сухой остаток в лакокрасочном материале при рабочей вязкости, %.

Вопросы и задания:

Базовый уровень

- 1. Опишите порядок расчёта норм расхода лакокрасочных материалов.
- 2. Поясните основные факторы, от которых зависит величина нормы расхода лакокрасочных материалов.
 - 3. Охарактеризуйте пути экономии лакокрасочных материалов.

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М.: Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст] : учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев : Авиац. ин-т, 1981. - 116 с. Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст] : учеб. / А. П. Баскаков , В. А. Мунц. - М. : ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 https://openedu.ru Открытое образование

ТЕМА 2. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ.

Практическое занятие 13. Нормирование расхода сырья и продукции химической промышленности и пути их экономии (продолжение)

Цель занятия: изучить теоретические положения по теме занятия.

Вопросы и задания:

Базовый уровень

Задача 1

Рассчитать норму расхода грунта № 138 при грунтовке детали с двух сторон распылением вручную. Общая площадь покраски $1,32 \text{ м}^2$. Толщина пленки — 14,5 мк, объёмная масса сухой пленки — $1,82 \text{ г/см}^3$, процент сухого остатка при рабочей вязкости — 41 %, удельная норма расхода по замерам — 117 г/м^2 .

Задача 2

Установить норму расхода химиката для гальванического покрытия детали, исходя из следующих данных:

- 1. Норматив расхода химиката 40 г/мг 2 .
- 2. Сумма расчётной поверхности детали и части подвески, погружаемой в ванну $-0.3~\text{m}^2.$

Задача 3

Рассчитать норму расхода масляного лака для покрытия шкафа площадью $2,5 \text{ м}^2$, в два слоя, удельный расход -95 г/см^2 , коэффициент потерь -1,05.

Задача 4

Определить норму расхода краски на изделие, исходя из следующих данных:

- 1) площадь окрашиваемой поверхности изделия 5 m^2 ;
- 2) количество слоев покрытия -2;
- 3) удельный расход лакокрасочного материала в рабочей вязкости -95 г/m^2 .

Задача 5

Определить удельный расход лакокрасочного материала в следующих условиях: объёмный вес сухой плёнки -1,7 г/см³, сухой остаток при рабочей вязкости -30%. Необходимо получить покрытие толщиной 20 микрон.

Задача 6.

Установить величину нормы расхода лакокрасочного материала в исходной вязкости. Исходные данные:

- 1) норма расхода лакокрасочного материала в рабочей вязкости 100 г/дет;
- 2) процентное разведение данного лакокрасочного материала растворителем 40 %.

Повышенный уровень

Задача 1

Определить норму расхода лакокрасочного материала в рабочей вязкости, исходя из следующего:

- 1) толщина сухой пленки 20 мк;
- 2) площадь, окрашиваемой поверхности 5 м²;
- 3) объёмный вес сухой плёнки 1,9 г/см 3 ;
- 4) сухой остаток лакокрасочного материала в рабочей вязкости 20 %;
- 5) коэффициент потерь 0.3;
- 6) число одинаковых по толщине слоёв окраски -2.

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М.: Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст]: учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев: Авиац. ин-т, 1981. - 116 с. Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст]: учеб. / А. П. Баскаков, В. А. Мунц. - М.: ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 <u>https://openedu.ru</u> Открытое образование

ТЕМА 2. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ.

Практическое занятие 14. Нормирование расхода сырья и продукции химической промышленности и пути их экономии (продолжение)

Цель занятия: изучить теоретические положения по теме занятия.

Вопросы и задания:

Определить норму расхода лакокрасочных материалов на окраску изделия при следующих исходных данных.

Изделие состоит из 5 деталей, требующих окраску промышленными эмалями. Исходные данные для расчёта норм расхода представлены в таблице 23.

Детали № 1, 2, 3, 5 окрашиваются методом распыления, деталь № 4 – методом окунания. Удельные нормы расхода лакокрасочных материалов представлены в таблице 24.

Окрашивание производится в два слоя. Заготовительные потери принять в размере 1 % от полезного расхода лакокрасочных материалов.

,	1 1 1	1
Номер детали	Площадь окрашиваемой поверхности в мм ²	Наименование эмали
1	2 500	Нитроэмаль ДНО
2	3 000	Автонитроэмаль 624-е
3	1 600	Нитроэмаль ДМ
4	8 500	Эмаль У-1
5	3 500	Нитроэмаль ДНО

Таблица 23 – Исходные данные для расчёта норм расхода лакокрасочных материалов

Таблица 24 – Удельные нормы расхода лакокрасочных материалов

Наименование материала	Удельная Н в г при окраске	
	распылением	окунанием
Нитроэмаль ДМ и ДНО	150–180	_
Эмаль У-1	110–120	110
Автонитроэмаль 324-е	160–200	_

Задача 2

Определить чистый расход эмали для окрашивания 1 м^2 изделия, при расчете принять толщину сухой пленки эмали -10 мк, объёмный вес сухой плёнки $-1,7 \text{ г/см}^3$, сухой остаток -40 %.

Задача 3

Определить норму расхода полистирола блочного на изготовление детали, если известно, что объём этой детали составляет $13.5~{\rm cm}^3$. Коэффициент использования полистирола – 0.85.

Задача 4

Определить норму расхода органического стекла на деталь, масса которой 104 г. Коэффициент использования аналогичной детали, имеющей утверждённую норму расхода 0,7.

Задача 5

Из листового гетинакса наготавливаются прокладки. Определить норму расхода гетинакса на комплект прокладок.

Исходные данные: $d_1 = 140$ мм; $d_2 = 18$ мм; b = 380 мм; толщина детали -1,7 мм. Листы гетинакса имеют размер $850x1\ 250$ мм; $450x1\ 500$ мм; 400x600 мм.

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М.: Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст]: учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев: Авиац. ин-т, 1981. - 116 с. Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст]: учеб. / А. П. Баскаков, В. А. Мунц. - М.: ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 https://openedu.ru Открытое образование

ТЕМА 2. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ.

Практическое занятие 15. Технологический процесс на предприятии Цель занятия: изучить теоретические положения по теме занятия.

Теоретическая часть

Вопросы и задания:

Базовый уровень

- 1. Составление схемы технологического процесса.
- 2. Анализ схемы.
- 3. Выявление недостатков в аспекте ресурсосбережения
- 4. Схема ресурсных потоков.

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М. : Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст] : учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев : Авиац. ин-т, 1981. - 116 с.

Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст] : учеб. / А. П. Баскаков , В. А. Мунц. - М. : ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 https://openedu.ru Открытое образование

ТЕМА 2. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ.

Практическое занятие 16. Работа со справочниками наилучших доступных технологий.

Цель занятия: изучить теоретические положения по теме занятия.

Теоретическая часть

Вопросы и задания:

Базовый уровень

- 1. Изучение ГОСТ Р 54097–2010 Ресурсосбережение.
- 2. Наилучшие доступные технологии.
- 3. Методология идентификации. О
- 4. знакомление с европейскими справочниками по наилучшим доступным технологий Европейского бюро IPPC (Integrated Pollution Prevention and Control).

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М.: Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст] : учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев : Авиац. ин-т, 1981. - 116 с. Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст] : учеб. / А. П. Баскаков , В. А. Мунц. - М. : ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 <u>https://openedu.ru</u> Открытое образование

ТЕМА 2. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ.

Практическое занятие 17. Составление энергетического паспорта и разработка элементов программы энергосбережения предприятия.

Цель занятия: изучить теоретические положения по теме занятия.

Вопросы и задания:

Базовый уровень

1. Аналитический обзор новейших публикаций в области ресурсосбережения на основе экспресс-поиска в Интернете.

- 2. Определение состава данных энергетического паспорта и энергодекларации.
- 3. Разработка элементов программы энергосбережения малого предприятия.

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М.: Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст]: учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев: Авиац. ин-т, 1981. - 116 с. Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст]: учеб. / А. П. Баскаков, В. А. Мунц. - М.: ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 https://openedu.ru Открытое образование

ТЕМА 3. МЕНЕДЖМЕНТ РЕСУРСОЭНЕРГОСБЕРЕЖЕНИЯ. ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 18. МЕНЕДЖМЕНТ РЕСУРСОВ И ЭНЕРГОМЕНЕДЖМЕНТ

Цель занятия: изучить теоретические положения по теме занятия.

Теоретическая часть

Вопросы и задания:

Базовый уровень

- 1. Системы менеджмента качества в ресурсоэнергосбекрежении.
- 2. Использование наилучших доступных технологий и лучшей практики.
- 3. Энергоменеджмент, энергоаудит и энергосервис.
- 4. Инструментальный энергоаудит.
- 5. Приборы для энергоаудита.
- 6. Энергетический паспорт.
- 7. Программа в области энергосбережения и энергоэффективности.
- 8. Энергодекларация.
- 9. Программное обеспечение для эффективного контроля энергопотребления

Список литературы, рекомендуемый к использованию по данной теме Основная литература:

Кудрин, Б. И. Электроснабжение промышленных предприятий: учеб. / Б. И. Кудрин. - М.: Интермет Инжиниринг, 2005. - 670 с.

Ветошкин, А. Г. Процессы и аппараты защиты окружающей среды : учеб.пособие / А. Г. Ветошкин. - М. : Высш.шк., 2008. - 639 с.

Дополнительная литература:

Сафронов, В. С. Технологические проблемы охраны окружающей среды в химической промышленности [Текст]: учеб. пособие / В.С. Сафронов, Г.Я. Богомолова, Н.В. Финаева. - Куйбышев: Авиац. ин-т, 1981. - 116 с. Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст]: учеб. / А. П. Баскаков, В. А. Мунц. - М.: ИД БАСТЕТ, 2013. - 366 с

Интернет-ресурсы:

- 1 http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2 http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн».
- 3 http://catalog.ncstu.ru/ электронный каталог ассоциации электронных библиотек учебных заведений и организаций СКФО
- 4 http://www.iprbookshop.ru ЭБС.
- 5 https://openedu.ru Открытое образование

ЭНЕРГО- И РЕСУРСОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ

Лабораторный практикум для студентов напрвления 18.03.01 Химическая технология

Тема 1 МЕТОДЫ И ОБОРУДОВАНИЕ ЗАЩИТЫ АТМОСФЕРЫ

ЛАБОРАТОРНАЯ РАБОТА № 1

ОПРЕДЕЛЕНИЕ ПЛОТНОСТЕЙ ПРОМЫШЛЕННЫХ ПЫЛЕЙ

Цель работы: изучить методики экспериментального определения плотностей порошкообразных и пылеобразных веществ.

Оборудование и материалы: мерный цилиндр, аналитические весы, навеска пыли, пикнометр, вакуум-насос, термометр.

Методические указания

Одной из важнейших характеристик пыли, без которых нельзя рассчитать газоочистной аппарат, является плотность. Она нужна для определения скорости витания частиц, емкости бункеров пылеуловителей и т.д. Плотность пыли — это масса единицы ее объема. Различают истинную и насыпную плотность пыли. Истинная плотность — это плотность твердого материала пыли. Насыпная плотность — масса пыли в единице объема, ею заполненном. Некоторые параметры промышленных пылей представлены в табл. 1.1.

1.1 Плотности некоторых веществ

Материал	Истинная плотность, $\kappa \Gamma / M^3$	Насыпная плотность, $\kappa \Gamma / M^3$
Графитная пыль	19002300	1200
Асбестовая пыль	21002800	600
Доменная пыль	31002800	860

Плотность твердого тела легко определяется взвешиванием единицы его объема. Если точный объем тела определить затруднительно, его плотность определяют гидравлическим взвешиванием. Тело, плотность которого необходимо определить, подвешивают на тонкой нити к одной из чашек точных весов. И определяют его массу M_1 в воздухе и при полном погружении в емкость с водой M_2 . Разность масс $M_1 - M_2 = M_2 \qquad \text{равняется} \qquad \text{массе}$ вытесненной воды $M_1 - M_2 = V_{\text{т}} \rho_{\text{в}}$. Откуда объем твердого тела $V_{\text{т}} = \frac{M_1 - M_2}{\rho_{\text{в}}}$, где $\rho_{\text{в}}$ – плотность воды. Торда плотность $M_1 - M_2 = V_{\text{т}} \rho_{\text{в}}$

Тогда плотность тела
$$\rho_{\scriptscriptstyle \mathrm{T}} = \frac{M_1}{V_{\scriptscriptstyle \mathrm{T}}} = \frac{M_1 \, \rho_{\scriptscriptstyle \mathrm{B}}}{M_1 - M_2}$$
 .

Определение истинной плотности пыли связано с некоторыми трудностями, основной из которых является учет промежутков между частицами пыли, а также пористость самих частиц. Истинную плотность порошкообразных материалов обычно определяют с помощью пикнометра. Метод заключается в определении объема жидкости, вытесненной порошком, масса которого известна. Частное от деления массы материала на вытесненный им объем есть истинная плотность. Жидкость, используемая для определения истинной плотности $\rho_{\rm u}$, не должна взаимодействовать с пылью. Если такой жидкости нет, то можно применить метод, основанный на законе Бойля-Мариотта, согласно которому при $T={\rm const}\ p_1V_1=p_2V_2$. Если в герметичный сосуд при постоянной температуре поместить определенное количество пыли, то давление в нем увеличится. По изменению давления можно определить объем пыли и, зная ее

массу, рассчитать истинную плотность. Расчетную схему в данном случае можно представить следующим образом:

Добавили пыль
$$ightarrow$$
 Определили $p_2
ightarrow$
$$V_2 = \frac{p_1 V_1}{p_2}
ightarrow V_\Pi = V_1 - V_2
ightarrow
ho_{\scriptscriptstyle \rm H} = \frac{m}{V_\Pi}$$

На рис. 1.1 представлены схемы экспериментальных установок по определению насыпной и истинной плотности.

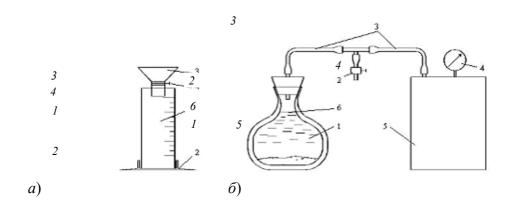


Рис. 1.1 Схемы экспериментальных установок:

a – насыпная плотность: I – мерный цилиндр; 2 – основание;

3 -бункер; 4 -задвижка;

 δ – истинная плотность: 1 – пикнометр; 2 – зажим; 3 – шланги; 4 – вакуумметр; 5 – вакуумный насос; 6 – калибровочная метка Порядок определения насыпной плотности

- 1 На весах определяют массу мерного цилиндра (M_1) .
- 2 Заполняют бункер пылью.
- 3 Открыв задвижку, заполняют цилиндр пылью.
- 4 Пыль выше верхней крышки цилиндра удаляют картонкой.
- 5 Взвешиванием определяют массу цилиндра с пылью (M_2) .
- 6 Рассчитывают насыпную плотность $\rho_{\rm H} = \frac{M_2 M_1}{V}$, где V объем мерного цилиндра.
- 7 Эксперимент повторяют 6 раз для разных проб пыли.
- 8 Рассчитывают среднюю насыпную плотность.

Порядок определения истинной плотности

- 1 Подготавливают пикнометрическую жидкость (вода, выдержанная в термостатированном помещении (табл. 1.2).
 - 2 Взвешивают пикнометр (M_1) .
 - 3 Засыпав в пикнометр пыль, определяют его массу с пылью (M_2) .
- 4 В пикнометр с пылью наливают пикнометрическую жидкость, так чтобы пыль была полностью покрыта жидкостью, и взбалтывают содержимое пикнометра до полного смачивания пыли жидкостью.
- 5 Пикнометр соединяют с вакуум-насосом и включают его, добиваясь легкого "кипения" жидкости, при котором удаляются пузырьки воздуха. Процесс ведут до прекращения "кипения".
- 6 Отключают пикнометр и доливают пикнометрическую жидкость до калибровочной метки. Определяют массу пикнометра с пылью и жидкостью (M_3) .
 - 7 Удаляют из пикнометра жидкость и пыль, промывают сосуд.
 - 8 Заливают в пикнометр жидкость до калибровочной метки и взвешивают (M_4) .

- 9 Рассчитывают уточненный объем пикнометра $V_{\text{пик}} = (M_4 M_1)/\rho_{\text{ж}}$, где $\rho_{\text{ж}}$ плотность пикнометрической жидкости при температуре в условиях эксперимента.
 - 10 Рассчитывают массу пыли в пикнометре $M_{\rm n} = M_2 M_1$.
 - 11 Определяют массу пикнометрической жидкости $M_{**} = M_3 M_2$.
 - 12 Определяют объем, занимаемый жидкостью $V_{\pi} = M_{\pi} / \rho_{\pi}$.
 - 13 Рассчитывают объем пыли, помещенной в пикнометр $V_{\rm n} = V_{\rm пик} V_{\rm w}$.
 - 14 Определяют истинную плотность $\rho_{\rm H} = M_{\rm n}/V_{\rm n}$.

Контрольные вопросы

- 1 Какие различают виды плотностей пыли?
- 2 Как определяется истинная плотность пылей пикнометрическим методом?
- 3 Как определяется насыпная плотность пылеобразных материалов?
- 4 Описание экспериментальных установок.
- 5 Последовательность обработки результатов при определении истинной и насыпной плотности пыли.
 - 6 Назначение вакуумирования и термостатирования при определении истинной плотности пыли.
 - 7 Суть метода определения истинной плотности на основе закона Бойля-Мариотта.
 - 8 Методика определения плотности твердых тел сложной формы.

1.2 Плотность воды в зависимости от температуры

t, °C	ρ, г/cм ³						
0	0,99987	9	0,99981	18	0,99862	27	0,99654
1	0,99993	10	0,99973	19	0,99843	28	0,99626
2	0,99997	11	0,99963	20	0,99823	29	0,99597
3	0,99999	12	0,99952	21	0,99802	30	0,99567
4	1,00000	13	0,99940	22	0,99780	31	0,99537
5	0,99999	14	0,99927	23	0,99757	32	0,99505
6	0,99997	15	0,99913	24	0,99732		
7	0,99993	16	0,99897	25	0,99707		0,99472
8	0,99988	17	0,99880	26	0,99681	34	0,99440

Лабораторная работа № 2

Изучение конструкций пневмометрических трубок, регистрирующих пневмометрических приборов и методов определения с их помощью параметров

пылегазовых потоков

Цель работы: изучить конструкции и принцип действия скоростных трубок и трубки Вентури; овладеть навыками измерения перепадов давления с помощью приборов с видимым уровнем; закрепить теоретические знания основных законов аэродинамики.

 $Oборудование\ u\ материалы$: пневмометрические трубки статического, полного и динамического давлений; двухтрубный U-образный прибор, микроманометр многопредельный с наклонной трубкой MMH-240.

Методические указания

Для контроля пылеулавливающего и другого газоочистного оборудования необходимо знать скорость движения и расход газа, перепады давления и коэффициенты сопротивления в элементах обору-

дования. Наибольшее распространение для измерения параметров газовых потоков получили пневмометрические приборы, принцип действия которых основан на уравнении Бернулли.

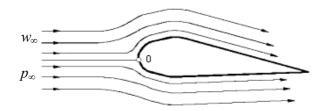
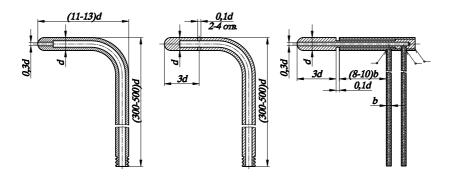


Рис. 1.2 Картина обтекания тела потоком газа

При набегании потока на неподвижное тело в некоторой его точке происходит разветвление потока (рис. 1.2). Данная точка называется точкой торможения или критической точкой. Скорость в критической точке равна нулю.

Давление в точке торможения можно определить из уравнения Бернулли:

$$p_0 + \frac{\rho w_0^2}{2} = p_\infty + \frac{\rho w_\infty^2}{2}$$
,


где p_0 , w_0 — давление и скорость потока в точке торможения, p_∞ , w_∞ — давление и скорость потока на значительном расстоянии от точки торможения, ρ — плотность потока. Так как скорость в точке торможения w_0 = 0, то давление в точке торможения

$$p_0 = p_\infty + \frac{\rho w_\infty^2}{2} \ .$$

Давление в точке торможения потока равно сумме статического и динамического давлений в потоке. Эту сумму называют полным давлением. Для расчетов обычно используют не абсолютное значение давления в точке, а разность между давлением в точке и статическим давлением в потоке, которое является динамическим давлением:

$$\Delta p = p_0 - p_\infty = \frac{\rho w_\infty^2}{2} \ .$$

С помощью пневмометрических приборов непосредственно определяют давление, а скорость рассчитывают из уравнения Бернулли. Для определения скорости используются пневмометрические трубки, которые разделяют на трубки полного, статического и динамического давления (рис. 1.3).

Рис. 1.3 Конструкции пневмометрических трубок

Трубка полного давления воспринимает давление в точке торможения, которой является носок трубки, направленный в режиме измерений навстречу потоку.

Трубка статического давления не восприимчива к динамической составляющей давления в потоке, так как скорость потока на поверхности тела, в которой расположены приемные отверстия, равна нулю.

Скоростная трубка Пито-Прандтля имеет два приемных отверстия. Отверстие на носке трубки воспринимает полное давление в потоке, а отверстие, расположенное на образующей цилиндра трубки — статическое. Их разница, замеренная регистрирующим прибором, дает динамическую составляющую давления, по которой легко рассчитать скорость потока в "точке" измерения.

Наряду со скоростными трубками для измерения скорости потока применяют трубку Вентури (рис. 1.4).

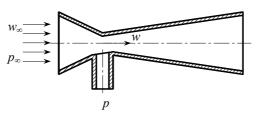


Рис. 1.4 Трубка Вентури для измерения скорости газового потока

Отношение w/w_{∞} можно выразить через отношение площадей во входном и сжатом сечении трубки Вентури из уравнения расхода

$$w_{\infty}F_{\infty} = wF$$
, $\frac{w}{w_{\infty}} = \frac{F_{\infty}}{F}$.

Следовательно

$$\Delta p = p_{\infty} - p = \frac{\rho w_{\infty}^2}{2} \left[\left(\frac{F_{\infty}}{F} \right)^2 - 1 \right].$$


Так как $\Delta p = p_{\infty} - p = \rho_{\mathfrak{m}} g H$, где H — высота столба жидкости с плотностью $\rho_{\mathfrak{m}}$ в регистрирующем приборе, то для скорости в набегающем потоке получается следующее выражение:

$$w_{\infty} = \sqrt{\frac{2\rho_{\infty}gH}{\rho}} \frac{1}{\sqrt{\left(\frac{F\infty}{F}\right)^2 - 1}},$$

или с учетом поправочного коэффициента трубки Вентури

$$w_{\infty} = \sqrt{\frac{2\rho_{\infty}gH}{\rho}} \frac{K}{\sqrt{\left(\frac{F\infty}{F}\right)^2 - 1}}.$$

Для регистрации давлений газа, воспринимаемых скоростными трубками, используются различные устройства. Наиболее простыми являются U-образные приборы. На рис. 1.5 представлены схемы замеров полного (рис. 1.5, a) и динамического давления (рис. 1.5, δ) с помощью U-образной трубки.

4

Рис. 1.5 Схемы замера полного и динамического давлений

Вместо способа, указанного на рис. 1.5, δ с двумя трубками, можно использовать схему, когда в магистраль вводится скоростная трубка Пито-Прандтля, воспринимающая и полное и статическое давление. Зная полное давление в данной точке и статическое (рис. 1.5, δ) можно вычислить динамическое давление и скорость в точке замера.

$$\frac{\rho_{\rm c}w^2}{2} = \Delta p = p - p_{\infty} = \rho_{\rm m}gH; \quad w = \sqrt{\frac{2\rho_{\rm m}gH}{\rho_{\rm c}}}.$$

Практически нельзя совместить в одной точке приемники и полного и статического давлений (будь то скоростная трубка или схема замера как на рис. 1.5, δ), поэтому в формулу вводится поправочный коэффициент, который для хороших трубок всего на 1...2 % отличается от единицы:

$$w = k \sqrt{\frac{2\rho_{xx}gH}{\rho_{c}}} .$$

Универсальным пневмометрическим прибором для измерения давлений в широком диапазоне и особенно при малых давлениях является многопредельный микроманометр с наклонной трубкой (рис. 1.6).

На плите микроманометра укреплен резервуар, герметически закрытый крышкой. На крышке расположен трехходовой кран, отверстие с пробкой для заливки и регулятор нулевого положения мениска спирта в измерительной трубке, соединенной с резервуаром. Измерительная трубка снабжена защитным кожухом и соединена верхним концом с помощью соединительного шланга с трехходовым краном.

Рис. 1.6 Микроманометр типа ММН-240

Для установки измерительной трубки на требуемый угол к плите прикреплена дуга с пятью отверстиями, соответствующими определенным значениям постоянной прибора K. Для установки микроманометра в горизонтальное положение при замерах на плите установлено два уровня с цилиндрическими ампулами. Прибор приводится в горизонтальное положение двумя регулировочными ножками.

Трехходовой кран имеет три штуцера. Один используется для постоянного соединения крана с измерительной трубкой. При измерении избыточного давления резиновая трубка, идущая от места замера, надевается на штуцер со знаком "+", а при измерении вакуумметрического давления на штуцер со зна-

ком "-". При измерении разности давлений регистратор большего соединяется со штуцером "+", а меньшего со штуцером "-".

Принцип действия прибора основан на том, что измеряемое давление газа (или разность давлений) уравновешивается давлением столба рабочей жидкости, который образуется в наклонной трубке (к трубке подводится меньшее давление). При этом условии уровень спирта в измерительной трубке будет повышаться, а в резервуаре – понижаться.

Основные составные части многопредельного микроманометра показаны на рис. 1.7. Цилиндрический резервуар 2 прибора неподвижно установлен на плите I. На крышке 3 резервуара имеется трехходовой кран 4 для присоединения прибора к пневмометрической трубке. При замере отвод трубки, воспринимающий полное давление, подсоединяется к патрубку манометра со знаком плюс, а отвод трубки, воспринимающий статическое давление, к патрубку со знаком минус. Приведя указатель крана манометра в нулевое положение, устанавливают нулевой уровень жидкости в измерительной трубке микроманометра. Для этой цели служит регулятор 6 на крышке резервуара. Через отверстие 5 в резервуар микроманометра заливают рабочую жидкость — этиловый спирт.

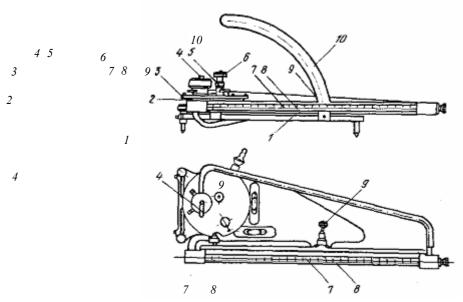


Рис. 1.7 Схема и основные узлы микроманометра типа ММН

Стеклянная измерительная трубка 7 со шкалой от 0 до 250 мм, полузакрытая металлическим чехлом 8 от повреждений, соединена с резервуаром. Она может устанавливаться под различными углами наклона к горизонтальной плоскости с помощью фиксатора 9 на стойке 10 с пятью отверстиями. Цифры у отверстий стойки представляют собой синус угла наклона измерительной трубки прибора и определяют численно соответствующие значения поправочного коэффициента микроманометра. Микроманометр типа ММН установлен на трех ножках, одна из которых фиксированной высоты, а две другие винтовые. На плите прибора размещены также два уровнемера.

Истинное значение измеряемого давления или перепада давления определяется зависимостью

$$\Delta p = 9.81 \, HK$$
,

где H — видимая длина столба спирта в измерительной трубке; K — постоянная прибора, значения которой указаны на дуге с отверстиями.

Порядок выполнения работы

- 1 Изучить конструкцию скоростной трубки Пито-Прандтля.
- 2 Определить по каким отводам передается полное и статическое давление на регистрирующий прибор.
 - 3 Изучить конструкцию многопредельного микроманометра ММН-240.
- 4 С помощью регулировочных ножек выставить микроманометр в горизонтальное положение, контролируя действия по двум уровням.

- 5 Установить наклонную трубку в положение, отвечающее коэффициенту K = 0.8.
- 6 Выставить нулевое положение уровня жидкости в наклонной трубке с помощью регулятора на крышке микроманометра.
- 7 Подготовить прибор к измерениям, подключив резиновыми шлангами скоростную трубку к патрубкам микроманометра.

Контрольные вопросы

- 1 Уравнение Бернулли. Теоретические основы пневмометрических измерений параметров пылегазовых потоков.
 - 2 Давление в потоке. Полное, статическое и динамическое давление.
- 3 Конструкции пневмометрических трубок для измерения полного, статического и динамического давлений.
 - 4 Теоретические основы измерения скорости с помощью трубки Вентури.
 - 5 Схемы измерения давления и скорости в газовом потоке.
 - 6 Принцип действия многопредельного микроманометра.
 - 7 Возможность и назначение поворота измерительной трубки микроманометра.
- 8 Порядок подготовки к измерениям с помощью микроманометра и скоростной трубки Пито-Прандтля.

Лабораторная работа № 3

ИССЛЕДОВАНИЕ ПОЛЯ СКОРОСТЕЙ ГАЗОВОГО ПОТОКА В ПОДВОДЯЩИХ МАГИСТРАЛЯХ И ГАЗООЧИСТНЫХ АППАРАТАХ

Цель работы: освоить методику определения поля скоростей и среднего расхода газа в трубопроводах и исследовать поле скоростей при движении газового потока по газопроводу круглого сечения.

Методические указания

Для контроля работы пылеулавливающих установок следует знать объемный расход газов, проходящих по газопроводу; обычно его определяют, замеряя скорость движения газов. При этом с помощью пневмометрической трубки и микроманометра замеряют динамическое давление газового потока и рассчитывают скорость движения его в точке замера (м/с)

$$w_{\Gamma} = \sqrt{\frac{2P_{\text{дин}}}{\rho_{\Gamma}}} ,$$

где $P_{\text{дин}}$ — динамическое давление газового потока в точке замера, Па; ρ_{Γ} — плотность газа в рабочих условиях, кг/м³.

Скорость движения газов как при ламинарном, так и при турбулентном режимах неодинакова в разных точках сечения газопровода. Кроме того, под действием различных факторов могут возникать дополнительные возмущения, увеличивающие неравномерность распределения скоростей газа по сечению. Поэтому скорость газового потока, замеренная с помощью пневмометрической трубки и микроманометра, является скоростью, характеризующей конкретную точку сечения газопровода.

Для нахождения средней скорости движения потока или изучения распределения скоростей по сечению газопровода снимают так называемое поле скоростей. Для этого, если газопровод имеет прямоугольное сечение, его условно разбивают на ряд прямоугольников, геометрически подобных сечению, и измерения производят в центрах полученных прямоугольников (рис. 1.8, a).

Длина стороны условного прямоугольника не должна превышать 0,15...0,20 м; минимальное число точек замера – три в каждом направлении. В процессе подготовки к замерам на двух взаимно перпендикулярных сторонах газопровода по осям, на которых расположены центры условных прямоугольников,

прорезают отверстия диаметром 0,03...0,05 м и приваривают в этих местах короткие штуцеры из отрезков труб.

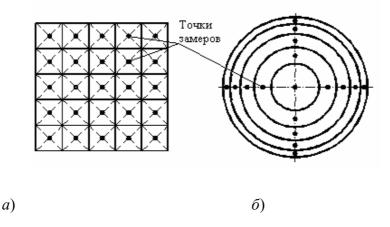


Рис. 1.8 Схема расположения точек замера скоростей

по сечению газопровода:

a – прямоугольного сечения; δ – круглого сечения

Газопроводы круглого сечения разбивают на ряд концентрических равновеликих колец и измерения производят по двум взаимно перпендикулярным диаметрам (рис. $1.8, \delta$), для чего в стенке газопровода на расстоянии, равном четверти окружности его сечения, прорезают два отверстия диаметром 0,03...0,05 м и приваривают короткие штуцеры.

Достаточно надежные результаты замеров могут быть получены, если газопроводы круглого сечения будут разбиты на следующее число колец.

Диаметр газопровода,		0,20,	0,40,	0,60,	0,81,	
M	0,2	4	6	8	0	> 1,0
Число колец	3	4	5	6	8	10

Расстояние от центра газопровода до точки замера (м) определяется по формуле

$$l_i = R\sqrt{(2i-1)/2n} ,$$

где R — радиус газопровода, м; n — число колец, на которые разделено сечение газопровода; i — порядковый номер кольца, считая от центра газопровода.

В практических целях удобно пользоваться величиной расстояния от внутренней стенки газопровода в месте ввода заборной трубки до точки замера. Указанные расстояния (м) определяют по уравнениям:

$$l'_i = R(1 - \sqrt{(2i-1)/2n}),$$

$$l_i'' = R(1 + \sqrt{(2i-1)/2n})_2$$

где l'_i и l''_i — расстояние от внутренней стенки газопровода соответственно до ближней и дальней точек замеров, расположенных в данном кольце, м.

Выполнив замеры и определив скорость в ряде точек исследуемого сечения, рассчитывают среднюю по сечению потока скорость газа $w_{\rm cp}$.

Объемный расход газа определяется как произведение средней скорости газа на площадь поперечного сечения газопровода:

$$V = w_{\rm cp} F$$
.

Замерив также скорость газа на оси потока w_0 , можно определить коэффициент распределения скоростей по сечению газопровода

$$\alpha_{\rm cp} = w_{\rm cp} / w_0 .$$

Однако такой способ определения $w_{\rm cp}$ допустим лишь в случаях стабильного газового потока, изменение скоростей которого во времени крайне мало. На практике же полученное этим способом соотношение между средней и осевой скоростями может не отражать истинной картины. Это объясняется изменением абсолютной величины скорости газа за время проведения замеров.

В то же время считают, что распределение скоростей по сечению газопровода, т.е. коэффициент α_{cp} , существенно не изменяется с течением времени, несмотря на изменение абсолютной величины скорости газа. Поэтому рекомендуется для определения α_{cp} одновременно проводить замеры в определенной точке сечения газопровода и на его оси. Определив численно отношение $\alpha = w_i / w_0$ для всех точек замеров, рассчитывают коэффициент распределения скоростей газа по сечению круглого газопровода

$$\alpha_{\rm cp} = \frac{\alpha_1 + \ldots + \alpha_{8n}}{8n} \,,$$

где 8n — общее число замеров в 4n точках при прямом и обратном ходах пневмотрубки вдоль двух взаимно перпендикулярных диаметров. Объемный расход газа ($\text{м}^3/\text{c}$) проходящего по газопроводу, с учетом коэффициента распределения скоростей по сечению, определяется выражением

$$V = w_0 \alpha_{\rm cp} F$$
,

где F – площадь сечения газопровода, M^2 ; w_0 – усредненная по времени скорость газа на оси газопровода, M/c.

Схема и описание экспериментальной установки

При выполнении настоящей работы пользуются пневмометрической трубкой с микроманометром типа ММН. Пневмометрические трубки различных конструкций невелики по диаметрам, поэтому их можно ввести в газопровод через небольшие штуцеры; они не создают добавочного сопротивления потоку и часто из-за сложной конфигурации газопроводов являются единственными приборами для измерения скорости газового потока. При измерении скорости газа пневмометрическими трубками необходимо обеспечивать чистоту отверстий и каналов трубок, даже если конструкция трубки рассчитана на применение для запыленных газов.

Пневмометричеокая трубка всегда имеет два канала, один из которых воспринимает полное давление газа, а другой — статическое. При подключении первого канала к штуцеру со знаком плюс, а второго — к штуцеру со знаком минус микроманометр покажет динамическое давление. Оно представляет собой разность между полным давлением потока $P_{\text{пол}}$, действующим в направлении вектора скорости газов, и статическим давлением $P_{\text{ст}}$, замер которого с помощью трубки осуществляется в направлении, перпендикулярном вектору скорости.

В зависимости от конструкции пневмометрической трубки при измерении статического давления имеют место большие или меньшие отклонения от его истинного значения, что в свою очередь сопровождается искажениями в результатах замеров динамического давления. Поэтому в расчетах учитывают поправочный коэффициент пневмотрубки, характеризующий отношение истинного значения динамического давления к замеренному. Для каждой конструкции пневмометрической трубки коэффициент k_1 определяется либо параллельными замерами скорости газового потока данной трубкой и трубкой, коэффициент которой известен, либо на тарировочных стендах в специализированных лабораториях.

Наряду со скоростными трубками Пито-Прандтля, для измерения параметров пылегазовых потоков больших объемов применяется трубка конструкции НИИОгаза, которая состоит из двух металлических трубок диаметром 6 мм, расположенных параллельно друг другу; конец одной из трубок плавно изогнут под углом 90°. При помощи трубки с загнутым концом замеряется полное, а с помощью прямой трубки – статическое давление газового потока. Конструкция трубки позволяет легко продувать и прочищать ее, что дает возможность многократных измерений без забивания трубки.

Порядок проведения работы

- 1 Подготавливают микроманометр, обеспечивая строго горизонтальное положение прибора и установку нулевого уровня этилового спирта в измерительной стеклянной трубке. Для установки прибора в горизонтальное положение служат винтовые ножки и два уровнемера. Нулевое положение рабочей жидкости в измерительной трубке устанавливают при нулевом положении трехходового крана, пользуясь расположенным на крышке резервуара регулятором.
- 2 Определив число точек замеров по сечению круглого газопровода и просчитав расстояния от внутренней стенки газопровода до каждой точки, размечают пневмометрическую трубку. С этой целью от ее конца, вводимого в газопровод, отмечают длину, равную сумме следующих величин: расстояния от внутренней стенки газопровода до точки замера, толщины стенки газопровода, высоты штуцера и высоты выступающей из штуцера пробки.
- 3 Скоростную трубку соединяют резиновыми шлангами с микроманометром таким образом, чтобы трубка, воспринимающая полное давление, была присоединена к патрубку со знаком плюс, а трубка, воспринимающая статическое давление, к патрубку со знаком минус.
- 4 Пневмометрическую трубку после присоединения к микроманометру проверяют на герметичность. Для этого в каналах трубки поочередно создают давление и, плотно закрыв входное отверстие канала исследуемой трубки, контролируют постоянство показаний микроманометра.
- 5 Скоростную трубку вставляют в штуцер так, чтобы входное отверстие располагалось строго навстречу газовому потоку, и приступают к замерам, перемещая трубку вдоль двух взаимно перпендикулярных диаметров, от ближней стенки газопровода до противоположной и обратно. Носок трубки должен лежать на линии, проходящей через точку замера в исследуемом сечении. В каждой точке замеров записывают показания микроманометра. Кроме того, измеряют температуру газового потока.

Обработка результатов эксперимента

По результатам измерений рассчитывают значения скоростей в точках замеров, среднюю скорость по сечению газопровода и объемный расход газа.

Динамическое давление газа в точках замеров (Па) определяют по формуле

$$P_{\text{лин }i} = 9.81 m k_1 k_2 k_3$$
,

где m — показания по шкале прибора; k_1 — поправочный коэффициент пневмотрубки; k_2 — поправочный коэффициент микроманометра, определяемый как синус угла наклона измерительной трубки прибора; k_3 — поправочный коэффициент, учитывающий соотношение плотностей жидкости, залитой в микроманометр, и чистого спирта (ρ_{cn} = 809,5 кг/м 3 при 20 °C).

Скорость газового потока в точках замеров рассчитывают по замеренной величине динамического давления.

Усредненная по сечению круглого газопровода скорость газа (м/с) определяется выражением

$$w_{\rm cp} = \frac{1}{8n} \left(\sum_{i=1}^{4n} w_i^+ + \sum_{i=1}^{4n} w_i^- \right),$$

где w_i^+ , w_i^- – значения скоростей газа в точках замеров соответственно при прямом и обратном ходах пневмотрубки вдоль двух взаимно перпендикулярных диаметров, м/с.

Коэффициент распределения скоростей по сечению круглого газопровода рассчитывают согласно выражению

$$\alpha_{\rm cp} = \frac{1}{8n} \left(\sum_{i=1}^{4n} \alpha_i^+ + \sum_{i=1}^{4n} \alpha_i^- \right),$$

где α_i^+ , α_i^- – значения коэффициентов α_i ($\alpha_i = w_i / w_0$) для точек замеров соответственно при прямом и обратном ходах пневмотрубки вдоль двух взаимно перпендикулярных диаметров.

Объемный расход газа по газопроводу круглого сечения (m^3/c) в соответствии со сказанным

$$V = w_0 \alpha_{\rm cn} F$$
,

где w_0 – усредненная по времени скорость газа на оси газопровода м/с.

Найденное значение объемного расхода газа относится к рабочим условиям. При приведении этой величины (m^3/c) к нормальным условиям пользуются выражением

$$V_0 = V \frac{273}{273 + t_{\rm r}} \frac{B \pm p_{\rm r}}{101361,5} \,,$$

где p_{Γ} – давление (разрежение) газа в газопроводе, Па; t_{Γ} – температура газа в газопроводе, °C; B – барометрическое давление атмосферного воздуха, Па.

Для построения эпюры скоростей по горизонтали в определенном масштабе откладывают диаметр газопровода и наносят выбранные точки измерений. Затем в этих точках проводят вертикали, на которых также в определенном масштабе откладывают полученные в результате расчетов значения скоростей. Концы векторов скоростей соединяют плавной кривой и получают профиль скоростей в сечении газопровода, Более наглядная картина распределения скоростей получится, если эпюру строить сразу для двух диаметров сечения, расположенных по нормали один к другому, изобразив ее в какой-нибудь проекции, например в изометрии (рис. 1.9).

Рис. 1.9 Эпюра скоростей газового потока по сечению круглого газопровода

Контрольные вопросы

- 1 Устройство и принцип действия пневмотрубок.
- 2 Устройство и работа микроманометра типа ММН.
- 3 Как снимают поле скоростей по сечению круглого (прямоугольного) газопровода?
- 4 Порядок проведения эксперимента.
- 5 Как рассчитывают коэффициент усреднения скоростей и объемный расход газа по сечению газопровода?
 - 6 Графическое представление результатов эксперимента.

Лабораторная работа № 4

Моделирование параметров пылегазового потока в инерционном пылеуловителе

Цель работы: ознакомиться с принципами работы инерционных пылеуловителей, изучить законы движения и сепарации пылевых частиц в инерционных пылеуловителях, рассчитать поле скоростей газового потока в пылеуловителе с вертикальной перегородкой, определить компоненты скорости и результирующую скорость среды в ряде точек.

Оборудование и технические средства: персональный компьютер, математический пакет Waterloo Maple.

Методические указания

В каналах инерционных пылеуловителей движется двухфазный поток, содержащий очищаемый газ и полидисперсную пыль. Так как объемная концентрация пыли в потоке обычно невелика, можно рассматривать движение невзаимодействующих твердых частиц различных размеров в отдельности, как в монодисперсном потоке. Для определения возможностей сепарации (отделения твердых частиц от газа) пылевых частиц данного размера нужно рассчитать траектории их движения в канале пылеуловителя.

Инерционные пылеуловители применяются для предварительной очистки газа с целью снижения запыленности газа, поступающего в последующие аппараты газоочистки, а также для защиты их от износа. Скорость газа на входе в аппараты инерционного улавливания относительно высокая – от 15 м/с и выше, поэтому они имеют небольшие габариты и металлоемкость. Эти аппараты имеют малое гидравлическое сопротивление и могут встраиваться непосредственно в газоходы. Схемы простейших инерционных пылеуловителей представлены на рис. 1.10.

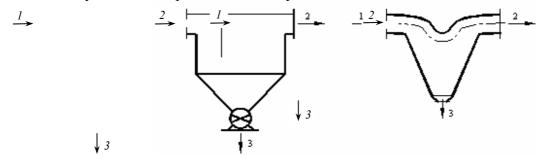


РИС. 1.10 СХЕМЫ ИНЕРЦИОННЫХ ПЫЛЕУЛОВИТЕЛЕЙ С ВЕРТИКАЛЬНОЙ ПЕРЕГОРОДКОЙ И ПЛАВНЫМ ИЗМЕНЕНИЕМ НАПРАВЛЕНИЯ ДВИЖЕНИЯ:

1 – ВХОД ЗАПЫЛЕННОГО ГАЗА; 2 – ВЫХОД ОЧИЩЕННОГО ГАЗА; 3 – ВЫХОД ПЫЛИ

Улавливание пыли в инерционных пылеуловителях осуществляется за счет резкого изменения направления движения газового потока. В результате частицы пыли, двигаясь по инерции, сепарируются из потока на стенки пылеуловителя, а затем отводятся в бункер.

Для описания движения твердой частицы основным является дифференциальное уравнение движения ее центра массы

$$m\frac{d\mathbf{v}}{dt} = \sum \mathbf{P} ,$$

где m — массы твердой частицы; \mathbf{v} — вектор абсолютной скорости частицы, $\sum \mathbf{P}$ — векторная сумма действующих на частицу сил.

В общем случае сумма сил, действующих на пылевую частицу,

$$\sum \mathbf{P} = \mathbf{P}_a + (\mathbf{P}_G + \mathbf{P}_A) + \mathbf{P}_p + \mathbf{P}_{np},$$

где \mathbf{P}_a — сила аэродинамического сопротивления движению частицы в газовом потоке; \mathbf{P}_G + \mathbf{P}_A — равнодействующая силы тяжести и архимедовой силы; \mathbf{P}_p — сила, действующая на частицу при нахождении ее в неравномерном поле давлений; \mathbf{P}_{np} — равнодействующая прочих сил.

Сила аэродинамического сопротивления для сферической частицы считается направленной против скорости **w** ее движения относительно газа:

$$\mathbf{P}_a = -C0.25\pi d^2 0.5 \rho_{\rm r} w^2 \frac{\mathbf{w}}{w},$$

где C – коэффициент сопротивления.

Если ${\bf v}$ и ${\bf u}$ — абсолютные скорости частицы и газа, то при обтекании частицы ${\bf w}={\bf v}-{\bf u}$. При реальных относительных скоростях движения частиц коэффициент сопротивления зависит от числа Рейнольдса

$$C = A \operatorname{Re}^{-n}$$
,

где A и n – постоянные зависящие от режима движения:

Диапазон чисел Рейнольдса	Re ≤ 0,6	0,6 < Re ≤ 17	17 < Re ≤ 700	700 < Re < 10 ⁵
A	24,0	26,5	11,5	0,44
\overline{n}	1,0	0,8	0,5	0

По сравнению с силой аэродинамического сопротивления все другие силы, действующую на пылевую частицу в канале инерционного пылеуловителя, малы, что можно показать оценочными расчетами. В реальных условиях архимедова сила приводит к незначительному уменьшению равнодействующей $\mathbf{P}_G + \mathbf{P}_A$ вследствие малости отношения плотностей газа и материала пылевой частицы. Сила тяжести (в рассматриваемых условиях движения мелких твердых частиц) на несколько порядков меньше силы аэродинамического сопротивления. Если, например, плотность твердых частиц $\rho = 2000 \, \mathrm{kr/m}^3$, $d = 10 \, \mathrm{mkm}$, скорость перемещения частиц относительно газа $w = 1 \, \mathrm{m/c}$, плотность воздуха $\rho_{\mathrm{r}} = 1,2 \, \mathrm{kr/m}^3$ и его кинематическая вязкость при $20 \, \mathrm{^{\circ}C} \, \mathrm{^{\circ}C} \, \mathrm{^{\circ}C} = 15,1\cdot10^{-6} \, \mathrm{^{\circ}M^2/c}$, то с учетом ранее приведенных соотношений $P_G/P_A = 0.7\cdot10^{-2}$.

Сила, действующая на частицу при ее движении в неравномерном поле давлений, также невелика. В условиях предыдущего примера при градиенте давления 50 Па/мм имеет место отношение $P_p/P_a \approx 1.5 \cdot 10^{-2}$.

К прочим силам могут быть отнесены силы аэродинамического взаимодействия между твердыми частицами, их взаимодействия при столкновениях и электростатические силы, которыми при небольшой концентрации пыли в двухфазном потоке можно пренебречь.

Исходя из приведенных сравнительных оценок, ввиду малости всех рассмотренных сил по сравнению с силой аэродинамического сопротивления, дифференциальное уравнение движения пылевой частицы можно записать в следующем виде:

$$m\frac{d\mathbf{v}}{dt} = \mathbf{P}_a$$
.

Предполагая, что движение в инерционном пылеуловителе является плоским, т.е. картина течения одинакова во всех плоскостях по ширине аппарата, можно спроецировать векторы обеих частей дифференциального уравнения на неподвижные (инерциальные) прямоугольные оси координат и получить систему уравнений:

$$\begin{cases} m \frac{dv_x}{dt} = P_{ax}; \\ m \frac{dv_y}{dt} = P_{ay}. \end{cases}$$

Проекции силы

$$P_{ax} = -P_a \frac{w_x}{w}; \quad P_{ay} = -P_a \frac{w_y}{w}.$$

Скорость перемещения твердой частицы относительно газа и проекции этой скорости

$$w = \sqrt{w_x^2 + w_y^2}; \quad w_x = v_x - u_x; \quad w_y = v_y - u_y.$$

Представленная система дифференциальных уравнений с учетом начальных условий положения частицы и ее скорости, которую можно на удалении от перегородки принять равной скорости газового потока, аналитического решения не имеет. Однако эта задача может быть решена численными методами, например Эйлера и Рунге-Кутта.

Основная проблема при моделировании параметров пылегазового потока в инерционных пылеуловителях заключается в определении силы аэродинамического сопротивления, поскольку необходимо располагать распределением скоростей газа и в аппарате. Поэтому весьма важным является расчет скоростей движения газа.

Считая поток газа несжимаемым (это допущение вполне оправданно в диапазонах скоростей газа в инерционном пылеуловителе) и движущимся стационарно, можно для определения поля скоростей применить характеристическую функцию плоского потока и метод конформного преобразования. Плоский потенциальный поток в условиях установившегося движения однозначно характеризуется двумя функциями, зависящими только от координат x, y: потенциалом скоростей $\phi(x, y)$ и функцией тока $\psi(x, y)$ у). Геометрически каждая из этих функций может быть изображена соответствующим семейством линий: семейством линий равного функция потенциала const. функция линий семейством тока $\psi(x, y) = \text{const} \text{ (рис. 1.11)}.$

В случае установившегося движения $\psi = C_2$ течет по линиям тока; линии равного потенциала в этом случае являются линиями, вдоль которы: $\psi = C_3$ гого π \in ния не происходит. Зависимость между потенциалом скоростей χ π π π π π π ней тока плоского потока может быть записана с помощью соответствующих выражений для ком. Снентов скорости

$$u_x = \frac{\partial \varphi}{\partial x}, \quad u_y = \frac{\partial \varphi}{\partial y},$$

$$u_x = \frac{\partial \psi}{\partial y}, \quad u_y = -\frac{\partial \psi}{\partial x}.$$

Сопоставляя здесь равенства для одноименных составляющих скорости можно получить

$$\frac{\partial \varphi}{\partial x} = \frac{\partial \psi}{\partial y}, \quad \frac{\partial \varphi}{\partial y} = -\frac{\partial \psi}{\partial x}.$$

Данные уравнения представляют собой дифференциальные уравнения Коши-Римана, которым удовлетворяют вещественная и мнимая части всякой регулярной функции комплексного переменного f(z) (где z = x + iy), и наоборот, если какие-либо функции $\phi(x, y)$ и $\psi(x, y)$ удовлетворяют этим уравнениям, то их можно рассматривать как вещественную и мнимую части функции комплексного переменного. На этом основано применение комплексной переменной к теории плоского потенциального потока сплошной среды.

Функция $\chi = \varphi + i\psi = f(z)$ называется характеристической функцией плоского потока или комплексным потенциалом. Все кинетические элементы движения могут быть выражены непосредственно через характеристическую функцию. Например, беря производную от комплексного потенциала, находим:

$$\frac{d\chi}{dz} = \frac{\partial \varphi}{\partial x} + i \frac{\partial \psi}{\partial x} = u_x - i u_y.$$

Модуль этой производной дает абсолютное значение вектора скорости в данной точке

$$\left| \frac{d\chi}{dz} \right| = \sqrt{u_x^2 + u_y^2} = u .$$

Введение комплексного потенциала значительно упрощает исследование плоского потока среды, поскольку вместо двух функций φ и ψ , зависящих от двух переменных x и y, имеем одну функцию χ , зависящую от одного независимого комплексного переменного z. Кроме этого, с помощью функций комплексного переменного можно получать характеристики различных плоских потоков, обтекающих заданное тело. Если известна характеристическая функция плоского потока $\chi = f(z)$ и взята какая-либо аналитическая функция $F(\zeta)$ комплексного переменного $\zeta = \xi + i\eta$, то, при-няв эту функцию за независимое переменное $z = F(\zeta)$, получим характеристическую функцию некоторого плоского потока, параллельного плоскости ζ . Преобразование плоскости z в плоскость ζ с помощью функции $z = F(\zeta)$ (или, вернее, с помощью обратной функции $z = F(\zeta)$) называется конформным преобразованием, т.е. преобразованием при котором сохраняется подобие бесконечно малых элементов. Жуковским Н.Е. были впервые указаны преобразующие функции, с помощью которых можно определить поле скоростей при обтекании профилей различных крыльев.

Практически всякую характеристическую функцию $\chi = f(\zeta)$ можно рассматривать как полученную путем конформного преобразования $z = f(\zeta)$ из функции $\chi = z$, которая представляет собой характеристическую функцию поступательного потока, текущего вдоль оси x скоростью равной единице. Поступательный поток $\chi = z$ дает обтекание плоской, бесконечно тонкой пластинки, поставленной параллельно вектору скорости.

Поступательный поток, текущий вдоль оси x со скоростью U и обтекающий тонкую горизонтальную пластинку, описывается характеристической функцией $\chi = Uz = U(x+iy)$. Если применить к этой характеристической функции конформное преобразование $z = \zeta + \frac{r_0^2}{\zeta}$, то комплексный потенциал

 $\chi = U \left(\zeta + \frac{r_0^2}{\zeta} \right)$ будет описывать обтекание кругового цилиндра радиусом r_0 на плоскости ζ (рис. 1.12).

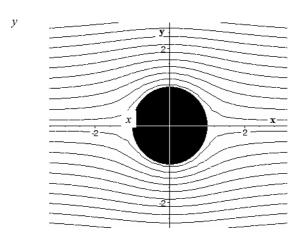


Рис. 1.12 Линии тока при обтекании кругового цилиндра

Если к потоку с характеристической функцией $\chi = U \left(z + \frac{r_0^2}{z}\right)$, обтекающему круговой цилиндр с радиусом r_0 применить конформное преобразование $\zeta = z - \frac{r_0^2}{z}$ (или $z = \frac{\zeta}{2} \pm \frac{\sqrt{\zeta^2 + 4r_0^2}}{2}$), то можно получить обтекание плоской пластинки, перпендикулярной к потоку с длиной $4r_0$ (рис. 1.13).

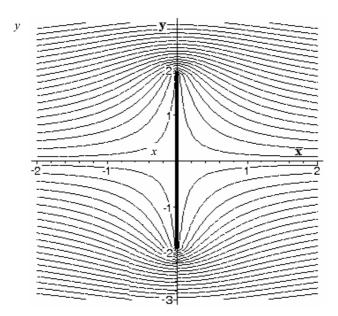


Рис. 1.13 Линии тока при обтекании пластины, поставленной перпендикулярно потоку

Таким образом, последнее преобразование позволяет смоделировать обтекание плоской пластинки пылегазовым потоком и определить поле скоростей, необходимое для расчета скоростей и траекторий частиц в инерционном пылеуловителе.

Порядок выполнения работы

- 1 Осуществить загрузку персонального компьютера.
- 2 Запустить математический пакет Maple.
- 3 Используя представленный ниже синтаксис и функции Maple получить картину и параметры обтекания пластины инерционного пылеуловителя. Скорость несущего потока на входе в пылеуловитель и геометрические размеры пластины выбираются по индивидуальным заданиям в соответствии с вариантом.
 - 1) Сбросить все параметры, используя команду restart.
 - > restart;
 - 2) Задать комплексный потенциал обтекания кругового цилиндра.
 - $> chi:=U*(z+r^2/z);$

$$\chi := U \left(z + \frac{r^2}{z} \right).$$

3) Разрешить выражение для конформного преобразования $\zeta = z - \frac{r_0^2}{z}$ относительно z.

> sz:=solve(zeta=z-r 2 /z,z);

$$sz := \frac{\zeta}{2} + \frac{\sqrt{\zeta^2 + 4 r^2}}{2}, \frac{\zeta}{2} - \frac{\sqrt{\zeta^2 + 4 r^2}}{2}$$

4) Подставить второе решение (описывает обтекание слева направо) в выражение для комплексного потенциала.

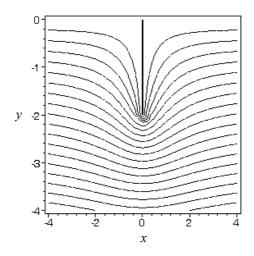
> chi:=subs(z=sz[2],chi);

$$\chi := U \left(\frac{\zeta}{2} - \frac{\sqrt{\zeta^2 \cdot 4r^2}}{2} + \frac{r^2}{\frac{\zeta}{2} - \frac{\sqrt{\zeta^2 + 4r^2}}{2}} \right)$$

5) Задать скорость потока на входе в пылеуловитель и параметры пластины, учитывая, что параметр r равен половине длины пластины инерционного пылеуловителя.

$$U := 1$$
 $r := 1$

6) Подключить графические пакеты Maple.


```
> with(plots): with(plottools):
```

7) Построить пластину.

8) Получить картину обтекания.

```
> g2:=complexplot3d(Im(chi), zeta =-4-4*I..4+0*I,
style=contour, orientation=[-90,0],
axes=boxed,color=blue):
```

9) Отобразить совмещенные графические данные.

10) Выделить компоненту скорости вдоль оси x.

$$ux := \frac{1}{2} + \frac{1}{2} \Re \left(-\frac{\zeta}{\sqrt{\zeta^2}} + \frac{1}{4} - \frac{2\left(\frac{1}{2} - \frac{\zeta}{2\sqrt{\zeta^2 + 4}}\right)}{\left(\frac{\zeta}{2} - \frac{\sqrt{\zeta^2 + 4}}{2}\right)^2} \right)$$

10) Выделить компоненту скорости вдоль оси у.

$$uy := -\frac{1}{2} \Im \left(-\frac{\zeta}{\sqrt{\zeta^2 + 4}} - \frac{2\left(\frac{1}{2} - \frac{\zeta}{2\sqrt{\zeta^2 + 4}}\right)}{\left(\frac{\zeta}{2} - \frac{\sqrt{\zeta^2 + 4}}{2}\right)^2} \right)$$

11) Оформить выражение для расчета компонент скорости потока в точках с координатами (x, y) в виде функций.

$$>$$
 uxf:=(x,y)- $>$ subs(zeta=x+I*y,ux);

$$uxf := (x, y) \rightarrow subs(\zeta = x + y I, ux)$$

> uyf:=(x,y)->subs(zeta=x+I*y,uy);

 $uyf := (x, y) \rightarrow \text{subs}(\zeta = x + y I, uy)$

12) Рассчитать значения проекций скорости на координатные оси в конкретной точке.

> evalf(uxf(-r,-r));

0.5688644811

> evalf(uyf(-r,-r));

-0,3515775841

Контрольные вопросы

- 1 Принцип работы и конструкции инерционных пылеуловителей.
- 2 Дифференциальное уравнение движения твердой частицы в инерционном пылеуловителе; силы действующие на частицу.
- 3 Методика определения поля скоростей стационарного потока с помощью комплексного потенциала.
 - 4 Суть конформных преобразований при получении картины обтекания различных профилей.

Список литературы

- 1 Коузов П.А., Мальгин А.Д. Очистка от пылей газов и воздуха в химической промышленности. Л.: Химия, 1982.
- 2 Лабораторный практикум по улавливанию и утилизации пылей и газов / Ю.П. Павленко, В.М. Билюшов, В.Д. Овсяник и др. М.: Металлургия , 1996.
- 3 Петунин А.Н. Методы и техника измерений параметров газового потока. М.: Машиностроение, 1972.
 - 4 Степанов Г.Ю., Зицер И.М. Инерционные воздухоочистители. М.: Машиностроение, 1986.
 - 5 Лойцянский Л.Г. Механика жидкости и газа. Изд. 7-е, испр. М.: Дрофа, 2003.

Тема 2 МЕТОДЫ И ОБОРУДОВАНИЕ ЗАЩИТЫ ГИДРОСФЕРЫ

Лабораторная работа № 1

ИЗУЧЕНИЕ ПРОЦЕССА ОТСТАИВАНИЯ

Цель работы: Определение скорости осаждения сферической частицы в жидкости.

Теоретические положения

В суспензиях и газовзвесях дисперсная фаза имеет обычно большую плотность, чем сплошная, поэтому движущая сила гравитационного осаждения (естественного отстаивания) равна $p_{\rm T}-p_{\rm w}$. Процесс осаждения осуществляется в аппаратах периодического, полунепрерывного и непрерывного действия, называемых отстойниками.

Отстойник периодического действия (рис. 2.1, *a*) представляет собой вертикальный сосуд круглого или прямоугольного сечения с конусным дном. Загруженная суспензия по истечении определенного отрезка времени разделяется на осветленную жидкость (верхний слой) и осадок с высокой концентрацией твердой фазы (нижний слой). После удаления осветленной жидкости (при помощи насоса или сифона) через нижний штуцер выгружают осадок, чему способствует конусное дно, и аппарат загружается снова.

Отстойник полунепрерывного действия для суспензий (рис. 2.1, б) представляет собою длинный желоб прямоугольного сечения с торцевыми стенками разной высоты, причем передняя (справа) не-

сколько ниже и служит порогом водослива. Суспензия поступает непрерывно до тех пор, пока не накопится определенный слой осадка, после чего ее подача прекращается для выгрузки осадка. В случае полидисперсного осадка по мере движения суспензии оседают все более мелкие частицы, так что наряду с осаждением твердых частиц происходит их частичная классификация.

На рис. 2.1, *в* показана схема отстойника полунепрерывного действия для газовзвесей (пылеосадительный аппарат). Отстойник разделен системой горизонтальных перегородок на ряд параллельно работающих камер. Газовзвесь при входе в аппарат распределяется по камерам, осевшие твердые частицы накапливаются на горизонтальных перегородках, откуда периодически выгружаются, а очищенный газ удаляется по общему каналу на протяжении всего рабочего периода аппарата.

Широко распространен отстойник непрерывного действия с гребками, схематически изображенный на рис. 2.1, г. Он состоит из цилиндрического сосуда с конусным дном, по оси которого расположен медленно вращающийся вал, несущий на нижнем конце лопасти с насаженными на них лопатками (гребками). Суспензия непрерывно поступает в центральную часть аппарата, сгущенный осадок с помощью гребков отводится через нижний штуцер, а осветленная жидкость удаляется сверху через кольцевой желоб. Для большей компактности рассматриваемый аппарат (его диаметр достигает 120 м) часто изготовляется многоярусным.

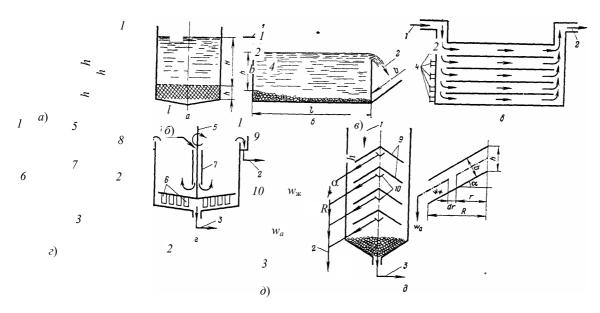


Рис. 2.1 Схемы отстойников:

a — отстойник периодического действия; δ , δ — отстойники полунепрерывного действия соответственно для суспензий и газовзвесей; ϵ , δ — отстойники непрерывного действия соответственно с гребками и коническими перегородками; I — суспензия; 2 — осветленная жидкость; 3 — осадок; 4 — люки для выгрузки пыли; 5 — вал;

6 – гребки; 7 – труба для входа суспензии; 8 – кольцевой желоб; 9 – конические перегородки; 10 – воронки

На рис. 2.1, ∂ показана схема цилиндрического отстойника непрерывного действия с коническими перегородками, расположенными в центральной его части. Суспензия, поступающая по периферии, проходит через пространства между конусами. Осветленная жидкость отводится через воронки, размещенные в верхней части конусов, а осадок сползает с поверхности конусов и удаляется через нижний центральный штуцер.

Основной характеристикой рассматриваемого процесса разделения суспензий и газовзвесей является скорость *осаждения*, т.е. скорость относительного движения твердых частиц.

Скорость осаждения взвешенных частиц зависит как от их плотности, так и от степени дисперсности, причем осаждение будет протекать тем медленнее, чем меньшими размерами обладают частицы дисперсной фазы и чем меньше разность плотностей обоих фаз. Практически методом отстаивания пользуются, главным образом, для разделения грубых суспензий.

Осаждение происходит по законам падения тел в среде, оказывающей сопротивление их движению. Оседающая частица движется вначале ускоренно, но через некоторый промежуток времени, когда сопротивление трения уравновесит действие силы тяжести, она приобретает постоянную скорость и падает равномерно.

Процесс отстаивания описывается критериальным уравнением:

$$Re = B(Ar)^n, (1)$$

где B и n – являются опытными величинами и зависят от режима осаждения твердой частицы.

Определение скорости осаждения шарообразных одиночных частиц в неподвижной неорганической среде по обобщенному методу, пригодному при любом режиме осаждения, производят следующим образом.

1 Определение критерия Архимеда (Ar):

$$Ar = \frac{d^3(\rho_T - \rho_{\mathcal{K}})\rho_{\mathcal{K}}g}{\mu_{\mathcal{K}}^2},$$
 (2)

где d — диаметр частицы, м; ρ_T — плотность частицы, кг/м³; $\rho_{\rm ж}$ — плотность жидкости, кг/м³; $\mu_{\rm ж}$ — динамический коэффициент вязкости жидкости, ${\rm H\cdot c/m^2}$; g — ускорение силы тяжести, м/с².

2 По найденному значению критерия Архимеда определяют критерии Re, далее режим осаждения: Для каждого режима движения найдена из опыта зависимость вида (1). Для практических расчетов принимают следующие формулы:

а) ламинарный режим

$$Re = \frac{Ar}{18};$$
 (3)

б) переходный режим

$$33 < Ar < 83 \cdot 10^3$$
, $1,85 < Re < 500$,

$$Re = 0.152 (Ar)^{0.715}; (4)$$

в) турбулентный режим

Ar >
$$83 \cdot 10^3$$
,
Re > 500,

$$Re = 1.74 (Ar)^{0.5};$$
 (5)

3 Вычисляют скорость осаждения частиц:

$$u_0 = \frac{\text{Re } \mu_{\text{m}}}{\rho_T d} \,. \tag{6}$$

Приборы и оборудование

- 1 Стеклянный цилиндр с жидкостью.
- 2 Секундомер.
- 3 Линейка.

Для опыта используется стеклянный цилиндр, в который налита исследуемая жидкость.

На цилиндре имеются две метки М1 и М2. Метка М1 помещена на несколько сантиметров ниже уровня жидкости, чтобы к тому моменту, когда шарик проходит мимо нее, его движение уже было установившимся. Цилиндр закрыт пробкой с воронкой, в которую опускается шарик, двигающийся в дальнейшем примерно по оси цилиндра так, чтобы на его движение не влияли стенки.

Время t прохождения шарика от одной метки до другой измеряется секундомером. Расстояние l между метками M1 и M2 измеряется линейкой. Таким образом, скорость шарика без труда может быть вычислена: $\mathbf{v} = l / t$.

Порядок выполнения работы

- 1 Ознакомиться с порядком проведения работы.
- 2 Опуская дисперсные частицы шарообразной формы различных размеров и плотности в цилиндр с жидкостью, на мерном участке секундомером замерить время их осаждения.
 - 3 Рассчитать скорость осаждения шариков:
 - а) исходя из пройденной длины пути и замеренного времени.
 - б) аналитическим путем по формулам (2) (6).
 - 4 Сравнить результаты.

Результаты исследований

	Пара рі част	Ы	р	амет- ы кости	, c	Кри ри		Скор осажд	
№	<i>d</i> , м	ρ _T , κг/м ₃	ρ _ж , кг/ м ³	$\frac{\mu,}{\frac{H \cdot c}{M^2}}$	Время осаждения,	Ar	R e	по дан- ным экс- пери- мента	расче тная

Отчет должен содержать:

- 1 Порядок выполнения работы.
- 2 Схема опыта.
- 3 Результаты исследования и сравнения значений скорости осаждения, определенных расчетом и экспериментально.
 - 4 Выводы.

Контрольные вопросы

- 1 Из каких фаз состоит неоднородная система и как осуществляется классификация неоднородных систем по агрегатному состоянию и размеру частиц?
 - 2 Методы разделения неоднородных систем; сущность и движущая сила этих методов.
 - 3 Критериальное уравнение процесса отстаивания.
 - 4 Порядок определения скорости осаждения по критерию Архимеда (Ar).

Лабораторная работа № 2

ОПРЕДЕЛЕНИЕ ФИЗИЧЕСКИХ СВОЙСТВ И ОРГАНОЛЕПТИЧЕСКИХ ПОКАЗАТЕЛЕЙ ВОДЫ

Цель работы: 1 Научиться оценивать физические свойства воды.

Теоретические положения

Одним из основных физических свойств воды является температура. Органолептические показатели – запах, вкус.

Температура. Температура природных вод является результатом нескольких протекающих в водном объекте процессов, таких, как солнечная радиация, испарение, теплообмен с атмосферой, перенос тепла течениями, турбулентным перемешиванием вод и т.д.

Температура природных вод зависит от их происхождения. Воды подземных источников отличаются постоянством температуры. Сезонные колебания температуры становятся менее резкими с увеличением глубины залегания подземных вод. Температура вод открытых водоемов значительно изменяется в течение года и по часам суток.

Обычно прогревание поверхностных вод происходит сверху вниз. Годовой и суточный ход температуры воды на поверхности и глубинах определяется количеством тепла, поступающего на поверхность, а также интенсивностью и глубиной перемешивания. Суточные колебания температуры могут составлять несколько градусов и обычно проникают на небольшую глубину. На мелководье амплитуда колебаний температуры воды близка к перепаду температуры воздуха.

Распределение температуры воды в реке во многом связано со скоростью течения. При интенсивном перемешивании температура воды на разной глубине одинакова. При замедленном течении, на мелководье вода прогревается лучше, и в этом случае температура воды у берегов и на глубине может быть различной. Чем полноводнее река, тем меньше скорость ее течения и тем больше разница температур в разных слоях воды.

В водоемах, как и в водотоках, наблюдается разница температур по толщине водного слоя. В этом случае она обусловлена процессами перемешивания воды, на которые огромное влияние оказывает форма котловины водоема. Чем мельче водоем, больше отношение площади зеркала к его глубине, тем сильнее воздействие ветра. В маленьких по площади, но глубоких водоемах перемешивание воды за счет ветровых течений выражено слабо.

В летнее и зимнее время в стоячих водоемах наблюдается разница температур верхних и нижних слоев воды. Такое расхождение называется *температурной дихотомией*, а расположение воды слоями, имеющими разную температуру, — *температурной стратификацией*. Летом наблюдается прямая температурная стратификация, когда верхние слои воды теплее нижних.

Верхний слой воды в озерах с выраженной температурной стратификацией называется эпилимнион, нижний — гиполимнион, а слой температурного скачка — металимнион. Температура эпилимниона подвержена значительным сезонным колебаниям, температура гиполимниона — более постоянна. Зимой температура воды гиполимниона близка к 4 °C, так как при этой температуре вода обладает наибольшей плотностью. Постепенное нагревание воды происходит, начиная с весеннего таяния льда. При достижении водой температуры на поверхности водоема 4 °C, она становится наиболее плотной и опускается вниз, вытесняя из гиполимниона более холодную воду. Результатом возникшей циркуляции воды в водоеме является нарушение стратификации. Температура на всех уровнях становится одинаковой, а соответственно и плотность по всей толще воды. Наступает гомотермия. При прогревании верхних слоев они остаются на поверхности, так как их плотность меньше плотности нижележащих слоев воды. Устанавливается летняя стратификация.

Осенью процесс протекает в обратном порядке. Вследствие остывания воды температура эпилимниона приближается к температуре гиполимниона. Наступает осенняя гомотермия. Снижение температуры верхних слоев воды ниже 4 °С приводит к обратной температурной стратификации.

Температура воды — важнейший фактор, влияющий на происходящие в водоеме физические, химические, биохимические и биологические процессы, от которого в значительной мере зависят кислородный режим и интенсивность процессов самоочищения. Например, при увеличении температуры на 10 °C скорость биохимических процессов увеличивается в 2 — 3 раза. Но в отличие от химических процессов биологические требуют очень медленного изменения температуры с тем, чтобы живые организмы могли адаптироваться к такому изменению. Резкие изменения температуры могут вызвать гибель полезных микроорганизмов. Значения температуры используют для вычисления степени насыщения воды кислородом, щелочности, состояния карбонатно-кальциевой системы, при многих гидрохимических, гидробиологических, тепловых загрязнениях.

Органолептические наблюдения – это метод определения состояния водного объекта путем непосредственного его осмотра. При органолептических наблюдениях особое внимание обращают на явления, необычные для данного водоема или водотока, которые свидетельствуют о его загрязнении: гибель рыбы и других водных растительных и животных организмов, выделение пузырьков газа из донных отложений, появление повышенной мутности, посторонних окрасок, запаха, цветения воды, нефтяной пленки и пр.

При органолептическом обследовании водоема определяют и его органолептические свойства.

Органолептические свойства воды – это такие свойства, которые определяются с помощью органов чувств: зрения, вкуса, обоняния. К ним относятся: запах, вкус, цветность и мутность воды.

Органолептические свойства воды определяются по стандартным методикам, приводимым в ГОСТе 3351–74. Вода питьевая. Методы определения вкуса, запаха, цветности и мутности.

Органолептические показатели воды включают нормативы для веществ:

- встречающихся в природных водах;
- добавляемых к воде в процессе обработки в виде реагентов;
- появляющихся в результате промышленного, сельскохозяйственного и бытового загрязнений источников водоснабжения.

3 а n а х. Запах – это свойство воды вызывать у человека и животных специфическое раздражение слизистой оболочки носовых ходов.

Природная вода имеет целый букет ароматов (например, озерная или речная пахнет свежестью, вода лесного родника – прелыми листьями, землей, плесенью, морская – йодом, рыбой). Запах воды вызывают летучие пахнущие вещества, поступающие в воду в результате процессов жизнедеятельности водных организмов, при биохимическом разложении органических соединений, при химическом взаимодействии содержащихся в воде компонентов, а также с промышленными, сельскохозяйственными и хозяйственно-бытовыми стоками. Следовательно, запахи природных вод могут быть естественного и искусственного происхождения. К запахам естественного происхождения относят землистый, рыбный, гнилостный, сероводородный, ароматический, болотный, глинистый, тинистый и др., искусственного происхождения – хлорный, камфарный, аптечный, фенольный, хлорфенольный, запах нефтепродуктов.

На запах воды оказывают влияние химический состав примесей, температура, pH, степень загрязненности водного объекта, биологическая обстановка, гидрологические, геологические условия местности, тип питания водоема и другие причины. По запаху воды можно определить возможный источник происхождения запаха (табл. 2.1, 2.2).

2.1 Возможные источники происхождения запаха в водных объектах

Сокраще-	Классифика- ция запаха	Примеры или возможный источник происхождения запаха
\overline{A}	Ароматный	Камфара, гвоздика, лаванда,
	или пряный	лимон
Ae	Огуречный	Senura
B	Бальзамиче-	Герань, ирис, ваниль
	ский	
	или цветоч-	
	ный	
$_Bg$	Гераниевый	Asterionella
D	Настурцие- вый	Aphanizomaenon
Bm	Сладковатый	Coelosphaerium
	Фиалковый	Mallomonas
	Химический	Промышленные сточные воды
C		или химическая обработка вод
Со	Хлорный	Свободный хлор
Ch	Углеводород-	Стоки предприятий нефтепе-
	ный	рерабатывающей
		промышленности

Ст	Лекарствен- ный	Фенолы и йодоформ
		Окончание табл. 2.1

Сокраще-	Классифика- ция запаха	Примеры или возможный источник происхождения запаха
D	Неприятный (тухлых яиц)	Сероводород
Df	Рыбный	Uroglenopis и dinobryum
Dp	Навозный	Anabaena
Dj	Гнилостный	Застоявшиеся сточные воды
E	Землистый	Сырая земля
G	Торфяной	Торф
G	Травянистый	Лежалая трава
M	Затхлый	Преющая солома
Mm	Плесневый	Сырой подвал
V	Овощной	Корни овощей

2.2 Характер запаха различных водорослей

Водоросли	Запах		
Диатомовые (астерионелла, стефано-дикус, мелозира, циклотелла и др.)	Ароматичный (фиалковый, гераниевый, землистый, рыбный)		
Зеленые (энтероморфа, сценедесмус и др.)	Травянистый, болотный, рыбный		
Сине-зеленые (анабены, микроцистис, афанизоменон, носток, осциллатория и др.)	Травянистый, гнилостный, болотный, навозный		

Кроме перечисленных типов запахов бывают случаи, когда характер запаха определить сложно. В этом случае говорят о неопределенном запахе. Обычно это относится к запаху естественного происхождения, на который могут оказывать влияние почвы и грунты, слагающие берега, дно, срубы колодцев и т.д.

При проведении анализа природной воды на наличие запаха сначала устанавливают характер запаха естественного происхождения, а затем искусственного. Проведение работы по определению запаха требует соблюдения следующих условий:

- а) воздух в помещении должен быть без запаха;
- б) отсутствие запаха от рук, одежды наблюдателя;
- в) одному и тому же лицу нельзя проводить определение запаха в течение длительного времени, так как появляется привычка к запаху.

Интенсивность и характер запаха определяют по 5-балльной шкале.

В к у с. Вода имеет вкус. Его букет формируется в результате деятельности многих организмов и при наличии минеральных примесей. Естественное происхождение вкусовых свойств воды может быть вызвано присутствием в ней железа, марганца, сероводорода и пр., искусственные вкусы и привкусы обусловлены сбросом сточных вод. Различают четыре основных вкуса воды: соленый, горький, сладкий и кислый. Все другие виды вкусовых ощущений называются *привкусами*.

Соленый вкус воды обусловлен присутствием хлорида натрия, горький – сульфата магния, кислый – часто объясняется избытком растворенной углекислоты (минеральные воды), железистый привкус – придают растворенные соли железа, щелочной – поташ, сода, едкие щелочи, вяжущий – сульфат кальция, соли марганца.

В табл. 2.3 приведены концентрации солей, вызывающих различные вкусовые ощущения. Предел вкусовых ощущений человека весьма высок (например, хлорфенол обнаруживается на вкус при концентрации 0,000004 мг/л).

2.3 Сравнительная таблица предельной концентрации солей, вызывающих вкусовые ощущения

	Конц	ентрация, мг/л
Соль	вкус (без ясного представления) едва ощутимый	вкус воспринимается как плохой, отталкивающий
NaCl	150	500 – соленый
MgC1 ₂	100	400 – горький
MgSO ₄	200	500 – горький
CaSO ₄	70	150 – вяжущий
КС1	350	700 – горький
FeSO ₄	1,5	5,0 – железистый
MπCl ₂	2,0	4,0 — болотный
FeCl ₂	0,3	0,5 — болотный

Приборы и оборудование

- 1 Термометр.
- 2 Колбы стеклянные с притертыми пробками.
- 3 Стекло часовое.
- 4 Баня водяная.

Порядок выполнения работы

Определение температуры воды. Температуру воды определяют в отобранной пробе или в водоеме. Для этого поместить термометр в исследуемую воду и выдержать его в воде не менее 5 мин. Выразить температуру в градусах.

Определение запаха. Характер запаха воды определяют ощущением воспринимаемого запаха (землистый, хлорный, нефтепродуктов и др.).

Определение запаха воды проводят при 20 °C и 60 °C.

Определение запаха при 20 °C. В колбу отмерить 100 мл исследуемой воды с температурой 20 °C. Колбу закрыть пробкой. Содержимое колбы несколько раз перемешать вращательными движениями, после чего колбу открыть и определить характер и интенсивность запаха.

Определение запаха при 60 °C. В колбу отмерить 100 мл исследуемой воды. Горлышко колбы закрыть часовым стеклом и подогреть на водяной бане до 50...60 °C. Содержимое колбы несколько раз перемешать вращательными движениями. Сдвигая стекло в сторону, быстро определить характер и интенсивность запаха.

Интенсивность запаха воды при 20 °C и 60 °C оценить по 5-балльной шкале (табл. 2.4).

2.4 ШКАЛА ОЦЕНКИ ИНТЕНСИВНОСТИ ЗАПАХА ВОДЫ [1]

Интенсив- ность запаха	Характер проявления запаха	Оценка, балл
Нет	Запах не ощущается	0
Очень сла-	Запах не ощущается, но обнаружива-	1
бая	ется при лабораторном исследовании	
Слабая	Запах заметен, если обратить на это	2
	внимание	
Заметная	Запах легко заметен и вызывает не-	3
	одобрительный отзыв о воде	

Отчетливая	Запах обращает на себя внимание и	4
	заставляет воздержаться от питья	
Очень силь-	Запах настолько сильный, что делает	5
ная	воду непригодной к употреблению	

Вкус определяют в сырой воде (при взятии пробы), за исключением воды открытых водоемов и источников, сомнительных в санитарном отношении.

Пробу сырой воды на вкус производить только при уверенности в ее безвредности!!!

В сомнительных случаях, когда можно ожидать наличия в природной воде болезнетворных микроорганизмов, воду следует предварительно прокипятить в течение 5 мин, затем охладить до $20~^{\circ}$ С и потом уже пробовать на вкус.

Порядок выполнения работы

Исследуемую воду набрать в рот малыми порциями, не проглатывая, и задержать в течение 3-5 с. Интенсивность вкуса и привкуса определить при 20 °C и оценить по 5-балльной системе (табл. 2.5).

2.5 Шкала оценки интенсивности вкуса и привкуса воды

Интенсив- ность вкуса и привкуса	Характер проявления вкуса и привкуса	Оценка, балл
Нет	Не ощущаются	0
Очень слабая	Не ощущаются но обнаруживаются при лабораторном исследовании	1
Слабая	Заметны если обратить на них внимание	2
Заметная	Легко заметны и вызывают неодобрительный отзыв о воде	3
Отчетливая	Обращают на себя внимание и за- ставляют воздержаться от питья	4
Очень сильная	Настолько сильные, что делают воду непригодной для употребления	5

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Определение температуры

№ пробы	Температура, °С

Определение запаха

№ про-	Температу-	Характер за-	Интенсивность
бы	pa, °C	паха	запаха

Определение вкуса

№ пробы	Характер вкуса	Интенсивность вкуса

Отчет должен содержать:

- 1 Порядок выполнения работы.
- 2 Результаты исследований.
- 3 Выволы о качестве волы.

Контрольные вопросы

- 1 Какие качества воды относятся к группе физических свойств?
- 2 Какие природные факторы оказывают влияние на образование и изменение температуры водного объекта (реки, озера)?
- 3 Какие методы исследований относятся к органолептическим? Перечислите органолептические свойства воды? Единицы измерения?
 - 4 Какие факторы оказывают влияние на запах воды? Вкусовые свойства воды?
 - 5 Какие вкусы воды Вы знаете? Что называют привкусом воды?

Лабораторная работа № 3

ИЗУЧЕНИЕ ПРОЦЕССА РАЗДЕЛЕНИЯ ДИСПЕРСНЫХ МАТЕРИАЛОВ ПО ПЛОТНОСТЯМ В ЖИДКОСТЯХ

Цель работы: Качественное ознакомление с процессом.

Теоретические положения

Этот процесс заключается в разделении материалов по плотности в гравитационном или центробежном поле в суспензии или жидкости, плотность которой является промежуточной между плотностями разделяемых частиц.

Тяжелые суспензии представляют собой взвешенные в воде тонкодисперсные частицы тяжелых минералов или магнитных сплавов – утяжелителей, в качестве которых используют ферросилиций, пирит, пирротин, магнетитовый и гематитовый концентраты и другие материалы крупностью до 0,16 мм. В качестве тяжелых жидкостей используют растворы хлоридов кальция и цинка, тетрахлорида углерода, тетрабромэтана, хлорного олова и других соединений.

Для поддержания устойчивости суспензии в нее добавляют глину (до 3 % от массы утяжелителя) или применяют смесь порошков утяжелителей различной плотности.

Наиболее распространенными аппаратами обогащения в тяжелых средах являются барабанные, конусные, колесные и гидроциклонные сепараторы.

Оборудование и материалы:

- 1 Емкость с жидкостью (вода).
- 2 Смесь дисперсных материалов с плотностями большей и меньшей, чем у жидкости.
- 3 Воронка с фильтровальной перегородкой.

Порядок выполнения работы

- 1 Смесь материалов загрузить в емкость с жидкостью.
- 2 Выждав некоторое время, пока процесс разделения осуществится полностью, собрать с поверхности жидкости материал с меньшей плотностью.
- 3 С помощью воронки с фильтровальной перегородкой отделить от жидкости материал с большей плотностью.

Отчет должен содержать:

- 1 Схему опыта.
- 2 Порядок выполнения работы.
- 3 Выводы.

Контрольные вопросы

- 1 Объяснить механизм процесса разделения материалов по плотности в жидкости.
- 2 Что такое тяжелые суспензии?
- 3 Как поддерживают устойчивость суспензий?
- 4 Назвать конструкции аппаратов, используемых для разделения материалов по плотности в жидкости.

Лабораторная работа № 4

ВЫДЕЛЕНИЕ ТВЕРДОЙ ФАЗЫ ИЗ РАСТВОРА КРИСТАЛЛИЗАЦИЕЙ

Цель работы: Качественное ознакомление с процессом.

ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Для выделения веществ из концентрированных сточных вод используют метод кристаллизации.

Вещества, растворимость которых существенно возрастает с повышением температуры (положительная растворимость), кристаллизуют при охлаждении их насыщенных растворов – это политермическая, или изогидрическая кристаллизация, идущая при неизменном содержании воды в системе. Если с ростом температуры растворимость веществ уменьшается, то кристаллизацию проводят при нагревании раствора. Вещества, мало изменяющие растворимость при изменении температуры, кристаллизуют путем испарения воды при постоянной температуре – изотермическая кристаллизация.

Кристаллизацию с охлаждением растворов применяют чаще, так как растворимость большинства солей уменьшается с понижением температуры.

Выделение кристаллов происходит только из пересыщенных растворов. Пресыщение раствора характеризуют разностью между концентрациями пересыщенного c_{π} насыщенного c^* растворов, относительным пересыщением $(c_{\pi}-c^*)/c^*$ или коэффициентом пересыщения c_{π}/c^* .

Образование кристаллов состоит из двух последовательных стадий: 1) возникновение в пересыщенном растворе центров кристаллизации – зародышей кристаллов; 2) рост кристаллов на базе этих зародышей.

Для кристаллизации растворов с охлаждением используют кристаллизаторы с воздушным или водяным охлаждением. Некоторые из них рассмотрены ниже.

Резервуары с мешалками снабжены для охлаждения рубашками, змеевиками, трубчатыми холодильниками. Охлаждение в них производят водой, жидким аммиаком, холодильным рассолом. Недостаток аппаратов — сильная инкрустация кристаллами охлаждающих поверхностей. При охлаждении воздухом через барботеры инкрустация уменьшается и необходимость перемешивания раствора мешалками исключается.

Шнековые кристаллизаторы представляют собой желоб с закругленным днищем длиной 12...25 м и шириной 0,5...0,7 м, устанавливаемый с небольшим наклоном. Раствор охлаждают водой через рубашку. Осевшие кристаллы перемещают шнеком.

Барабанные вращающиеся кристаллизаторы с водяным или воздушным охлаждением имеют длину до 20 м и диаметр до 1,5 м. Скорость вращения до 0,30 об/мин. Кристаллы образуются на внутренней поверхности вращающегося барабана и снимаются с нее цепью. Охлаждение водой идет через рубашку. При охлаждении воздухом его подают внутрь барабана, где он движется противотоком к раствору.

Кристаллизаторы со взвешенным слоем растущих кристаллов состоят из резервуара-отстойника, наружного трубчатого теплообменника и циркуляционного насоса. Мелкие кристаллы длительное время находятся во взвешенном состоянии и постепенно укрупняются, затем их выводят из аппарата.

Оборудование и материалы:

- 1 Емкость для приготовления перемешенного раствора поваренной соли в воде.
- 2 Электроплитка.

- 3 Воронка с фильтровальной перегородкой.
- 4 Вода, поваренная соль.

Порядок выполнения работы

- 1 С помощью электроплитки нагреть воду до кипения.
- 2 Добавляя в кипящую воду поваренную соль, приготовить пересыщенный раствор (пока соль не перестанет растворяться).
- 3 Охладить емкость с раствором в проточной водопроводной воде. Наблюдать образование кристаллов.
- 4 С помощью воронки с фильтровальной перегородкой отделить кристаллы поваренной соли от раствора.

Отчет должен содержать:

- 1 Схему опыта.
- 2 Порядок выполнения работы.
- 3 Выводы.

Контрольные вопросы

- 1 Виды кристаллизации.
- 2 Какие растворы могут быть подвергнуты кристаллизации?
- 3 Какими параметрами характеризуют пресыщение раствора?
- 4 Типы кристаллизаторов охлаждения. Принципы их действия.

Лабораторная работа № 5

ВЫДЕЛЕНИЕ ИЗ РАСТВОРА ТВЕРДОЙ ФАЗЫ ВЫПАРИВАНИЕМ

Цель работы: Определение массовой доли твердой фазы в растворе.

Теоретические положения

На химических предприятиях образуются сточные воды, содержащие различные минеральные соли (кальция, магния, натрия и др.), а также органические вещества. Такие воды могут быть обезврежены термическими методами: 1) концентрированием сточных вод с последующим выделением растворенных веществ; 2) окислением органических веществ в присутствии катализатора при атмосферном и повышенном давлении; 3) жидкофазным окислением органических веществ; 4) огневым обезвреживанием.

Метод концентрирования в основном используют для обезвреживания минеральных сточных вод. Он позволяет выделять из стоков соли с получением условно чистой воды, пригодной для оборотного водоснабжения.

Процесс разделения минеральных веществ и воды может быть проведен в две стадии: стадия концентрирования и стадия выделения сухих веществ. Во многих случаях вторая стадия заменяется захоронением концентрированных растворов. Концентрированные сточные воды можно непосредственно направлять на выделение сухого продукта, например в распылительную сушилку.

В промышленности наиболее распространены выпарные установки концентрирования растворов. Для этой цели используют одноступенчатые и многоступенчатые выпарные установки с выпарными аппаратами различной конструкции.

Выпаривание является энергоемким процессом. Энергия, затрачиваемая на выпаривание, складывается из энергии на нагрев сточной воды от начальной температуры до температуры испарения: на деформирование и перенос центров парообразования; на работу, затрачиваемую на разделение растворителя и раствора; на формирование поверхности паровых пузырей при испарении; на преодоление сил

давления при формировании пузырей; на преодоление пузырем границы раздела фаз и на транспортирование паровых пузырей до границы раздела фаз.

Для определения концентрации твердой фазы в растворе достаточно полностью испарить жидкость в отобранной пробе.

Массовую долю твердой фазы в растворе х можно рассчитать по следующей зависимости

$$x = \frac{m_{\rm T}}{m_{\rm p}} \,,$$

где $m_{\rm T}$ – масса твердой фазы в растворе; $m_{\rm p}$ – масса раствора.

Оборудование и материалы:

- 1 Емкость для приготовления раствора.
- 2 Емкость для выпаривания раствора.
- 3 Электроплитка.
- 4 Весы лабораторные.
- 5 Вода, поваренная соль.

Порядок выполнения работы

- 1 Приготовить раствор поваренной соли в воде, используя количества, заданные преподавателем.
- 2 Взвесить емкость для выпаривания раствора m'.
- 3 Отобрать пробу, поместить ее в емкость для выпаривания.
- 4 Взвесить емкость для выпаривания с пробой раствора m''.
- 5 Выпарить с помощью электроплитки раствор до полного испарения жидкости.
- 6 Взвесить емкость для выпаривания с твердой фазой m'''.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

№ пробы	m', г	<i>m</i> ", г	<i>m'''</i> , г

Обработка опытных данных

- 1 Определить массу раствора в пробе $m_p = m'' m'$.
- 2 Определить массу твердой фазы в пробе $m_{\rm T} = m''' m'$.
- 3 Определить массовую долю твердой фазы в растворе $x = \frac{m_{\rm T}}{m_{\rm p}}$.

Отчет должен содержать:

- 1 Схему опыта.
- 2 Порядок выполнения работы.
- 3 Выводы.

Контрольные вопросы

- 1 Сточные воды какого содержания могут быть обезврежены термическими методами?
- 2 Назвать стадии процесса термического разделения растворов.
- 3 Что такое массовая доля твердой фазы в растворе?

4 Как экспериментально определить массовую долю твердой фазы в растворе?

Лабораторная работа № 6

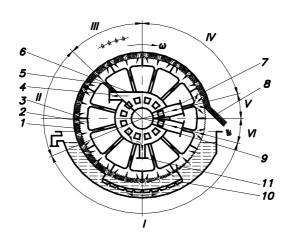
ОЧИСТКА СТОЧНЫХ ВОД НА БАРАБАННОМ ВАКУУМ-ФИЛЬТРЕ

Цель работы: 1 Исследование влияния свойств сточных вод на геометрические и режимные параметры фильтра.

2 Изучение устройства и принципы действия барабанного вакуум-фильтра.

Методические указания

Для разделения трудно фильтруемых суспензий разработаны непрерывные высокопроизводительные барабанные вакуум-фильтры с наружной поверхностью фильтрования.


Барабанные вакуум-фильтры используются для разделения суспензий в химической, горнорудной, нефтеперерабатывающей, пищевой, целлюлозно-бумажной и других отраслях промышленности. На этих машинах можно достаточно эффективно проводить промывку и обезвоживание осадков. Их целесообразно применять при концепции твердой фазы не менее 5 % и скорости осаждения частиц не выше 0,012 м/с. Перепад давления у барабанных вакуум-фильтров находится в пределах 0,02...0,09 МПа и зависит от свойств обрабатываемого продукта. Основным условием, ограничивающим применение этих фильтров, является необходимость получения осадков с толщиной не менее 5 мм за время пребывания ячейки в суспензии менее 4 мин.

Устройство и принцип работы фильтра

Барабанные вакуум-фильтры с наружной фильтрующей поверхностью — наиболее распространенная конструкция фильтра непрерывного действия

Фильтрующая перегородка *I* располагается на наружной цилиндрической поверхности горизонтального вращающегося барабана *2*, частично погруженного в суспензию (рис. 2.3). Пространство между фильтрующей перегородкой (основанием) и корпусом барабана разделяется продольными ребрами *3* так, что образуется изолированные секции (ячейки). Каждая ячейка имеет отводные трубки *5*, которые соединяются неподвижной распределительной головкой *6* с линией вакуума или сжатого воздуха.

За один оборот барабана каждая ячейка проходит все операции цикла. В зоне фильтрования в полости ячейки создается вакуум, фильтрат проходит через фильтрующую перегородку и отводятся через штуцер 11 распределительной головки; на поверхности ячейки образуется осадок. После выхода из суспензии ячейка вакуумируется, и из осадка удаляется остаток фильтрата. На операциях промывки и второго обезвоживания в ячейке также создается вакуум, но воздушно-водянаясмесь отводится через штуцер 4 головки. В зоне съема осадка через штуцер 7 под осадок подается сжатый воздух и разрыхляет его, после чего осадок легко снимается ножом 8 или другим приспособлением. На стадии регенерации ткани сжатый воздух или пар проступает в головку через штуцер 9. Качающая мешалка 10 предотвращает отстаивание суспензии.

Рис. 2.3 Схема работы барабанного вакуум-фильтра:

I – зона фильтрования; II – зона первого обезвоживания; III – зона промывки,

IV – зона второго обезвоживания; V – зона удаления осадка; VI – зона регенерации ткани: I – фильтрующая перегородка; 2 – барабан; 3 – продольные ребра;

4 — штуцер отвода промывной жидкости; 5 — отводные трубки; 6 — распределительная головка; 7, 9 — штуцера для подачи сжатого воздуха; 8 — нож для съема осадка;

10 – маятниковая мешалка; 11 – штуцер отвода фильтрата

Конструкция барабанного вакуум-фильтра (рис. 2.4) представляет собой горизонтальный сварной цилиндр I с плоскими, оребренными изнутри торцевыми стенками; к стенкам на болтах крепится правая 2 и левая 3 цапфы. К левой цапфе прижата распределительная головка 4.

Через правую цапфу пропущены коллекторные трубы, соединяющие ячейки барабана с распределительной головкой. На левую цапфу насажено зубчатое колесо 5, передающее вращение барабану от электромеханического привода 6. На цапфах шарнирно закреплена мешалка 7, которая получает качательное движение от кривошипно-шатунного механизма и привода 8. На раме смонтированы ванна для суспензии и нож для съема осадка.

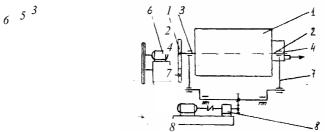


Рис. 2.4 Конструкция барабанного вакуум-фильтра:

1 — барабан; 2 — правая цапфа; 3 — левая цапфа; 4 — распределительная головка; 5 — зубчатая передача; 6 — привод барабана; 7 — мешалки; 8 — привод мешалки

Барабан разделен приваренными продольными ребрами на ячейки, сверху барабан закрыт фильтрующей тканью.

Распределительное устройство барабанного вакуум-фильтра (рис. 2.5) служит для последовательного соединения каждой ячейки барабана с источником вакуума и сжатым воздухом и представляет собой неподвижный корпус 5 с укрепленной на нем съемной распределительной шайбой 4.

Камера корпуса и шайбы имеют одинаковые совпадающие по форме и размеру прорези. На полой цапфе барабана 2 также имеется съемная ячейковая шайба 3 с отверстиями, совпадающими с отверстиями в коллекторах 1. Неподвижная распределительная шайба 4 прижата с помощью пружины к подвижной ячейковой шайбе 3. При вращении барабана каждая его ячейка сообщается через распределительное устройство с ресивером фильтрата — a, ресивером промывных вод — δ , с ресивером сжатого воздуха — ϵ .

При проектировании промышленных фильтров задается ряд технологических параметров процесса, которые являются основанием для проектирования фильтра.

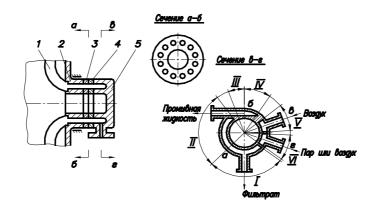


Рис. 2.5 Распределительное устройство барабанного вакуум-фильтра

Для барабанных вакуум-фильтров такими основными характеристиками являются: производительность по фильтрату Q [м³/с]; плотность твердой фазы; плотность жидкой фазы в суспензии; содержание жидкой фазы в осадке после фильтрования.

Все остальные характеристики выбираются по аналогии с существующими машинами, а недостающие данные по суспензии подбираются по литературным источникам, либо получают экспериментальными методами на лабораторных установках.

Для проведения расчетов вводятся следующие обозначения (см. табл. 2.6):

```
	au_{u},\, c — время полного цикла работы фильтра;
```

ω, – угловая частота вращения барабана;

рад/с

 $S, \, \text{м}^2 - \text{общая поверхность фильтрата};$

 $v_{\rm u}$ — средняя скорость фильтрования за цикл;

, M/c

H, м – глубина погружения барабана в суспензию;

φ, ° − распределение зон на фильтре;

 ho_{oc} , — плотность влажного осадка;

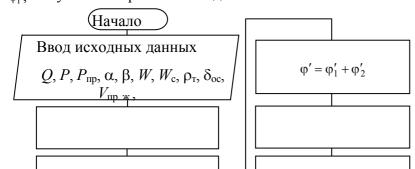
 $K\Gamma/M$

- K_3 коэффициент, учитывающий снижение производительности фильтра за счет забивания фильтрующей перегородки;
- отношение поверхности осадка, орошаемого форсунками к теоретически необходимой поверхности промывки;

 $n_{\mathfrak{g}}^{\mathfrak{c}}$

- число ячеек, находящихся одновременно в зоне просушки;
- ϕ' , ° центральный угол, занимаемый сектором съема осадка и мертвой зоной;
- ϕ_{M} , ° угол сектора мертвой зоны;
- τ, с время фильтрования;
- τ' , с время промывки осадка;
- τ_{ci} , с время просушки осадка;
- τ_c , с время предварительной просушки осадка;
- $au_{np}, -$ время пребывания элемента фильтрующей поверхнос сти или ячейки в зоне съема осадка и мертвой зоны;
- W, содержание жидкой фазы в осадке до просушки;

%


- $W_{\rm c}$, содержание жидкой фазы в частично просушенном
- % осадке;
- δ_{oc} , толщина слоя осадка на фильтре;

M

- $q_{\rm T}$, количество твердой фазы, отлагающей на поверхности
- кг/м фильтра при получении 1м³ фильтрата;
- $\phi_{\text{пр}}, \ \ -$ угол сектора промывки;

0

- ψ, ° угол погружения барабана фильтра в суспензию;
- ϕ_{α}' , ° угол сектора зоны предварительной просушки;
- $\phi_{c}, \, {}^{\circ} \, -$ угол сектора зоны просушки;
- ϕ_2' , \circ угол сектора от уровня жидкости в корыте до средней линии начала всасывания;
- ϕ_1' , - угол сектора съема осадка.

$$\begin{split} \rho &= \frac{100 \rho_{\scriptscriptstyle T} \rho_{\scriptscriptstyle K}}{100 \rho_{\scriptscriptstyle K} + (\rho_{\scriptscriptstyle T} - \rho_{\scriptscriptstyle K}) W} & \omega = \frac{510 - \phi_2' - 2 (\phi_1' + \phi_2)}{\tau + 2 \tau_{\rm np}} \\ U &= \frac{C \rho_{\scriptscriptstyle K}}{\rho_{\rm oc} [100 - (W + C)]} & \varphi = \omega \cdot \tau \,; \; \psi_{\rm np} = \omega \cdot \tau_{\rm np} \\ \psi &= \varphi + \phi_2' \,; \; \tau_c = \varphi_c / \omega \\ Q_{\scriptscriptstyle T} &= \frac{C \rho_{\scriptscriptstyle K} (100 - W)}{100 \, [100 - (W + C)]} & \varphi_c' = \frac{180 - \varphi}{2} + \gamma_{2\,c} \\ Q_{\scriptscriptstyle T} &= \frac{\rho_{\scriptscriptstyle T} \alpha_{\rm cp}}{2 \, p} & \tau_c' = \varphi_c' / \omega \,; \; \tau' = \varphi_1 / \omega \\ V_0' &= \frac{\beta}{\alpha_{\rm cp} \, q_{\scriptscriptstyle T}} & \tau_{\scriptscriptstyle H} = \tau + \tau_c' + \tau_{\rm np} + \tau_c + \tau' \\ \tau &= \frac{b_1 \delta_{\rm oc} (\delta_0 \, 2 \, u \, V_0')}{u^2} & n = 1 / \tau_{\scriptscriptstyle H} \,; \; v' = \delta_{\rm oc} / u \\ v_{\rm cp} &= v' / \tau \,; \; v_{\scriptscriptstyle H} = v' / \tau_{\scriptscriptstyle H} \\ V_{\rm np} &= \frac{v_{\scriptscriptstyle T} \, p_{\rm HC} \, \rho_{\rm oc} \, \alpha_{\rm cp} \, q_{\scriptscriptstyle T} \, \mu_{\rm np}}{P_{\rm np}} & S = (Q \tau_{\scriptscriptstyle H}) / (K_3 \, v_{\scriptscriptstyle H}) \\ \tau_{\scriptscriptstyle H}' &= r_{\scriptscriptstyle H} \, (1 - \log \psi / 2) \\ \tau_{\scriptscriptstyle T}' &= v \tau_{\scriptscriptstyle Tp} & Q_{\rm oc} \, \frac{(2U \rho_{\rm oc} \, (100 - W))}{(100 - w_c)} \\ Q_{\scriptscriptstyle C} &= \frac{Q_{\rm oc} \, (100 - W) / \, 100}{P_{\scriptscriptstyle H} \, p_{\scriptscriptstyle H}} \\ Q_{\scriptscriptstyle C} &= \frac{360 n_{\scriptscriptstyle S}^c}{n_{\scriptscriptstyle H}} & B_{\rm BBOJ} \, pesyn \, Jhetatob}{Q_{\rm oc}, \, S, \, D, \, L} \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \, N_{\scriptscriptstyle T}' \\ Q_{\scriptscriptstyle T}' &= \varphi_{\scriptscriptstyle T}' \,$$

Рис. 2.6 Блок-схема технологического расчета барабанного вакуум-фильтра Порядок выполнения работы

ЛАБОРАТОРНАЯ РАБОТА ВЫПОЛНЯЕТСЯ НА КОМПЬЮТЕРЕ

- 1 Изучить устройство и принцип работы барабанного вакуум-фильтра.
- 2 Ввести с клавиатуры компьютера заданные исходные данные по суспензии (табл. 2.6).
- 3 Провести анализ влияния заданных параметров на производительность фильтра по осадку и поверхность фильтрования:
 - установить интервал изменения заданного параметра;
 - выбрать шаг (должно быть не менее 5 точек в заданном интервале);
 - выполнить технологический расчет фильтра при различных значениях заданного параметра.
 - 4 Данные компьютерного анализа занести в табл. 2.7.

Результаты экспериментальных исследований

2.6 Таблица экспериментальных данных

	Наименование параметра	Значение пара- метра
1	Производительность по фильтрату	$Q = 1.5 \cdot 10 \text{ m/c}$
2	Перепад давлений при фильтровании	$\tilde{P} = 66,81 \text{ к}\Pi a$

- 3 Перепад давлений при промывке 4 Удельное сопротивление осадка 5 Сопротивление фильтрующей перегородки 6 Влажность осадка до просушки 7 Влажность осадка, снимаемого фильтра Динамическая вязкость жидкой фазы Толщина осадка 10 Плотность твердой фазы суспензии
- 11 Плотность жидкой фазы суспензии
- 12 Концентрация разделяемой суспен-
- 13 Расход промывной жидкости на единицу массы осадка
- 14 Вязкость промывной жидкости
- 15 Коэффициент, учитывающий неравномерность подачи промывной жидкости
- 16 Коэффициент, учитывающий забивку ткани
- 17 Общее количество ячеек

 $P_{\rm пр} = 66,81 \ к \Pi a$ $\alpha = 542,35.10 \text{ M/kg}$ $\beta = 40.98 \cdot 10 \ 1/M$ W = 60 % $W_{\rm c} = 77 \%$ $\mu = 61.89 \, \Pi a \cdot c$ $\delta_{oc} = 7.10 \text{ M}$ $\rho_{\rm T} = 2370 \ {\rm KF/M}$ $\rho_{\rm m} = 950 \ \rm kg/m$ c = 3.5 %

$$V_{\text{пр.ж}} = 1,5 \cdot 10 \text{ м/ч}$$

 $\mu_{\text{пр}} = 59,88 \text{ Па·с}$

$$v = 1,1$$

$$K_3 = 0,8$$

$$n_8 = 24$$

$$n_8^c = 2$$

18 Количество ячеек в зоне просушки

2.7 Таблица экспериментальных данных

Наименование за- данного параметра и его значение	Производитель- ность по осадку, $Q_{ m oc}$	Поверхность фильтрования
Концентрация твердой фазы в суспензии: C_1 C_2 C_3	$Q_{ m oc1} \ Q_{ m oc2} \ Q_{ m oc3}$	S_1 S_2 S_3
C_{10}	$Q_{ m oc10}$	S_{10}

Обработка экспериментальных данных

- 1 Построить графики зависимостей производительности фильтра по осадку от заданного параметра, например, $Q_{oc} = f(\rho_{x})$.
- 2 Построить графики зависимостей поверхности фильтрования от заданного параметра, например, $S = f(\rho_{x}).$
 - 3 Число графиков равняется числу заданных параметров, умноженному на два.
 - 4 Сделать выводы по работе.

Отчет должен содержать:

- 1 Схему барабанного вакуум-фильтра.
- 2 Блок-схему технологического расчета фильтра.
- 3 Таблицу исходных данных.
- 4 Таблицу результатов компьютерного эксперимента.
- 5 Графики зависимостей поверхности фильтрования и производительности фильтра по осадку от заданных параметров.
 - 6 Выводы по работе.

Контрольные вопросы

- 1 Принцип действия барабанного вакуум-фильтра.
- 2 Каким образом обеспечивается чередование стадий в барабанном вакуум-фильтре?
- 3 Как выбрать рациональный режим работы барабанного вакуум-фильтра?
- 4 Способы удаления осадка с фильтровального полотна барабанного вакуум-фильтра.
- 5 Предложите варианты конструкций устройств для обеспечения фильтрования вверх.
- 6 Предложите меры, обеспечивающие повышение производительности фильтра.

Лабораторная работа № 7

ОБЕЗВОЖИВАНИЕ ОСАДКОВ СТОЧНЫХ ВОД В ОСАДИТЕЛЬНОЙ ЦЕНТРИФУГЕ

Цель работы: 1 Изучение устройства и принципа действия осадительных центрифуг.

2 Исследование влияния режимных параметров (числа оборотов ротора, продолжительности процесса) на степень разделения суспензий.

Методические указания

Процессы центрифугирования широко используется для удаления осадков из сточных вод.

Под центрифугированием понимают разделение жидких неоднородных систем (суспензий, эмульсий) под действием центробежных сил. Процессы центрифугирования осуществляются в машинах названных центрифугами.

Центрифугирование производится двумя методами: центробежное осаждение и центробежное фильтрование.

Центробежным осаждением называется процесс выделения твердой фазы из суспензий, осуществляемый в осветляющих и осадительных центрифугах периодического и непрерывного действия.

В практических условиях осадительное центрифугирование может осуществляется одним из трех способов: а) с непрерывным подводом суспензии и непрерывным отводом фугата и осадка; б) с длительным отводом фугата без удаления осадка во время процесса; в) центрифугированием определенного объема суспензии, который не пополняется, а фугат и осадок во время процесса не отводятся.

Непрерывный процесс разделения осуществляется на центрифугах типа ОГШ и других. На центрифугах периодического действия (типа ОГН, ОМД, ОРТ) разделение производится по второму и третьему способу.

При центробежном осаждении твердая дисперсная фаза осаждается на внутренней поверхности сплошного ротора центрифуги. Этот процесс делится на собственно центробежное осаждение и центробежное осветление, при этом используются объемные силы дисперсной среды в центрифугах со сплошным роторами. В первом случае происходит осаждение частиц твердой фазы из высококонценрированных суспензий в обычных промышленных центрифугах, во втором — выделение мелкодисперсных твердых частиц из малоконцентрированных суспензий с образованием осадка и фугата — жидкости, удаленной в слив в процессе центробежного осаждения (в высокоскоростных шнековых центрифугах, сепараторах, трубчатых центрифугах).

В отличии от центробежного фильтрования при центробежном осаждении над сформированным осадком обычно имеется свободная жидкость, поэтому осадок сохраняет высокую влажность.

Центробежное осаждение состоит из трех последовательных процессов: осаждения твердых частиц, уплотнения осадка, частичного удаления остаточной влаги.

Рабочим органом центрифуги является ротор (барабан), закрепленный на вертикальном или горизонтальном вращающемся валу. Ротор обычно состоит из кольцевой крышки, цилиндрической или конической обечайки и днища. Во внутреннюю полость ротора подается суспензия (эмульсия), частицы твердого материала (тяжелая фаза) под действием центробежных сил скапливаются у стенки ротора, а жидкость (легкая фаза) располагается ближе к оси жидкостного цилиндра, соосного вращающемуся ротору; в дальнейшем из ротора удаляются обе фазы.

Фактор разделения – безразмерная величина, определяющая эффективность центрифуги – позволяет сопоставить основные показатели различных центрифуг. С физической точки зрения фактор разделения определяет отношение ускорения поля центробежных сил, создаваемого центрифугой, к ускорению свободного падения

$$F_r' = \frac{w^2 r}{g},$$

где w — угловая скорость потока, рад/с; r — радиус потока, м;

Чем больше фактор разделения, тем значительнее воздействие центробежных сил на твердого материала и выше возможности их осаждения.

Описание конструкции пробирочной центрифуги

Центрифуга (рис. 2.8) имеет ротор I, жестко скрепленный с валом 2. Вал с помощью муфты 3 соединяется с электродвигателем постоянного тока 4. На роторе подвижно закреплены стаканчики 5, в которые устанавливаются пробирки 6 с веществом, которое необходимо разделить. При вращении ротора центрифуги стаканчики 5 отклоняются от горизонтального положения, при этом происходит осаждение твердых частиц суспензии под действием центробежной силы. Ротор со стаканчиками размещакорпусе который крепится на станине 8. Центрифуга 7, жух 9 с крышкой 10. В станине размещается встроенное реле времени 11 и потенциометр 12, с помощью которого можно устанавливать необходимое число оборотов ротора. Для снижения вибраций станина машина устанавливается на амортизаторах 13.

10 1 2 3 5 6 7 4 9 8 13

Рис. 2.8 Схема пробирочной центрифуги

Порядок выполнения работы

- 1 Приготовить суспензию с содержанием твердой фазы 20 %: налить в емкость 500 мл воды, отвесить необходимое количество мела, тщательно перемешать мел и воду.
 - 2 Пронумеровать пробирки.
 - 3 Наполнить пробирки суспензий.
 - 4 Установить пробирки в стаканчики 5 ротора центрифуги.
 - 5 Установить потенциометром 1000 об/мин.

13

11 12

- 6 С помощью реле времени 11 установить время центрифугирования 1 мин.
- 7 Включить центрифугу.
- 8 После окончания процесса центрифугирования извлечь пробирки из стаканчиков ротора центрифуги, замерить высоту слоя фугата, результаты занести в табл. 2.8.

2.8 Экспериментальные и расчетные данные

Число	№	Время	Высо-	C	бъемы		Фак-
оборо- тов, об/мин	про- бир- ки	центри- фугиро- вания τ, мин	та слоя фу- гата <i>h</i> ₁ , м	сус- пензии V_{c} , м	фуга- та V_{ϕ} , м	осад- ка $V_{\rm oc}$, м	тор раздел ения F_r
1000	İ	1 2					
1500	1.0	10					
2000	: 10	1					
	1	1					
	10						

⁹ Повторить измерения для оборотов ротора центрифуги 2000 об/мин, 3000 об/мин, 4000 об/мин и продолжительности процесса 1...10 мин.

Обработка результатов

1 Определить объем влажного осадка

$$V_{\rm oc} = V_{\rm c} - V_{\rm \phi}; \quad V_{\rm \phi} = h_1 \frac{\pi d^2}{4},$$

где d – диаметр пробирки, м.

2 Рассчитать фактор разделения

$$F_r = \frac{w^2 R}{\varphi},$$

где R – наружный радиус слоя осадка, м; g – ускорение свободного падения, м/ c^2 .

3 Определить степень уплотнения осадка,

$$\Delta = \frac{V_{\rm oc} - V_{\rm oc}'}{V_{\rm oc}},$$

где V'_{oc} — первоначальный объем осадка, м³; V'_{oc} — объем осадка в данный момент времени.

- 4 Построить зависимость изменения объема влажного осадка от времени центрифугирования $V_{\rm oc} f(\tau)$ при различных числах оборотов ротора.
 - 5 Построить зависимость степени уплотнения осадка от фактора разделения $\Delta = f(F_r)$.
 - 6 Сделать выводы по работе.

Отчет должен содержать:

- 1 Краткое описание и схему устройства лабораторной пробирочной центрифуги.
- 2 Экспериментальные и расчетные величины, сведенные в таблицу.
- 3 Графики зависимости изменения объема осадках от времени центрифугирования при различных скоростях вращения ротора.
 - 4 Графики зависимостей степени уплотнения осадка от фактора разделения.

5 Выводы по работе.

Контрольные вопросы

- 1 Типы и конструкции осадительных центрифуг.
- 2 Параметры, характеризующие работу центрифуг.
- 3 Что такое фактор разделения?
- 4 Что такое индекс производительности?
- 5 Достоинство и недостатки осадительных центрифуг.
- 6 От чего зависит производительность центрифуги?
- 7 Из каких основных элементов состоит опытная установка?

Список литературы

- 1 Конструирование и расчет машин химических производств: Учебник для машиностроительных вузов по специальности "Химическое машиностроение и аппаратостроение" / Ю.И. Гусев, И.Н. Карасев, Э.Э. Кольман-Иванов и др. М.: Машиностроение, 1985. 408 с.
 - 2 Жужиков В.А. Фильтрование. Теория и практика разделения суспензий. М.: Химия, 1980. 400 с.
 - 3 Лукъяненко В.М., Таранцев А.В. Центрифуги: Справоч. изд. М.: Химия, 1988. 384 с.
 - 4 Соколов В.И. Центрифугирование. М.: Химия, 1976. 407 с.
- 5 Шкоропад Д.Е., Новиков О.П. Центрифуги и сепараторы для химических производств. М.:Химия, 1987. 256 с.
 - 6 РТМ 26-0182-76. Барабанные вакуум-фильтры. Методика расчета на прочность.
- 7 РТМ 26-01-69-75. Методика технологического расчета барабанных вакуум-фильтров со сходящим полотном.
- 8 Плановский А.А., Николаев П.И. Процессы и аппараты химической и нефтехимической технологии. М.: Химия, 1987. 496 с.
- 9 Гельперин Н.И. Основные процессы и аппараты химической технологии: В 2 кн. М.: Химия, 1981. 812 с.
- 10 Андронова М.М., Медиоланская М.М., Пашичева Н.Н. Водная экология: Лабораторный практикум. Вологда: ВоГТУ, 1999. 94 с.
- 11 Родионов А.И., Клушин В.Н., Торочешников Н.С. Техника защиты окружающей среды. М.: Химия, 1989. 512 с.

Тема 3 МЕТОДЫ И ОБОРУДОВАНИЕ ДЛЯ ПЕРЕРАБОТКИ ТВЕРДЫХ ОТХОДОВ

Лабораторная работа № 1

Изучение работы бункерного устройства

Цель работы: 1 Изучение принципа работы бункерного устройства.

2 Определение производительности бункерного устройства, скорости истечения материала, коэффициентов истечения.

Методические указания

Бункеры – это емкости для кратковременного хранения сыпучих материалов. Собственно бункеры, загрузочные и разгрузочные устройства, побудители истечения, затворы, питатели, приборы контроля и автоматизации составляют бункерные устройства.

С целью обеспечения достаточно полного опорожнения днища бункеров должны иметь наклонные стенки. При конструировании бункеров необходимо учитывать основные физико-механические свойст-

ва сыпучих материалов, поэтому до начала проектирования бункера необходимо провести экспериментальные исследования сыпучего материала и определить его физико-механические характеристики. Параметрами, от которых зависит надежное истечение сыпучего материала из бункера, являются формы бункера и его воронки, угол наклона стенок, размеры выпускного отверстия, материал покрытия стенок.

При истечении сыпучего материала из бункера в зависимости от свойств этого материала возможно либо образование свода над разгрузочным отверстием, вследствие чего истечение материала прекратится полностью, либо происходит зависание части материала на стенках бункера, что не позволяет опорожнить его полностью. Для предотвращения зависания и разрушения сводов в бункерах могут быть установлены механические, электромеханические, электромагнитные, аэрационные и другие побудители движения сыпучего материала.

Правильный выбор конструкции бункера для хорошо сыпучего материала и наличие стабилизатора потока у выходного отверстия бункера позволяют во многих случаях обходиться без установки побудителей.

Сводообразование и методы его устранения

Различают два вида этого вредного явления: сводообразованине крупнокусковых материалов, когда случайная комбинация крупных кусков образует стойкий свод под отверстием, и свободообразование мелкокусковых материалов, обладающих связностью частиц.

Если выпускное отверстие больше сводообразующего, устойчивый свод не образуется и истечение материала происходит беспрепятственно. Размеры сводообразующего отверстия определяют по формуле:

$$R_{\rm cB} = \tau_0 (1 + \sin \varphi) / \gamma_0,$$

где ϕ — угол внутреннего трения; $R_{\rm cB}$ — гидравлический радиус свободообразующего отверстия; τ_0 — удельное сопротивление сдвигу, характеризующие сцепление между частицами; γ_0 — насыпная плотность материала.

Для улучшения процесса истечения материала из бункера часто применяют стабилизаторы давления. Простейшим стабилизатором давления является горизонтальная пластина или двухскатный козырек.

Для разрушения образующих в бункерах сводов (также для обрушения зависшего материала) применяют различные побудители: механические вибрационные, электромеханические.

Истечение сыпучего материала из бункера

Различают нормальное истечение из бункера, сплошное и гидравлическое (рис. 3.1).

При нормальном истечении материал движется в виде столба, расположенного над отверстием, в верхней части столба образуется воронка (рис. 3.1, a). Материал, расположенный у стенок бункера, за пределами движущегося столба, остается неподвижным.

Нормальное истечение происходит в большинстве стационарных бункеров, имеющих вблизи выпускного отверстия наклон стенок к горизонтали в пределах от 45 до 55°.

При сплошном истечении весь материал в бункере находится в движении. Сводная поверхность материала при этом не имеет четко выраженной воронки, скорость движения отдельных частиц носит стохастический характер. При сплошной форме истечения в бункере отсутствуют застойные зоны.

Такая форма истечения имеет место в бункере с очень большим углом наклона стенок к горизонту (от 70 до 80°).

При гидравлическом истечении материал движется подобно жидкости, свободная поверхность не имеет четко выраженной воронки, отсутствуют застойные зоны (рис. 3.1, δ).

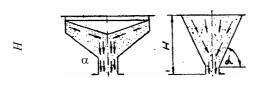


Рис. 3.1 Режимы истечения материала из бункера:

Гидравлический режим наблюдается в следующих случаях: а) когда сыпучий материал сильно аэрирован; б) когда бункер интенсивно сотрясается, например, вибрационным побудителем; в) когда материал содержит влагу в таком количестве, что по свойствам приближается к жидкости.

Различие между сплошным и гидравлическим истечением заключается в том, что скорость движения сыпучего материала при сплошном истечении практически не зависит от высоты столба материала под загрузочным отверстием, а при гидравлическом, чем выше столб материала, тем выше скорость истечения.

Описание конструкции бункерного устройства

Установка (рис. 3.2) представляет полый усеченный конусный бункер, установленный на раме. Внутри бункера расположен спиральный ворошитель. Привод ворошителя осуществляется от электродвигателя через червячный редуктор клиноременную передачу. Ворошитель приводится в движение от пульта управления установкой.

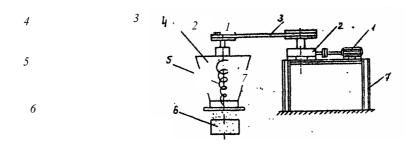


Рис. 3.2 Схема установки:

1 – электродвигатель; 2 – червячный редуктор; 3 – клиноременная передача;

4 – бункер; 5 – ворошитель; 6 – пробоотборник; 7 – рама

Порядок выполнения работы

- 1 Определитель насыпную плотность заданных сыпучих материалов, для чего: а) мерный стакан заполнить сыпучим материалом до определенного объема; б) определить массу навески.
 - 2 Результаты замеров занести в табл. 3.1.
 - 3 Подготовить набор сменных вставок в бункер.
 - 4 Вставить необходимую сменную вставку в бункер, перекрыв отверстие истечения.
- 5 Заполнить бункер сыпучим материалом, добиться устойчивого режима работы бункерного устройства, т.е. равномерного выхода сыпучего материала.
 - 6 С помощью мерного стакана установить необходимое время отбора проб.
- 7 Отобрать заданное количество проб сыпучего материала через установленный промежуток времени.
 - 8 Взвесить отобранные пробы, результаты занести в табл. 3.2.
- 9 Провести аналогичную серию экспериментов на другом материале в соответствии с пунктами 1 8.

Результаты экспериментальных исследований

Задание для выполнения лабораторной работы.

Материал: песок речной, соль поваренная.

3.1 Экспериментальные данные по определению насыпной плотности исходных материалов

Наименова-	Объем на-	Масса навес-	Насыпная
ние	вески V	ки M	плотность

материала			
Песок речной	V_1	M_1	
	V_2	M_2	
	V_3	M_3	
	$V_{ m cp}$	$M_{ m cp}$	
Соль пова-	V_1	M_1	
ренная			
	V_2	M_2	
	V_3	M_3	
	$V_{ m cp}$	$M_{ m cp}$	

3.2 Экспериментальные данные по определению производительности бункерного устройства

№ про- бы	Время отбора пробы, с	Масса пробоот- борника с материа- лом	Масса материала в пробе (X_1) , Γ	Среднее значение массы всех проб (X)	$X_1 - \overline{X}$
1					
30					
1					
30					

ОБРАБОТКА ОПЫТНЫХ ДАННЫХ

1 Рассчитать насыпную плотность материалов по формуле

$$\rho_{_{\rm H}} - M_{\rm cp} / V_{\rm cp}$$

где $M_{\rm cp}$ — масса навески, кг; $V_{\rm cp}$ — объем навески, м 3 .

2 Рассчитать среднее арифметическое значение материала в пробе по формуле

$$\overline{X} = \sum_{i=1}^{n} X_i / n,$$

где n — число проб.

- 3 Рассчитать отклонение массы пробы от среднеарифметического значения $(\overline{X} X_1)$ и занести в табл. 3.2.
 - 4 Рассчитать среднеквадратичное отклонение

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X - X_i)^2} .$$

5 Рассчитать величину доверительного интервала по формуле

$$t = \max(\overline{X} - X_i)/S$$
,

сравнить полученные значения с табличным (см. прилож.). Если $t > t_{\text{max}}$, повторить расчеты с п. 2 по п. 5 без учета максимальной разности. Расчет проводить до тех пор, пока t не станет меньше t_{max} .

6 Рассчитать производительность бункерного устройства:

$$Q = \overline{X} \pm t S / \sqrt{n}$$
.

7 Рассчитать скорость истечения сыпучего материала из бункерного устройства:

$$w = Q/\rho_{\rm u}F$$
.

8 Определить коэффициент истечения материала из бункерного устройства:

$$\lambda = w / \sqrt{3.2gR}$$

где R — гидравлический радиус.

Контрольные вопросы

- 1 Свойства сыпучих материалов.
- 2 Влияние свойств сыпучих материалов на конструктивные особенности бункера.
- 3 Сводообразование. Способы разрушения сводов в бункерных устройствах.
- 4 Режимы истечения материала из бункера.
- 5 Конструктивные особенности затворов бункеров.
- 6 Определение размеров бункера.
- 7 Какие типы побудителей устанавливаются в бункерных устройствах?
- 8 Какие факторы влияют на скорость истечения материала из отверстия?

Лабораторная работа № 2

ПИТАТЕЛЬ ВИНТОВОЙ

Цель работы: 1 Изучение принципа работы винтового питателя.

2 Определение производительности винтового питателя, мощности привода.

Теоретические положения

Винтовые питатели применяют для подачи хорошо сыпучих порошкообразных и зернистых (с размером зерна до 5 мм) материалов с влажностью до 1,5 % и насыпной плотностью до 1800 кг/м^3 .

В противоположность весовому дозированию, осуществляемому с помощью весов, используется объемное дозирование при котором материал или соответствующий удельный (в единицу времени) поток не взвешивается, а дозируется "косвенным методом", т.е. измерением объема, соответствующего определенной массе.

Конструкции винтовых питателей стандартизированы и выпускаются серийно ОСТ 26-01-132-81 с диаметром винта от 63 до 250 мм и производительностью от 0,061 до 42 м 3 /ч.

Кроме стандартизированных питателей с одним шнеком существует несколько типов двух-вальных шнековых питателей. Второй шнек может концентрически охватывать первый, может располагаться параллельно основному шнеку, над ним или рядом с ним так, чтобы витки его заходили между витками основного шнека. Назначение шнека, концентрически охватывающего основной или расположенного над основным — разрыхление сыпучего материала с целью стабилизации насыпной плотности. Это повышает точность дозирования. Шнек, расположенный рядом с основным, с расстоянием между осями шнеков меньше их диаметра очищает витки питающиго шнека, что создает возможность дозирования материалов повышенной влажности. Двухвальные шнековые питатели называются дифференциальными.

Производительность винтового питателя Q, м 3 /с следует рассчитать по формуле:

$$Q = 0.785 (D^2 - d^2)(t_{\text{III}} - b) \varphi k\omega/(2\pi),$$

где D и d — диаметр, соответственно наружных витков и вала винта, м; $t_{\rm m}$ — шаг винта, м; b — толщина витков, м; ϕ — коэффициент заполнения лопастей винта (принимают 0,3...0,8 в зависимости от физикомеханических свойств дозируемого материала и экспериментальных данных); k — коэффициент проскальзывания дозируемого материала в полостях винта (устанавливают экспериментально; обычно k = 0,3...1 в зависимости от свойств дозируемого материала и противодавления газовой среды у выходного штуцера, для предварительных расчетов можно принять k = 1); ω — угловая скорость винта, c^{-1} .

Мощность привода винтового питателя N, кBт, ориентировочно можно рассчитать по формуле:

$$N = Q(H + kL) / (368 \cdot \eta),$$
 (1)

где Q — производительность питателя, т/ч; H — высота подъема материала (для дозаторов, установленных под углом к горизонтали), м; L — расстояние, на которое перемещается материал винтом по горизонтали, м;

 η – кпд привода.

К недостаткам шнековых питателей можно отнести быстрый абразивный износ винта и корпуса, а также повышенный расход энергии, трудность использования таких питателей для подачи материалов с повышенной влажностью.

Описание конструкции винтового питателя

Установка представляет собой винтовой питатель I (рис. 3.3), установленный на раме и источник постоянного тока Б5-21 9, который позволяет плавно менять число оборотов шнека в широких пределах

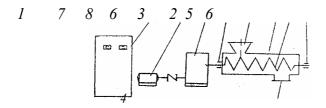


Рис. 3.3 Схема установки

Винтовой питатель (иногда его называют шнековым питателем) состоит из следующих основных узлов: цилиндрического корпуса 2, имеющего загрузочный и разгрузочный штуцеры 3, 4; транспортирующего винта 5, смонтированного на подшипниковых опорах 6; электродвигателя 7, редуктора 8, установленного на станине.

Производительность питателя регулируют изменением частоты вращения транспортирующего шнека, устанавливая определенное напряжение.

Шнек вращается в цилиндрическом корпусе и транспортирует материал к выходному щтуцеру. В загрузочном бункере часто устанавливают побудитель движения сыпучего материала той или иной конструкции.

Порядок выполнения работы

- 1 Заполнить бункер сыпучим материалом, добиться устойчивого режима работы винтового питателя.
 - 2 С помощью пробоотборника установить необходимое время отбора проб.
- 3 Произвести отбор заданного количества проб сыпучего материала через определенный промежуток времени.
 - 4 Взвесить отобранные пробы, результаты занести в таблицу.
- 5 Произвести аналогичную серию экспериментов в соответствии с пунктами 1-4 при других установленных значениях напряжения.

Задание для выполнения работы. Материал: соль поваренная, калиевая селитра.

3.3 Результаты экспериментальных исследований

№ п/п	Напряж ение <i>U</i> , В	Ток <i>J</i> , A	Число оборо- тов n, об/м	Вес пробо- отбор- ника	Вес про- бы	Вес мате- риала в пробе	$(\overline{X} - X_i)$
1 2 : 10							
1 2 : 10							

Обработка опытных данных

- 1 Рассчитать производительность винтового питателя по экспериментальным данным:
- а) По формуле $\overline{X} = \sum X_i / n$ рассчитать среднее арифметическое значение материала в пробе.
- б) Рассчитать отклонение массы пробы от среднеарифметического значения $(\overline{X} X_i)$ и занести в таблицу.
 - в) рассчитать среднее квадратичное отклонение по формуле

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\overline{X} - X_i)^2};$$

г) Рассчитать величину доверительного интервала по формуле $t = \frac{\max(\overline{X} - X_i)}{S}$, и сравнить полученные данные с табличным.

Если $t < t_{\text{max}}$, то экспериментальные данные попадают в доверительный интервал.

- д) Рассчитать производительность по формуле $Q = \overline{X} \pm tS / \sqrt{n}$; при различных числах оборотов шнека.
- 2 Рассчитать теоретическое значение производительности по формуле $Q = \overline{X} \pm tS / \sqrt{n}$; при различных значениях чисел оборотов, заданных преподавателем.
- 3 Построить график зависимости производительности от числа оборотов шнека Q = f(n), по экспериментальным и теоретическим данным.

Сравнить полученные результаты.

- 4 Рассчитать значение мощности привода винтового питателя по полученным опытным данным. N = JU при различных числах оборотов шнека.
 - 5 Рассчитать теоретическое значение мощности привода винтового питателя по формуле (1).
- 6 Построить график зависимости мощности привода от числа оборотов шнека N=f(n) по экспериментальным и теоретическим данным. Сравнить полученные результаты.
 - 7 Сделать выводы по работе.

Контрольные вопросы

- 1 Принцип действия винтового питателя. Назначение основных узлов.
- 2 От чего зависит производительность винтового питателя?
- 3 Назначение обратных витков на валу шнека.
- 4 Как влияют геометрические характеристики шнека на производительность шнекового питателя?
- 5 Чем отличается питатель от дозатора?
- 6 Как регулировать число оборотов шнека?

БАРАБАННЫЙ ИЗМЕЛЬЧИТЕЛЬ

Цель работы: 1 Изучение конструкции измельчителя.

2 Исследование кинетики измельчения.

Теоретические положения

Конструкция

Барабанный измельчитель представляет собой вращаются корпус (барабан), заполненный мелющими телами (шары, стержни). Корпус измельчителя изготавливается из листовой стали в виде коротких обечаек, которые затем свариваются. К торцам корпуса привариваются фланцы, на которые устанавливают крышки. Крышки, закрывающие корпус с обоих торцов, снабжены цапфами. Цапфы устанавливаются в подшипниках скольжения с принудительной смазкой. Имеются конструкции барабанных измельчителей, в которых используются подшипники качения и цапфы с опорными роликами.

Внутренняя поверхность корпуса футерована броневыми плитами. Для быстрой замены плиты крепятся к корпусу либо индивидуально с помощью болтов, либо пакетом. Плиты изготавливают из сталей, содержащих марганец и хром, с предварительной отливкой заготовок. Крышки корпуса также футеруются плитами, однако меньшей толщины. В разгрузочной крышке устанавливают лифтер (оребренный конус) с целью улучшения выгрузки материала через цапфу. Загрузка исходного материала из бункера осуществляется через загрузочную цапфу.

Внутренняя поверхность обоих цапф снабжается винтовыми ребрами для улучшения условий передвижения материала.

Вращение барабана осуществляется с помощью привода, включающего электродвигатель и редуктор. Различают центральный привод, соединяемый с разгрузочной цапфой через зубчатую муфту и периферийный, который передает вращение через венцовую шестерню, размещенную на корпусе аналогично машинам барабанного типа.

Форма корпуса может быть цилиндрической или цилиндро-конической. Типоразмер барабанного измельчителя характеризуется внутренним (без футеровки) диаметром D и длиной цилиндрической части барабана L.

В зависимости от соотношения l/D , барабанные измельчители подразделяются на 3 группы: короткие -l/D < 1, длинные -l/D < 3, трубные -l/D < 1, длинные и трубные измельчители разделяются на секции, причем мелющие тела в секциях имеют разный размер от крупного — в зоне загрузки к мелкому — в зоне выгрузки.

Движение мелющих тел и расчет равновесных параметров

Мелющие тела занимают часть внутреннего объема вращающегося барабана. Характер движения загрузки определяется частотой вращения, внутренним диаметром и коэффициентом заполнения, равным отношению объема загрузки мелющих тел, к объему барабана.

При оптимальном движении мелющих тел, называемым водопадным, шары увлекаются барабаном в сторону вращения, поднимаются и, достигнув верхней зоны, отрываются от слоя и свободно падают по параболической траектории. Измельчение материала происходит вследствие стесненного удара, а затем за счет раздавливания и истирания при перекатывании мелющих тел. При уменьшении частоты вращения мелющие тела поднимаются и скатываются параллельными слоями, т.е. отрыва и свободного падения не происходит. Такой режим движения шаров называется каскадным. При увеличении частоты вращения зона отрыва поднимается и, достигнув наивысшего положения, наступает безотрывное вращение мелющих тел в барабане. Угловая скорость, при которой шар проходит верхнюю зону без отрыва от внутренней поверхности корпуса, называется критической. Численное значение критической угловой скорости может быть найдено из равенства веса тела и центробежной силы:

$$m_T \omega_{\text{KD}}^2 / R = mq;$$
 $\omega_{\text{KD}} = 4.43 / \sqrt{D}.$

Оптимальный режим измельчения отвечает такой частоте вращения барабана, при котором высота падения мелющего тела будет наибольшей (при этом максимальна кинетическая энергия в момент стесненного удара). Численно она составляет 76 % от критической угловой скорости вращения

$$\omega_{\text{OUT}} = 0.76\omega_{\text{KD}} = 3.33 / \sqrt{D}$$
.

Масса загрузки в барабанный измельчитель складывается из массы мелющих тел $m_{\rm M}$ и массы измельчаемого материала, которая обычно составляет 14 % от $m_{\rm M}$

$$M = 1.14 m_{\rm M} = 1.14 \pi D^2 / 4 L \rho_{\rm M} \mu \phi_3$$

где $\rho_{\rm M}$ – плотность материала мелющих тел; μ – коэффициент неплотности загрузки (для шаров μ = 0,57, для стержней μ = 0,78); ϕ_3 – коэффициент заполнения барабанного измельчителя мелющими телами (ϕ_3 = 0,26 – 0,32).

Мощность электродвигателя для привода вращения барабанного измельчителя рассчитывается по формуле:

$$N = 0.39MR \omega g$$

где η – КПД привода (η = 0,9...0,94 – при центральном приводе; η = 0,85... 0,88 – при периферийном). Установочную мощность двигателя принимают на 10...15 % больше расчетной, для преодоления пускового момента.

Кинетика измельчения

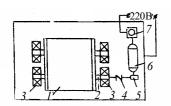
Под кинетикой измельчения понимают закономерность изменения гранулометрического состава материала, подвергаемого измельчению, т.е. закономерность уменьшения количества крупного (расчетного) класса (остатка на контрольном сите) в процессе измельчения.

Согласно одной из гипотез, скорость измельчения крупного класса (остатка на контрольном сите) пропорциональна содержанию R крупного остатка к моменту времени t:

$$dR / d\tau = -kR^n$$

Параметры n и k очень точно определяют сложные процессы, проходящие в барабанном измельчителе, и зависят от коэффициента заполнения, частоты вращения, кинетической энергии падения шаров, крупности и плотности мелющих тел и измельчаемого материала. В зависимости от характера измельчения n может принимать значения от отрицательных до сравнительно высоких положительных. Оптимальный режим измельчения имеет место при n < 1. Интегрирование уравнения кинетики при $n \ne -1$ дает:

$$R(t)^{1-n} = \text{Ro}^{1-n} - (1-n)kt.$$


Параметры n и k определяются по данным опытов измельчения материала при различном времени. Прологарифмировав исходное уравнение, получим:

$$\lg \left\lceil \frac{dR(t)}{dt} \right\rceil = \lg k + n \lg R.$$

Параметр n можно получить графическим дифференцированием экспериментальных данных по кинетике измельчения. В координатах $\lg [dR(t)/dt]$ и $\lg R$, получим прямую линию, а n – ее угловой коэффициент.

Описание конструкции лабораторной установки

Измельчитель лабораторный представляет собой полый вращающийся барабан, установленный на обрезиненных валках, один из которых является приведенным (рис. 3.4).

Рис. 3.4 Схема лабораторной установки:

1 — барабан; 2 — валки; 3 — под-

Барабан снабжен сменной крышкой, через которую загружают мелющие тела и навеску измельчаемого материала. Вращение приводного валка осуществляется электродвигателем через муфту. Регулирование скорости вращения осуществляется изменением питающего напряжения через трансформатор. Двигатель, валки и трансформатор размещены на массивной станине. Режим работы измельчителя — периодический. Внутренний объем измельчителя — $0,0047 \, \text{м}^3$, внутренний диаметр — $210 \, \text{мм}$, длина — $140 \, \text{мм}$.

Порядок выполнения работы

- 1 Рассчитать массу загружаемых шаров и материала, критической и оптимальной частоты вращения, коэффициент загрузки.
- 2 Произвести ситовой анализ исходного материала, предварительно взвесив навеску. Данные занести в табл. 3.4.
 - 3 Отрегулировать оптимальную частоту вращения с пустым барабаном.
- 4 Подготовить мелющие тела, измельчаемый материал и осуществить их загрузку в количестве, соответствующем расчету.
- 5 Включить лабораторный измельчитель в течение заданного времени цикла измельчения ($\tau = 10$ мин).
 - 6 Выгрузить материал, взвесить навеску и произвести ситовой анализ. Данные занести в табл. 3.4.
 - 7 Повторить цикл измельчения, загрузив материал в барабан.

3.4 Экспериментальные данные

Размер	$\tau = 0$			$\tau = 10$ мин			τ = 20 мин		
отвер- стий си- та, мм	$G_{ m c}$	$G_{ m cy}$	$G_{ ext{ma}}$	$G_{ m cu}$	$G_{ m cy}$	$G_{ ext{ma}}$	$G_{ m c}$	$G_{ m cy}$	$G_{ ext{ma}}$
поддон									

Обработка экспериментальных данных

1 Рассчитать средний диаметр исходного и измельченного материала в каждом цикле измельчения

$$d_{\rm cp} = \frac{\sum_{i=1}^{n} m_i d_i}{\sum_{i=1}^{n} m_i},$$

где m_i – масса остатка материала на сите размером отверстия d_i .

2 Рассчитать кратность измельчения для каждого цикла

$$i_1 = rac{d_{0 ext{cp}}}{d_{1 ext{cp}}}\;; \quad i_2 = rac{d_{0 ext{cp}}}{d_{2 ext{cp}}}\;;$$
 и т.д.

- 3 Построить график зависимости кратности измельчения от времени.
- 4 Для контрольного сита построить зависимость Rk(t).

Контрольные вопросы

- 1 Назовите принципиальное отличие конструкций барабанного измельчителя и машин барабанного типа.
 - 2 Назовите основные механизмы измельчения сыпучего материала в барабанном измельчителе.
- 3 Дайте характеристику оптимального режима движения мелющих тел, отвечающего наибольшей интенсивности измельчения.
 - 4 Что такое степень измельчения?
 - 5 Что такое остаток на контрольном сите?

Лабораторная работа № 4

БАРАБАННЫЙ СМЕСИТЕЛЬ

Цель работы: 1 Изучение устройства и принципа действия барабанного смесителя.

2 Исследование закономерностей смешения сыпучих материалов.

Теоретические положения

Машины барабанного типа используются в качестве смесителей как периодического, так и непрерывного действия.

Барабанные смесители относятся к смесителям диффузионного смешивания, которые выпускаются, в основном, с цилиндрическим корпусом, расположенным горизонтально или с небольшим углом наклона к горизонту (до 4 °C).

Барабанные смесители относятся к тихоходным машинам, так как окружная скорость вращения составляет от 0,17 до 1 м/с. Рабочая скорость вращения обеспечивает оптимальное качество смеси.

Сыпучие материалы можно подавать в смеситель непрерывно или порционно. Последнее возможно благодаря тому, что барабанный смеситель обладает высокой сглаживающей способностью.

В барабанных смесителях рекомендуется поддерживать каскадных режим движения материала в корпусе. При этом режиме частицы материала, находящиеся в глубине слоя, движутся по круговым траекториям вплоть до выхода на поверхность в верхней части ската, образованного свободной поверхностью слоя смешиваемого материала. После выхода частиц на поверхность слоя они окатываются по склону. Вся верхняя часть ската представляет собой слой небольшой толщины, состоящий из хаотически движущихся вниз частиц. Именно в этом тонком слое и происходит в основном процесс смешивания частиц. Каскадный режим движения частиц достигается при частоте вращения корпуса $\omega < 0.6~\omega_{\rm кp}$, где $\omega_{\rm kp}$ – критическая частота вращения корпуса, при которой частицы прижимаются к его стенкам.

$$\omega_{\rm kp} = 4{,}43\sqrt{D} \ ,$$

где D – диаметр барабана, м.

Оптимальный объем загрузки барабана сыпучим материалом принимается

$$V_3 = 0.3 V_6$$

где $V_{\rm 0}$ – объем барабана, м 3 ; $V_{\rm 3}$ – объем загрузки, м 3 .

Оценка качества смеси

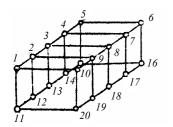
В процессе смешивания в рабочем объеме смесителя происходит взаимное перемещение частиц разных компонентов, находящихся до перемешивания раздельно или в неоднородновнедренном состоянии. В результате перемещений возможно бесконечное разнообразие расположения частиц в рабочем объеме смесителя.

В этих условиях соотношение компонентов в микрообъемах смесей – величина случайная, поэтому большая часть известных методов оценки однородности (качества) смеси основана на методах статистического анализа. Для упрощения расчетов все смеси условно считают двухкомпонентными, состоящими из так называемого ключевого компонента и условного, включающего все остальные компоненты смесей. Подобный прием позволяет оценивать однородность смеси параметрами распределения одной случайной величины – содержанием ключевого компонента в пробах смеси. В качестве ключевого компонента обычно выбирают такой компонент, который либо легко анализировать, либо распределение его в смеси особенно важно по техническим требованиям.

В качестве критерия оценки однородности смеси используют коэффициент вариации V_C , %

$$V_C = \frac{100}{\overline{C}} x \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (C_i - C)^{-2}}$$
,

где C – среднее арифметическое значение концентрации ключевого компонента во всех n пробах смеси, %; C_i – концентрация ключевого компонента в i-й пробе смеси, %.


Применительно к процессу смешивания сыпучих материалов этот критерий называют коэффициентом неоднородности, так как с его увеличением неоднородность возрастает.

Необходимую массу пробы смеси сыпучих материалов принимают в зависимости от принятого метода анализа проб. На содержание в них ключевого компонента. Обычно масса пробы колеблется в пределах от 1 до $10~\Gamma$.

Кинетическая кривая процесса смешения (рис. 3.5) имеет три характерных участка, каждый из которых соответствует определенному по времени периоду смешивания. В периоде I преобладает процесс смешивания за счет конвективного переноса компонентов по внутреннему объему смесителя.

Во II периоде скорость процесса смешивания становится сопоставимой со скоростью сегрегации. Сам же процесс смешивания реализуется в основном за счет перемещений предельных частиц одна относительно другой. Из-за внешней схожести с процессом диффузии молекул этот период называют диффузионным. В периоде III скорость процесса смешивания становится равной скорости процесса сег-

регации, поэтому $V_{\rm c}$ не меняется во времени.

Рис. 3.6 Схема отбора проб из барабана

Для оценки качества смеси в барабанном смесителе периодического действия рекомендуется использовать метод точечного отбора проб. Этот метод заключается в отборе проб специальным пробоотборником из

разных зон внутреннего объема смесителя в соответствии со схемой после его остановки (рис. 3.6).

Отобранные пробы подвергают количественному анализу на содержание в них ключевого компонента.

Описание конструкции барабанного смесителя

Лабораторная установка (рис. 3.7) включает смесительный барабан 1, расположенный на роликах, установленных на станине.

Приводной ролик 2 вращается от электродвигателя 3. Вращение на ролик передается через червячный редуктор 4 и муфту 5. Приводной и опорный ролики установлены в подшипниковых опорах 6, которые можно переустанавливать. Упор 7 предотвращает сползание барабана с роликов. Регулирование числа оборотов барабанного смесителя производится переключателем 8.

8

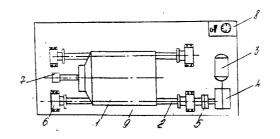


Рис. 3.7

Порядок выполнения работы

- 1 Заполнить таблицу исходных данных.
- 2 Подготовить навески исходных компонентов.
- 3 Открыть крышку барабанного смесителя и заполнить барабан смешиваемыми компонентами. Закрыть крышку.
 - 4 Установить барабан на ролики и включить привод.
 - 5 Отбор проб производить через каждые 15 минут, не менее четырех раз.
 - 6 Отбор проб производить в соответствии с методикой, описанной выше.
 - 7 Произвести анализ проб на содержание компонентов.
 - 8 Результаты экспериментальных исследований занести в таблицу.

Результаты экспериментальных исследований

3.5 Исходные данные

11	Значение	параметра
Наименование параметра	І группа	II группа
1 Смешиваемые компоненты:		
полипропилен черный	30 %	20 %
полипропилен темно-красный	30 %	30 %
полистирол белый	40 %	50 %
2 Геометрические параметры сме-		
сителя:		
диаметр барабана D , м		
длина барабана L , м		
объем загрузки		
3 Насыпная плотность, кг/м		
полипропилен черный		
полипропилен темно-красный		
полистирол белый		
4 Масса загрузки исходных компо-		
нентов:		
полипропилен черный		
полипропилен темно-красный		
полистирол белый		
5 Скорость вращения барабана		
6 Время отбора проб, мин	15, 30	, 45, 60

3.6 Экспериментальные данные

Время про- цесса	<i>C_i</i> , %	\overline{C} ,%	$C_i - \overline{C}$	$(C_i - \overline{C})^2$	$\sum_{i=1}^{n} (C_i - \overline{C})^2$	<i>V_C</i> , %
1	2	3	4	5	6	7

Обработка опытных данных

- 1 Рассчитать концентрацию ключевого компонента в отобранных пробах.
- 2 Рассчитать среднее квадратическое отклонение содержания ключевого компонента в пробах смеси и коэффициент вариации по формулам:

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (C_i - \overline{C})^2}, \quad V_C = \frac{100}{\overline{C}} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (C_i - \overline{C})^2}, \%$$

где C_i – концентрация ключевого компонента в i-й пробе смеси; C – среднее арифметическое значение концентрации компонента во всех n пробах.

- 3 Результаты экспериментальных исследований занести в таблицу.
- 4 Построить график кинетической кривой процесса смешивания $V_C = f(t)$ и проанализировать полученные результаты.

Контрольные вопросы

- 1 Методы оценки качества смеси.
- 2 Конструктивные особенности установки барабанного смесителя.
- 3 Выбор оптимального числа оборотов барабана. Режимы работы барабанного смесителя.
- 4 Коэффициент заполнения барабана продуктом.
- 5 Достоинства и недостатки барабанных смесителей.
- 6 Сравнение эффективности работы барабанного и статического смесителя.
- 7 Варианты приводных устройств барабанного смесителя.
- 8 Методика обработки проб на содержание ключевого компонента.

Лабораторная работа № 5

ГРАВИТАЦИОННЫЙ СМЕСИТЕЛЬ

Цель работы: 1 Изучение устройства и принципа действия гравитационного смесителя.

2 Исследование процесса смешения в гравитационном смесителе.

Теоретические положения

Статические смесители, или гравитационные, применяются в следующих процессах: перемешивание, гомогенизация, интенсификация теплообмена, диспергирование, массообменные процессы, экстрагирование, сорбирование.

Существует большое количество конструкций статических смесителей (с винтовыми элементами, промежуточными камерами, пластинчатыми и гофрированными элементами и т.п.).

Для каждого типа статических смесителей характерна своя картина смешения, однако, общим является то, что увеличение поверхности раздела между компонентами смеси достигается двумя способами: за счет сдвигового течения и за счет расщепления и переориентации потоков вещества.

Задача многократного разделения и рекомбинации смешиваемых компонентов статическим способом в некоторых конструкциях решается установкой набора пластин под определенными углами к потокам. Плоские элементы, последовательно расположенные вдоль корпуса, обеспечивают разделение сыпучих материалов на отдельные потоки и их направленное движение по сложным каналам, где они многократно воссоединяются и вновь дробятся до высокой степени гомогенизации.

Широкое распространение получили смесители, в которых элементы набираются в виде своеобразной пространственной решетки из взаимно перпендикулярных пластин, ориентированных вдоль цилиндрического корпуса по ходу потока. Стремление максимально увеличить межфазную поверхность смешиваемых материалов, не увеличивая размеров смесителя, привело к созданию еще одного типа статических смесителей – сепараторов, в которых элементы представляют собой пакеты гофрированных металлических или пластмассовых пластин, соприкасающиеся поверхности которых образуют пересекающиеся каналы. При работе статических смесителей других типов разделение и воссоединение потоков совершается при пропускании материалов через образованные элементами каналы. Особенность работы смесителей с гофрированными элементами состоит в том, что отдельные потоки непосредственно контактируют в пересекающихся направлениях друг с другом, совершая при этом активный массообмен.

Процесс смешения регулируется подбором числа гофрированных смесительных пластин. Ввиду того, что число пересечений каналов увеличивается пропорционально площади поперечного сечения смесителя и, следовательно, количество пересечений одинаково на единицу массы потока, степень смешения не зависит от диаметра корпуса. Существуют различные конфигурации гофрированных смесительных пластин, которые выполняются в зависимости от типа смесителя.

Статические смесители – аппараты с неподвижными узлами, в которых при перемешивании материалов используется энергия потока. По сравнению с динамическими, статические смесители имеют следующие преимущества: пригодность для материалов с широким диапазоном вязкости, малый интервал времени пребывания продукта, легкая приспособляемость к имеющейся трубной системе; дополнительная площадь часто не требуется (смесители часто устанавливаются в линию), уход и износ незначительны; капитальные и эксплуатационные затраты низкие, температуростойкость, бесшумная работа.

Оценка качества смеси

Для оценки качества смеси, получаемой в смесительных аппаратах периодического действия, используют, в основном, два метода отбора проб:

- 1) метод квартования,
- 2) метод точечного отбора.

Метод квартования включает в себя следующие операции:

- 1) выгрузка приготовленной композиции из смесителя на противень;
- 2) распределение смеси ровным слоем небольшой высоты;
- 3) деление всей площади исследуемой массы на квадраты;
- 4) отбор проб и их анализ.

Недостатками метода являются невозможность выявления мертвых зон в смесителе, большая трудоемкость, нарушение действительной картины распределения вещества в объеме смесителя при выгрузке материала.

Описание установки гравитационного смесителя

В прямоточном гравитационном смесителе компоненты смешиваются в результате движения сыпучего материала под действием сил тяжести. Известны следующие конструкции этих смесителей: лотковый, бункерный, ударно-распылительный, виброгравитационный.

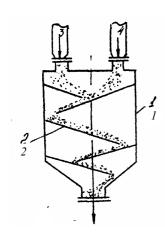


Рис. 3.8 Схема установки

Гравитационный лотковый смеситель (рис. 3.8) представляет собой колонку *I* прямоугольного сечения, внутри которой установлены друг над другом наклоненные лотки *2*. Смешиваемые компоненты подаются в смеситель из бункеров при открытой заслонке через штуцеры *3* и *4*. Струя материала после встречи с поверхностью лотка перестраивается: по лотку материал скользит тонким слоем. Угол наклона лотка к горизонту должен быть больше угла трения сыпучего материала о поверхность лотка.

Отдельные компоненты смешиваются в момент встречи слоев, стекающих с первых двух лотков, при неравномерном их движении по следующим лоткам и пересыпании с лотка на лоток.

Порядок выполнения работы

- 1 Заполнить таблицу исходных данных.
- 2 Подготовить навески исходных компонентов.
- 3 Заполнить бункеры статического смесителя исходными компо-

нентами при закрытой заслонке.

- 4 Открыть заслонку полностью, наблюдая при этом процесс перемешивания компонентов в полочном статическом смесителе.
 - 5 Определить время цикла смешения.
- 6 Произвести отбор проб методом квартования и проанализировать пробы на содержание компонентов.
 - 7 Провести не менее четырех циклов смешения.
 - 8 Результаты экспериментальных исследований занести в таблицу.

Результаты экспериментальных исследований

3.7 Исходные данные

Наименование параметра	Значение параметра			
паименование параметра	I группа	II группа		
1 Смешиваемые компоненты:				
полипропилен черный	30 %	40 %		
полистирол белый	70 %	40 %		
2 Вес навесок:				
полипропилен				
полистирол				
3 Число циклов				
6 Время циклов				

3.8 Экспериментальные данные

Время про- цесса	C_i , %	\overline{C} ,%	$C_i - \overline{C}$	$(C_i - \overline{C})^2$	$\sum_{i=1}^{n} (C_i - \overline{C})^2$	V _C , %
1	2	3	4	5	6	7

Обработка опытных данных

- 1 Рассчитать концентрацию ключевого компонента в отобранных пробах.
- 2 Рассчитать среднее квадратическое отклонение содержания ключевого компонента в пробах смеси и коэффициент вариации по формулам

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (C_i - \overline{C})^2}, \quad V_C = \frac{100}{\overline{C}} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (C_i - \overline{C})^2}, \%$$

где C_i – концентрация ключевого компонента в i-й пробе смеси; C – среднее арифметическое значение концентрации ключевого компонента во всех n-пробах смеси.

3 Результаты экспериментальных исследований занести в таблицу.

4 Построить график кинетической кривой процесса смешивания $V_C = F(\cdot)$ и проанализировать полученные результаты.

Контрольные вопросы

- 1 Конструктивные особенности гравитационного смесителя.
- 2 Как выбирается угол наклона полок?
- 3 Методы отбора проб.
- 4 Существующие модели процесса смешения.
- 5 Критерии оценки качества смеси.
- 6 Характеристика кинетики процесса смешения в смесителях периодического действия.
- 7 Достоинства и недостатки гравитационных смесителей.
- 8 Предложите схему установки для непрерывного смешения двухкомпонентной смеси с использованием гравитационного смесителя.

Список литературы

- 1 Конструирование и расчет машин химических производств / Ю.М. Гусев и др. М.: Машиностроение, 1986. 40 с.
 - 2 Макаров Ю.И. Аппараты для смешения сыпучих матнриалов. М.: Машиностроение, 1973. 216 с.
 - 3 Богданов В.В., Клоцунт Б.А. Эффективные малообъемные смесители. Ленинград: Химия, 1989.
 - 4 Капитонов Е.Н. Бункеры и затворы: Учебное пособие. Тамбов: ТГТУ, 1993. 37 с.
- 5 РД РТМ 26-01-129-80. Машины для переработки сыпучих материалов. Метод выбора оптимального типа питателей, смесителей, измельчителей. Свердловск: НИИХИММАШ, 1980. 96 с.
- 6 Деревякин Н.А., Капитонов Е.Н. Современное оборудование для подачи сыпучих материалов: Обзорная информация. М.: ЦИНТИХимнефтемаш, 1988. 32 с.
- 7 Машины химических производств. Атлас конструкций / Под ред. Э.Э. Кольман-Иванова. Машиностроение, 1981.
- 8 Определение гранулометрического состава сыпучего материала: Лаб. раб. / Сост.: В.П. Таров, А.Н. Плотников, ТИХМ, Тамбов, 1987.
- 9 Першин В.Ф. Машины барабанного типа: основы теории, расчета и конструирования. Воронеж: Изд-во ВГУ, 1990. 168 с.
- 10 Конструирование и расчет машин химических производств / Ю.И. Гусев, И.Н. Карасев, Э.Э Кольман-Иванов и др. М.: Машиностроение, 1985.