МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Невинномысский технологический институт (филиал) СКФУ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению практических занятий по дисциплине «Технологические процессы аэрозольного производства» для студентов очной/заочной формы обучения направления подготовки 18.03.01 Химическая технология

Методические указания разработаны в соответствии с требованиями ФГОС ВО и рабочей программы дисциплины «Технологические процессы аэрозольного производства». Указания предназначены для студентов очной формы обучения, направления подготовки 18.03.01 Химическая технология

Е.С. Составители Антипина, канд.техн.наук, доцент. А.И. Свидченко, Отв. редактор канд.техн.наук, доцент.

Введение

Дисциплина «Технологические процессы аэрозольного производства» включает в себя изучение процессов аэрозольного производства на всех стадиях.

По результатам изучения дисциплины студент должен освоить следующие компетенции: ПК-1 способностью и готовностью осуществлять технологический процесс в соответствии с регламентом и использовать технические средства для измерения основных параметров технологического процесса, свойств сырья и продукции;

Знание: технологический процесс в соответствии с регламентом

Умение: осуществлять технологический процесс в соответствии с регламентом и использовать технические средства для измерения основных параметров технологического процесса, свойств сырья и продукции;

Владеть: способностью и готовностью осуществлять технологический процесс в соответствии с регламентом и использовать технические средства для измерения основных параметров технологического процесса, свойств сырья и продукции; ПК-4 способностью принимать конкретные технические решения при разработке технологических процессов, выбирать технические средства и технологии с учетом экологических последствий их применения

Знание: конкретных технических решений при разработке технологических процессов

Умение: принимать конкретные технические решения при разработке технологических процессов, выбирать технические средства и технологии с учетом экологических последствий их применения;

Владеть: способностью принимать конкретные технические решения при разработке технологических процессов, выбирать технические средства и технологии с учетом экологических последствий их применения;

Практическая работа №1 Технологический процесс изготовления баллона

Цель занятия: Рассмотреть одну из основные структуры технологического процесса аэрозольной производства.

Теоретическая часть

Аэрозольную посуду, предназначенную для наполнения ее продуктом и пропеллентом, находящимися под давлением, принято называть баллонами. Они должны быть легкими, изящными, но вместе с тем обладать достаточной прочностью, чтобы выдержать давление 0,8-1,0 МПа без видимой деформации, а сопротивление разрыву - не менее 1,3—1,5 МПа. Баллоны изготавливают из различных материалов (металла, стекла, пластмассы, комбинированные). Они имеют самую разнообразную конструкцию и форму. Металлические баллоны. Первые аэрозольные упаковки были выполнены из алюминия. В них клапан был впаян в выпуклое верхнее дно, изготавливаемое из белой жести, а нижнее дно закатывалось в цилиндрический корпус. Затем корпуса стали выполнять из белой жести с паяными и сварными боковыми швами. В настоящее время алюминий и жесть являются наиболее распространенным материалом для изготовления аэрозольных упаковок.

Металлические аэрозольные баллоны могут состоять из трех, двух и одной деталей (моноблок). Моноблоки из алюминия (цельнотянутые баллоны) выполняют из алюминиевых заготовок методом выдавливания с последующим оформлением горлышка и вставкой

Автоматическая линия изготовления аэрозольных баллонов из алюминия показана на рис. 1. Обработанные и подготовленные в соответствии с регламентом алюминиевые заготовки (рондели) подаются в бункер горизонтального кблено-рычажного пресса 1 для ударного выдавливания цилиндрического корпуса баллона. Отштампованный баллон (полуфабрикат) поступает на обрезной станок 2, а после обрезки — на конусообразующий автомат 3 для образования конусной части с горловиной и очком под клапан. В дальнейшем на токарно-отделочном станке 4 баллон обрабатывается. Это осуществляется на высокопроизводительном многошпиндельном автомате. Для последующего нанесения

внутреннего и внешнего покрытия отформованный баллон отмывают в слабой кислоте от остатков смазки, промывают водой и высушивают. Это осуществляется на моечносушильной машине 5. Высушенные баллоны поступают на автомат для внутренней лакировки 6, где они автоматически покрываются внутри двойным слоем защитного лака. В сушильной печи 7 защитный лак на внутренних стенках баллонов высыхает и полимеризуется. Далее баллон поступает на автомат 8 для нанесения эмали на наружную ее поверхность и затем в печь 9 для просушки. На баллон с высохшей эмалью на офсетном автомате 10 наносится офсетным способом четырехцветная печать, которая высушивается в печи 11. Изготовленный алюминиевый баллон в дальнейшем подается на линию наполнения.

Основным недостатком металлических баллонов является подверженность их коррозии, в результате которой возникает опасность разрушения баллона и клапана и

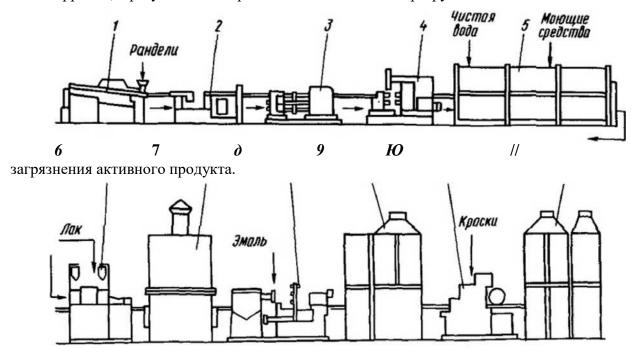


Рис. 1. Автоматическая линия изготовления аэрозольных баллонов

Основная агрессивная среда, вызывающая коррозию сосудов, это продукты гидролиза пропеллентов. Коррозия увеличивается с возрастанием содержания влаги в продуктах, особенно при повышенных температурах и давлении. Для предохранения металлических частей упаковки от коррозии на поверхность металла наносят защитный

слой. В качестве защитных лаков применяются пищевые, бакелитовый, эпоксидные и другие в зависимости от пропеллента и продукта. Алюминиевые баллоны можно покрывать любым лаком независимо от температуры его сушки, а жестяные только теми лаками, температура сушки которых не превышает 150—170 °C. При более высокой температуре сушки баллон может потерять герметичность в местах пайки.

Так как в сосудах после наполнения их продуктом, герметизации и подачи пропеллента давление при нормальной температуре (20 °C) равно от 0,25 до 0,38 МПа, то с целью предотвращения взрыва, потерь продукта и пропеллента все сосуды перед заполнением повторно проверяют на герметичность и прочность. Проверка герметичности металлических сосудов проводится обычным путем в водяной ванне, а на прочность - созданием в сосудах давления до 1,5 МПа.

Практическая работа №2

СЫРЬЁ ДЛЯ ПРОИЗВОДСТВА АЛЮМИНИЕВОГО БАЛЛОНА.

Цель занятия: Познакомится с технологией производства алюминевых ронделей Алюминиевые рондели - заготовки для производства тубы или аэрозольного баллона.

Заготовка для производства баллона для аэрозолей представляет собой диск толщиной от 5 до 16 мм. Наиболее распространенными диаметрами алюминиевых рондолей являются 34.8, 44.8 и 50 мм. Однако преимущественно заготовки производятся под конкретного заказчика.

Для производства ронделей используют алюминий марок A6, A7, A7E. В зависимости от марки алюминия твердость литых ронделей примерно 18,5 HB. (от 16,5 до 23 HB) Технология производства алюминиевых ронделей.

Как правило, алюминиевые заготовки производятся путем выпресовки ронделей необходимого диаметра и то<u>лщи</u>ны из алюминиевого листа. Недостатком этого метода можно считать очень высокий процент отходов сырья: до 50%.

Так же, сейчас появились более современные технологии отливки ронделей, когда жидкий алюминий отливается в рондели необходимой конфигурации, без производства промежуточного металлического листа. При производстве алюминиевых ронделей методом литья количество отходов снижается до 10%. Современные литейные установки позволяют избежать попадания примесей и окислению расплавленного алюминия в процессе плавления материала и отливки форм. Такие заготовки приводят к практически полному исключению брака при производстве аэрозольных баллонов.

Производство баллонов и туб из алюминиевых ронделей

Алюминиевые аэрозольные баллоны и тубы производятся путем штамповки подходящего диаметра ронделя под высоким давлением (~56000 кг/см2). Под давлением твердый

алюминий размягчается и принимает необходимую форму в прессе. Затем получившуюся заготовку обрезают до необходимой длины, обвальцовывают, формируя горловину для баллона и горлышко с резьбой для тубы. Из спрессовки алюминий становится жестким, чтобы придать большую пластичность, заготовку краткосрочно обжигают при высокой температуре (примерно 460°С) и после остывания покрывают специальными лаками, для предотвращения химического взаимодействия с содержимым. После наполнения и механического запечатывания баллоны и тубы декорируют снаружи.

Контроль качества

После очистки ронделей от остатков алюминиевого литья, контроль качества производимой продукции, осуществляется визуально. Контролируется толщина и диаметр каждого рондоля. Периодически (раз в несколько часов) делается выборочная проверка твердости ронделей и геометрическое соответствие.

Упаковка ронделей

Производимая продукция расфасовывается по 19-20 кг. Между заготовками делаются прокладки, затем упаковывается в картонные коробки с двойными п/э вкладышами. Коробки запечатываются клейкой лентой.

Практическая работа №3

ПРОИЗВОДСТВО АЛЮМИНИЕВОГО БАЛЛОНА.

Цель занятия.: Процесс вырубки рондоли на прессу.

Процесс вырубки и пробивки происходит следующим образом. В начале проникновения пуансона в толщу материала образуется изгиб и вблизи режущих кромок создаются большие напряжения, под действием которых материал начинает течь и сминаться. При дальнейшем поступлении пуансона напряжения увеличиваются и достигают величины, равной сопротивлению материала срезу. После этого вблизи режущих кромок пуансона и матрицы образуются трещины.

В момент смыкания трещин, идущих от пуансона и матрицы, осуществляется полное отделение вырезаемого изделия от заготовки и проталкивание его через матрицу с преодолением силы трения. Величина предварительного внедрения пуансона в толщу материала до момента появления трещин (скалывания) колеблется в пределах от 20 до 70% толщины материала. Угол скалывания зависит от твердости штампуемого материала и величины зазора между пуансоном и матрицей. Рекомендуемые двусторонние зазоры между пуансоном и матрицей при вырезке, пробивке, обрезке (табл. 1) подбираются в зависимости от толщины и свойств материала.

Усилие вырубки и пробивки в штампах зависит от величины зазоров, режущих кромок матрицы и пуансона, скорости деформации и смазки материала. Для облегчения условий

резания соблюдают оптимальные зазоры для каждого материала и толщины, содержат острыми режущие кромки пуансона и матрицы. Лучшими режущими кромками матрицы и пуансона считаются варианты, показанные на рис. 6, а, в, где отверстие матрицы выполнено в виде пояска определенной высоты, переходящего в конус. Преимущество этого типа состоит в том, что такие матрицы имеют прочную режущую кромку и при заточке не теряют своего рабочего размера. Но такой профиль увеличивает трение вырезанного изделия о стенки отверстия матрицы.

В другом варианте (рис. 6, в, г) отверстие в матрице изготавливают конусным в зависимости от то<u>лщи</u>ны материала. Односторонний угол берется от 10' до 1°. При этом варианте намного уменьшается трение изделия при его проталкивании пуансоном во время вырезки.

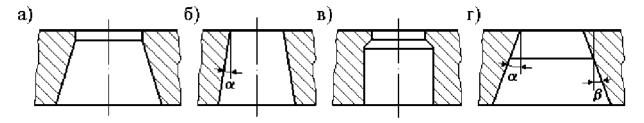


Рис 2. Варианты профилей матриц

с цилиндрическим пояском (a), конусом от рабочей плоскости (б), двумя цилиндрическими участками (в), двумя конусами (г)

Для проталкивания изделия через отверстие матрицы и съема заготовки с пуансона требуются определенные усилия в зависимости от марки материала, его толщины. Кроме того, при этом учитываются величина зазора между пуансоном и матрицей и степень смазки материалов. Наличие смазки снижает коэффициент трения. Усилие проталкивания и усилие съема учитываются при общем расчете усилия вырубки или пробивки и в формулу вводятся в виде коэффициента запаса К. В штампах для пробивки отверстий усилие вырубки может быть уменьшено за счет ступенчатого расположения пуансонов по высоте.

Основная литература

- 1. Технологические процессы машиностроительного и ремонтного производства : учеб. пособие / С. И. Богодухов, А. Г. Схиртладзе, А. Д. Проскурин, А. С. Килов, Б. М. Шейнин ; под ред. С. И. Богодухова. Старый Оскол : ТНТ, 2015. 464 с. : ил. Гриф: Рек. МГТУ. ISBN 978-5-94178-468-4
- 2. Яру<u>ши</u>н, С. Г. Технологические процессы в машиностроении : учебник для бакалавров / С.Г. Яру<u>ши</u>н. М. : Юрайт, 2014. 564 с. (Бакалавр. Базовый курс). На учебнике гриф: Доп.МО. Библиогр.: с. 563-564. ISBN 978-5-9916-3190-7 Дополнительная литература
- 1. Основы проектирования химических производств:учебник / В. И. Косинцев [идр.]; Под ред. А. И.Михайличенко. М.:Академкнига, 2008.
- 2. Схиртладзе, А. Г. Технологические процессы в машиностроении : учебник / А. Г. Схиртладзе, С. Г. Ярушин. 4-е изд., перераб. и доп. Старый Оскол : ТНТ, 2015. 524 с. : ил. Гриф: Доп. МО. Библиогр.: с. 520-523. ISBN 978-5-94178-122
- 3. Пискунов, В. Н. Динамика аэрозолей : монография / В.Н. Пискунов. Москва : Физматлит, 2010. 294 с. : ил., схем., табл. http://biblioclub.ru/. Библиогр. в кн. ISBN 978-5-9221-1286-4

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Невинномысский технологический институт (филиал) СКФУ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению практических занятий по дисциплине « Технологические процессы аэрозольного производства» для студентов очной/заочной формы обучения направления подготовки

15.03.2 Технологические машины и оборудование

Методические указания разработаны в соответствии с требованиями ФГОС ВО и рабочей программы дисциплины « Технологические процессы аэрозольного производства». Указания предназначены для студентов очной формы обучения, направления подготовки 15.03.02 Технологические машины и оборудование

Составители

Е.С. Антипина, канд.техн.наук, доцент. А.И. Свидченко,

Отв. редактор

канд.техн.наук, доцент.

Содержание

Вве	дение	4	
	1.		
	Практическая работа №1 Технологический процесс изготовления баллона		4
	2.		
	Практическая работа №2 Сырьё для производства алюминиевого баллона		8
	3. Практическая работа №3 Производство алюминиевого баллона. Процесс вы	рубкі	1

рондоли на прессу......9

Введение

Дисциплина «Технологические процессы аэрозольного производства» включает в себя изучение процессов аэрозольного производства на всех стадиях.

По результатам изучения дисциплины студент должен освоить следующие компетенции: ПК-12 способностью участвовать в работах по доводке и освоению технологических процессов в ходе подготовки производства новой продукции, проверять качество монтажа и наладки при

испытаниях и сдаче в эксплуатацию новых образцов изделий, узлов и деталей выпускаемой продукции;

Знать: работу по доводке и освоению технологических процессов в ходе подготовки производства новой продукции, проверять качество монтажа и наладки при испытаниях и сдаче в эксплуатацию новых образцов изделий, узлов и деталей выпускаемой продукции Уметь: участвовать в работах по доводке и освоению технологических процессов в ходе подготовки производства новой продукции, проверять качество монтажа и наладки при испытаниях и сдаче в эксплуатацию новых образцов изделий, узлов и деталей выпускаемой продукции

Владеть: способностью участвовать в работах по доводке и освоению технологических процессов в ходе подготовки производства новой продукции, проверять качество монтажа и наладки при испытаниях и сдаче в эксплуатацию новых образцов изделий, узлов и деталей выпускаемой продукции

ПК-15 умением выбирать основные и вспомогательные материалы, способы реализации технологических процессов, применять прогрессивные методы эксплуатации технологического оборудования при изготовлении технологических машин Знать: основные и вспомогательные материалы, способы реализации технологических процессов, прогрессивные методы эксплуатации технологического оборудования при изготовлении технологических машин

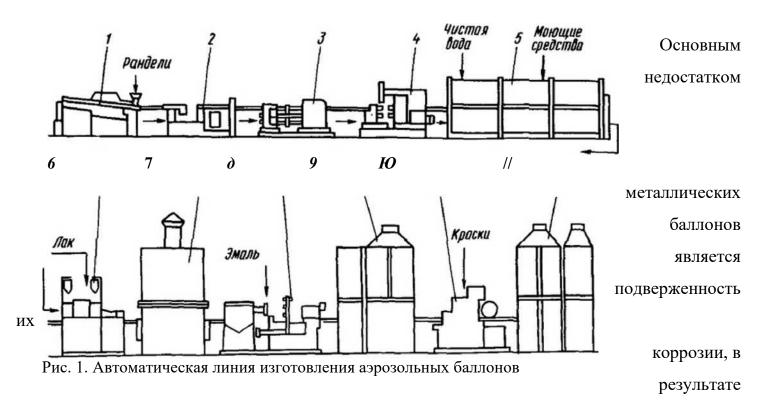
Уметь: выбирать и вспомогательные материалы, способы реализации основные технологических процессов, применять прогрессивные эксплуатации методы технологического оборудования при изготовлении технологических машин Владеть: умением выбирать основные и вспомогательные материалы, способы реализации технологических процессов, применять прогрессивные методы эксплуатации

технологического оборудования при изготовлении технологических машин

Практическая работа №1 Технологический

процесс изготовления баллона **Цель занятия:** Рассмотреть одну из основные структуры технологического процесса аэрозольной производства.

Теоретическая часть


Аэрозольную посуду, предназначенную для наполнения ее продуктом и пропеллентом,

находящимися под давлением, принято называть баллонами. Они должны быть легкими, изящными, но вместе с тем обладать достаточной прочностью, чтобы выдержать давление 0,8-1,0 МПа без видимой деформации, а сопротивление разрыву - не менее 1,3—1,5 МПа. Баллоны изготавливают из различных материалов (металла, стекла, пластмассы, комбинированные). Они имеют самую разнообразную конструкцию и форму. Металлические баллоны. Первые аэрозольные упаковки были выполнены из алюминия. В них клапан был впаян в выпуклое верхнее дно, изготавливаемое из белой жести, а нижнее дно закатывалось в цилиндрический корпус. Затем корпуса стали выполнять из белой жести с паяными и сварными боковыми швами. В настоящее время алюминий и жесть являются наиболее распространенным материалом для изготовления аэрозольных упаковок.

Металлические аэрозольные баллоны могут состоять из трех, двух и одной деталей (моноблок). Моноблоки из алюминия (цельнотянутые баллоны) выполняют из алюминиевых заготовок методом выдавливания с последующим оформлением горлышка и вставкой донышка.

Автоматическая линия изготовления аэрозольных баллонов из алюминия показана на рис. 1. Обработанные и подготовленные в соответствии с регламентом алюминиевые заготовки (рондели) подаются в бункер горизонтального кблено-рычажного пресса 1 для ударного выдавливания цилиндрического корпуса баллона. Отштампованный баллон (полуфабрикат) поступает на обрезной станок 2, а после обрезки — на конусообразующий автомат 3 для образования конусной части с горловиной и очком под клапан. В дальнейшем на токарноотделочном станке 4 баллон обрабатывается. Это осуществляется на высокопроизводительном многошпиндельном автомате. Для последующего нанесения

внутреннего и внешнего покрытия отформованный баллон отмывают в слабой кислоте от остатков смазки, промывают водой и высушивают. Это осуществляется на моечносушильной машине 5. Высушенные баллоны поступают на автомат для внутренней лакировки 6, где они автоматически покрываются внутри двойным слоем защитного лака. В сушильной печи 7 защитный лак на внутренних стенках баллонов высыхает и полимеризуется. Далее баллон поступает на автомат 8 для нанесения эмали на наружную ее поверхность и затем в печь 9 для просушки. На баллон с высохшей эмалью на офсетном автомате 10 наносится офсетным способом четырехцветная печать, которая высушивается в печи 11. Изготовленный алюминиевый баллон в дальнейшем подается на линию наполнения.

которой возникает опасность разрушения баллона и клапана и загрязнения активного продукта.

Основная агрессивная среда, вызывающая коррозию сосудов, это продукты гидролиза пропеллентов. Коррозия увеличивается с возрастанием содержания влаги в продуктах, особенно при повышенных температурах и давлении. Для предохранения металлических частей упаковки от коррозии на поверхность металла наносят защитный

слой. В качестве защитных лаков применяются пищевые, бакелитовый, эпоксидные и другие в зависимости от пропеллента и продукта. Алюминиевые баллоны можно покрывать любым лаком независимо от температуры его сушки, а жестяные только теми лаками, температура сушки которых не превышает 150—170 °C. При более высокой температуре сушки баллон может потерять герметичность в местах пайки.

Так как в сосудах после наполнения их продуктом, герметизации и подачи пропеллента давление при нормальной температуре (20 °C) равно от 0,25 до 0,38 МПа, то с целью предотвращения взрыва, потерь продукта и пропеллента все сосуды перед заполнением повторно проверяют на герметичность и прочность. Проверка герметичности металлических сосудов проводится обычным путем в водяной ванне, а на прочность - созданием в сосудах давления до 1,5 МПа.

Практическая работа №2

СЫРЬЁ ДЛЯ ПРОИЗВОДСТВА АЛЮМИНИЕВОГО БАЛЛОНА.

Цель занятия: Познакомится с технологией производства алюминевых ронделей Алюминиевые рондели - заготовки для производства тубы или аэрозольного баллона.

Заготовка для производства баллона для аэрозолей представляет собой диск толщиной от 5 до 16 мм. Наиболее распространенными диаметрами алюминиевых рондолей являются 34.8, 44.8 и 50 мм. Однако преимущественно заготовки производятся под конкретного заказчика.

Для производства ронделей используют алюминий марок A6, A7, A7E. В зависимости от марки алюминия твердость литых ронделей примерно 18,5 HB. (от 16,5 до 23 HB)

Технология производства алюминиевых ронделей.

Как правило, алюминиевые заготовки производятся путем выпресовки ронделей необходимого диаметра и то<u>лщи</u>ны из алюминиевого листа. Недостатком этого метода можно считать очень высокий процент отходов сырья: до 50%.

Так же, сейчас появились более современные технологии отливки ронделей, когда жидкий алюминий отливается в рондели необходимой конфигурации, без производства промежуточного металлического листа. При производстве алюминиевых ронделей методом литья количество отходов снижается до 10%. Современные литейные установки позволяют избежать попадания примесей и окислению расплавленного алюминия в процессе плавления материала и отливки форм. Такие заготовки приводят к практически полному исключению

брака при производстве аэрозольных баллонов.

Производство баллонов и туб из алюминиевых ронделей

Алюминиевые аэрозольные баллоны и тубы производятся путем штамповки подходящего диаметра ронделя под высоким давлением (~56000 кг/см2). Под давлением твердый алюминий размягчается и принимает необходимую форму в прессе. Затем получившуюся заготовку обрезают до необходимой длины, обвальцовывают, формируя горловину для баллона и горлышко с резьбой для тубы. Из спрессовки алюминий становится жестким, чтобы придать большую пластичность, заготовку краткосрочно обжигают при высокой температуре (примерно 460°С) и после остывания покрывают специальными лаками, для предотвращения химического взаимодействия с содержимым. После наполнения и механического запечатывания баллоны и тубы декорируют снаружи.

Контроль качества

После очистки ронделей от остатков алюминиевого литья, контроль качества производимой продукции, осуществляется визуально. Контролируется толщина и диаметр каждого рондоля. Периодически (раз в несколько часов) делается выборочная проверка твердости ронделей и геометрическое соответствие.

Упаковка ронделей

Производимая продукция расфасовывается по 19-20 кг. Между заготовками делаются прокладки, затем упаковывается в картонные коробки с двойными п/э вкладышами. Коробки запечатываются клейкой лентой.

Практическая работа №3

ПРОИЗВОДСТВО АЛЮМИНИЕВОГО БАЛЛОНА.

Цель занятия:: Процесс вырубки рондоли на прессу.

Процесс вырубки и пробивки происходит следующим образом. В начале проникновения пуансона в толщу материала образуется изгиб и вблизи режущих кромок создаются большие напряжения, под действием которых материал начинает течь и сминаться. При дальнейшем поступлении пуансона напряжения увеличиваются и достигают величины, равной сопротивлению материала срезу. После этого вблизи режущих кромок пуансона и матрицы

образуются трещины.

В момент смыкания трещин, идущих от пуансона и матрицы, осуществляется полное отделение вырезаемого изделия от заготовки и проталкивание его через матрицу с преодолением силы трения. Величина предварительного внедрения пуансона в толщу материала до момента появления трещин (скалывания) колеблется в пределах от 20 до 70% толщины материала. Угол скалывания зависит от твердости штампуемого материала и величины зазора между пуансоном и матрицей. Рекомендуемые двусторонние зазоры между пуансоном и матрицей при вырезке, пробивке, обрезке (табл. 1) подбираются в зависимости от толщины и свойств материала.

Усилие вырубки и пробивки в штампах зависит от величины зазоров, режущих кромок матрицы и пуансона, скорости деформации и смазки материала. Для облегчения условий резания соблюдают оптимальные зазоры для каждого материала и толщины, содержат острыми режущие кромки пуансона и матрицы. Лучшими режущими кромками матрицы и пуансона считаются варианты, показанные на рис. 6, а, в, где отверстие матрицы выполнено в виде пояска определенной высоты, переходящего в конус. Преимущество этого типа состоит в том, что такие матрицы имеют прочную режущую кромку и при заточке не теряют своего рабочего размера. Но такой профиль увеличивает трение вырезанного изделия о стенки отверстия матрицы.

В другом варианте (рис. 6, в, г) отверстие в матрице изготавливают конусным в зависимости от то<u>лщи</u>ны материала. Односторонний угол берется от 10' до 1°. При этом варианте намного уменьшается трение изделия при его проталкивании пуансоном во время вырезки.

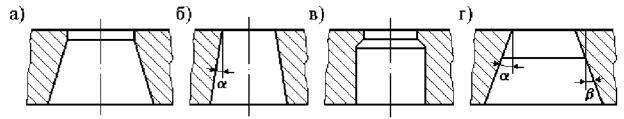


Рис 2. Варианты профилей матриц

с цилиндрическим пояском (а), конусом от рабочей плоскости (б), двумя цилиндрическими участками (в), двумя конусами (г)

Для проталкивания изделия через отверстие матрицы и съема заготовки с пуансона требуются определенные усилия в зависимости от марки материала, его толщины. Кроме того, при этом учитываются величина зазора между пуансоном и матрицей и степень смазки материалов.

Наличие смазки снижает коэффициент трения. Усилие проталкивания и усилие съема учитываются при общем расчете усилия вырубки или пробивки и в формулу вводятся в виде коэффициента запаса К. В штампах для пробивки отверстий усилие вырубки может быть уменьшено за счет ступенчатого расположения пуансонов по высоте.

Основная литература

- 1. Технологические процессы машиностроительного и ремонтного производства : учеб. пособие / С. И. Богодухов, А. Г. Схиртладзе, А. Д. Проскурин, А. С. Килов, Б. М. Шейнин ; под ред. С. И. Богодухова. Старый Оскол : ТНТ, 2015. 464 с. : ил. Гриф: Рек. МГТУ. ISBN 978-5-94178-468-4
- 2. Ярушин, С. Г. Технологические процессы в машиностроении : учебник для бакалавров / С.Г. Ярушин. М. : Юрайт, 2014. 564 с. (Бакалавр. Базовый курс). На учебнике гриф: Доп.МО. Библиогр.: с. 563-564. ISBN 978-5-9916-3190-7 Дополнительная литература
- 1. Основы проектирования химических производств:учебник / В. И. Косинцев [идр.]; Под ред. А. И.Михайличенко. М.:Академкнига, 2008.
- 2. Схиртладзе, А. Г. Технологические процессы в машиностроении : учебник / А. Г. Схиртладзе, С. Г. Ярушин. 4-е изд., перераб. и доп. Старый Оскол : ТНТ, 2015. 524 с. : ил. Гриф: Доп. МО. Библиогр.: с. 520-523. ISBN 978-5-94178-122
- 3. Пискунов, В. Н. Динамика аэрозолей: монография / В.Н. Пискунов. Москва: Физматлит, 2010. 294 с.: ил., схем., табл. http://biblioclub.ru/. Библиогр. в кн. ISBN 978-5-9221-1286-4

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению практических и лабораторных работ по дисциплине « Технологические процессы аэрозольного производства» для студентов очной/заочной формы обучения направления подготовки

15.03.2 Технологические машины и оборудование

Составители

Е.С. Антипина, канд.техн.наук, доцент. А.И. Свидченко, канд.техн.наук,

Отв. редактор

доцент.

 Редактор Л.Д. Бородастова

 Подписано в печать 10.04.2016 г.
 Формат 60 х 84 1/16

 Уч.-изд. л. 0,4 п.л.
 Усл. печ. л. 0,5 п.л.Тираж
 50 экз.

 Северо-Кавказский федеральный университет

 Невинномысский технологический институт (филиал) 357108, г.

Невинномысск, ул. Гагарина, 1

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Невинномысский технологический институт (филиал) СКФУ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению практических занятий по дисциплине « Технологические процессы аэрозольного производства» для студентов очной/заочной формы обучения направления полготовки

15.03.2 Технологические машины и оборудование

Невинномысск 2019

Методические указания разработаны в соответствии с требованиями ФГОС ВО и рабочей программы дисциплины « Технологические процессы аэрозольного производства». Указания предназначены для студентов очной формы обучения, направления подготовки 15.03.02 Технологические машины и оборудование

Составители

Отв. редактор

Е.С. Антипина, канд.техн.наук, доцент. А.И. Свидченко, канд.техн.наук, доцент.

Содержание

Вве	дение	4	
	1.		
	Практическая работа №1 Технологический процесс изготовления баллона		5
	2.		
	Практическая работа №2 Сырьё для производства алюминиевого баллона		8

3.	. Практическая работа №3 Производство алюминие	вого баллона.	Процесс в	ырубки
	рондоли на прессу9			

Введение

Дисциплина «Технологические процессы аэрозольного производства» включает в себя изучение процессов аэрозольного производства на всех стадиях.

По результатам изучения дисциплины студент должен освоить следующие компетенции: ПК-12

способностью участвовать в работах по доводке и освоению технологических процессов в ходе подготовки производства новой продукции, проверять качество монтажа и наладки при испытаниях и сдаче в эксплуатацию новых образцов изделий, узлов и деталей выпускаемой продукции;

Знать: работу по доводке и освоению технологических процессов в ходе подготовки производства новой продукции, проверять качество монтажа и наладки при испытаниях и сдаче в эксплуатацию новых образцов изделий, узлов и деталей выпускаемой продукции Уметь: участвовать в работах по доводке и освоению технологических процессов в ходе подготовки производства новой продукции, проверять качество монтажа и наладки при испытаниях и сдаче в эксплуатацию новых образцов изделий, узлов и деталей выпускаемой продукции

Владеть: способностью участвовать в работах по доводке и освоению технологических процессов в ходе подготовки производства новой продукции, проверять качество монтажа и наладки при испытаниях и сдаче в эксплуатацию новых образцов изделий, узлов и деталей выпускаемой продукции

ПК-15 умением выбирать основные и вспомогательные материалы, способы реализации технологических процессов, применять прогрессивные методы эксплуатации технологического оборудования при изготовлении технологических машин Знать: основные и вспомогательные материалы, способы реализации технологических процессов, прогрессивные методы эксплуатации технологического оборудования при изготовлении технологических машин

Уметь: выбирать основные и вспомогательные материалы, способы реализации технологических процессов, применять прогрессивные методы эксплуатации технологического оборудования при изготовлении технологических машин Владеть: умением выбирать основные и вспомогательные материалы, способы реализации технологических процессов, применять прогрессивные эксплуатации методы

технологического оборудования при изготовлении технологических машин

Практическая работа №1 Технологический

процесс изготовления баллона **Цель занятия:** Рассмотреть одну из основные структуры технологического процесса аэрозольной производства.

Теоретическая часть

Аэрозольную посуду, предназначенную для наполнения ее продуктом и пропеллентом, находящимися под давлением, принято называть баллонами. Они должны быть легкими, изящными, но вместе с тем обладать достаточной прочностью, чтобы выдержать давление 0,8-1,0 МПа без видимой деформации, а сопротивление разрыву - не менее 1,3—1,5 МПа. Баллоны изготавливают из различных материалов (металла, стекла, пластмассы, комбинированные). Они имеют самую разнообразную конструкцию и форму. Металлические баллоны. Первые аэрозольные упаковки были выполнены из алюминия. В них клапан был впаян в выпуклое верхнее дно, изготавливаемое из белой жести, а нижнее дно закатывалось в цилиндрический корпус. Затем корпуса стали выполнять из белой жести с паяными и сварными боковыми швами. В настоящее время алюминий и жесть являются наиболее распространенным материалом для изготовления аэрозольных упаковок.

Металлические аэрозольные баллоны могут состоять из трех, двух и одной деталей (моноблок). Моноблоки из алюминия (цельнотянутые баллоны) выполняют из алюминиевых заготовок методом выдавливания с последующим оформлением горлышка и вставкой донышка.

Автоматическая линия изготовления аэрозольных баллонов из алюминия показана на рис. 1. Обработанные и подготовленные в соответствии с регламентом алюминиевые заготовки (рондели) подаются в бункер горизонтального кблено-рычажного пресса 1 для ударного выдавливания цилиндрического корпуса баллона. Отштампованный баллон (полуфабрикат) поступает на обрезной станок 2, а после обрезки — на конусообразующий автомат 3 для образования конусной части с горловиной и очком под клапан. В дальнейшем на токарноотделочном станке 4 баллон обрабатывается. Это осуществляется на высокопроизводительном многошпиндельном автомате. Для последующего нанесения

внутреннего и внешнего покрытия отформованный баллон отмывают в слабой кислоте от остатков смазки, промывают водой и высушивают. Это осуществляется на моечносушильной машине 5. Высушенные баллоны поступают на автомат для внутренней лакировки 6, где они автоматически покрываются внутри двойным слоем защитного лака. В сушильной печи 7 защитный лак на внутренних стенках баллонов высыхает и полимеризуется. Далее баллон поступает на автомат 8 для нанесения эмали на наружную ее поверхность и затем в печь 9 для просушки. На баллон с высохшей эмалью на офсетном автомате 10 наносится офсетным способом четырехцветная печать, которая высушивается в печи 11. Изготовленный алюминиевый баллон в дальнейшем подается на линию наполнения.

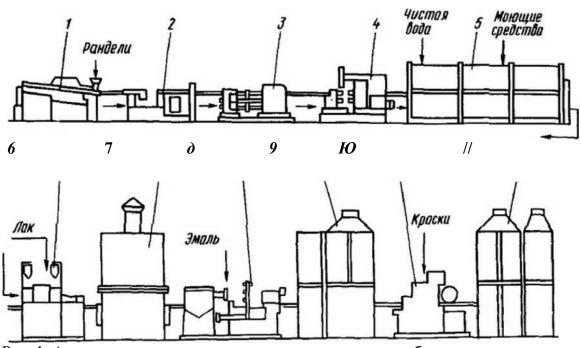


Рис. 1. Автоматическая линия изготовления аэрозольных баллонов

Основным недостатком металлических баллонов является подверженность их коррозии, в результате которой возникает опасность разрушения баллона и клапана и загрязнения активного продукта.

Основная агрессивная среда, вызывающая коррозию сосудов, это продукты гидролиза пропеллентов. Коррозия увеличивается с возрастанием содержания влаги в продуктах, особенно при повышенных температурах и давлении. Для предохранения металлических частей упаковки от коррозии на поверхность металла наносят защитный

слой. В качестве защитных лаков применяются пищевые, бакелитовый, эпоксидные и другие в зависимости от пропеллента и продукта. Алюминиевые баллоны можно покрывать любым лаком независимо от температуры его сушки, а жестяные только теми лаками, температура сушки которых не превышает 150—170 °C. При более высокой температуре сушки баллон может потерять герметичность в местах пайки.

Так как в сосудах после наполнения их продуктом, герметизации и подачи пропеллента давление при нормальной температуре (20 °C) равно от 0,25 до 0,38 МПа, то с целью предотвращения взрыва, потерь продукта и пропеллента все сосуды перед заполнением повторно проверяют на герметичность и прочность. Проверка герметичности металлических сосудов проводится обычным путем в водяной ванне, а на прочность - созданием в сосудах давления до 1,5 МПа.

Практическая работа №2

СЫРЬЁ ДЛЯ ПРОИЗВОДСТВА АЛЮМИНИЕВОГО БАЛЛОНА.

Цель занятия: Познакомится с технологией производства алюминевых ронделей Алюминиевые рондели - заготовки для производства тубы или аэрозольного баллона.

Заготовка для производства баллона для аэрозолей представляет собой диск толщиной от 5 до 16 мм. Наиболее распространенными диаметрами алюминиевых рондолей являются 34.8, 44.8 и 50 мм. Однако преимущественно заготовки производятся под конкретного заказчика.

Для производства ронделей используют алюминий марок A6, A7, A7E. В зависимости от марки алюминия твердость литых ронделей примерно 18,5 HB. (от 16,5 до 23 HB)

Технология производства алюминиевых ронделей.

Как правило, алюминиевые заготовки производятся путем выпресовки ронделей необходимого диаметра и то<u>лщи</u>ны из алюминиевого листа. Недостатком этого метода можно считать очень высокий процент отходов сырья: до 50%.

Так же, сейчас появились более современные технологии отливки ронделей, когда жидкий алюминий отливается в рондели необходимой конфигурации, без производства промежуточного металлического листа. При производстве алюминиевых ронделей методом литья количество отходов снижается до 10%. Современные литейные установки позволяют избежать попадания примесей и окислению расплавленного алюминия в процессе плавления материала и отливки форм. Такие заготовки приводят к практически полному исключению

брака при производстве аэрозольных баллонов.

Производство баллонов и туб из алюминиевых ронделей

Алюминиевые аэрозольные баллоны и тубы производятся путем штамповки подходящего диаметра ронделя под высоким давлением (~56000 кг/см2). Под давлением твердый алюминий размягчается и принимает необходимую форму в прессе. Затем получившуюся заготовку обрезают до необходимой длины, обвальцовывают, формируя горловину для баллона и горлышко с резьбой для тубы. Из спрессовки алюминий становится жестким, чтобы придать большую пластичность, заготовку краткосрочно обжигают при высокой температуре (примерно 460°С) и после остывания покрывают специальными лаками, для предотвращения химического взаимодействия с содержимым. После наполнения и механического запечатывания баллоны и тубы декорируют снаружи.

Контроль качества

После очистки ронделей от остатков алюминиевого литья, контроль качества производимой продукции, осуществляется визуально. Контролируется толщина и диаметр каждого рондоля. Периодически (раз в несколько часов) делается выборочная проверка твердости ронделей и геометрическое соответствие.

Упаковка ронделей

Производимая продукция расфасовывается по 19-20 кг. Между заготовками делаются прокладки, затем упаковывается в картонные коробки с двойными п/э вкладышами. Коробки запечатываются клейкой лентой.

Практическая работа №3

ПРОИЗВОДСТВО АЛЮМИНИЕВОГО БАЛЛОНА.

Цель занятия.: Процесс вырубки рондоли на прессу.

Процесс вырубки и пробивки происходит следующим образом. В начале проникновения пуансона в толщу материала образуется изгиб и вблизи режущих кромок создаются большие напряжения, под действием которых материал начинает течь и сминаться. При дальнейшем поступлении пуансона напряжения увеличиваются и достигают величины, равной сопротивлению материала срезу. После этого вблизи режущих кромок пуансона и матрицы

образуются трещины.

В момент смыкания трещин, идущих от пуансона и матрицы, осуществляется полное отделение вырезаемого изделия от заготовки и проталкивание его через матрицу с преодолением силы трения. Величина предварительного внедрения пуансона в толщу материала до момента появления трещин (скалывания) колеблется в пределах от 20 до 70% толщины материала. Угол скалывания зависит от твердости штампуемого материала и величины зазора между пуансоном и матрицей. Рекомендуемые двусторонние зазоры между пуансоном и матрицей при вырезке, пробивке, обрезке (табл. 1) подбираются в зависимости от толщины и свойств материала.

Усилие вырубки и пробивки в штампах зависит от величины зазоров, режущих кромок матрицы и пуансона, скорости деформации и смазки материала. Для облегчения условий резания соблюдают оптимальные зазоры для каждого материала и толщины, содержат острыми режущие кромки пуансона и матрицы. Лучшими режущими кромками матрицы и пуансона считаются варианты, показанные на рис. 6, а, в, где отверстие матрицы выполнено в виде пояска определенной высоты, переходящего в конус. Преимущество этого типа состоит в том, что такие матрицы имеют прочную режущую кромку и при заточке не теряют своего рабочего размера. Но такой профиль увеличивает трение вырезанного изделия о стенки отверстия матрицы.

В другом варианте (рис. 6, в, г) отверстие в матрице изготавливают конусным в зависимости от то<u>лщи</u>ны материала. Односторонний угол берется от 10' до 1°. При этом варианте намного уменьшается трение изделия при его проталкивании пуансоном во время вырезки.

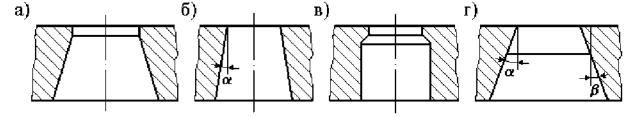


Рис 2. Варианты профилей матриц

с цилиндрическим пояском (а), конусом от рабочей плоскости (б), двумя цилиндрическими участками (в), двумя конусами (г)

Для проталкивания изделия через отверстие матрицы и съема заготовки с пуансона требуются определенные усилия в зависимости от марки материала, его толщины. Кроме того, при этом учитываются величина зазора между пуансоном и матрицей и степень смазки материалов.

Наличие смазки снижает коэффициент трения. Усилие проталкивания и усилие съема учитываются при общем расчете усилия вырубки или пробивки и в формулу вводятся в виде коэффициента запаса К. В штампах для пробивки отверстий усилие вырубки может быть уменьшено за счет ступенчатого расположения пуансонов по высоте.

Основная литература

- 1. Технологические процессы машиностроительного и ремонтного производства : учеб. пособие / С. И. Богодухов, А. Г. Схиртладзе, А. Д. Проскурин, А. С. Килов, Б. М. Шейнин ; под ред. С. И. Богодухова. Старый Оскол : ТНТ, 2015. 464 с. : ил. Гриф: Рек. МГТУ. ISBN 978-5-94178-468-4
- 2. Яру<u>ши</u>н, С. Г. Технологические процессы в машиностроении : учебник для бакалавров / С.Г. Яру<u>ши</u>н. М. : Юрайт, 2014. 564 с. (Бакалавр. Базовый курс). На учебнике гриф: Доп.МО. Библиогр.: с. 563-564. ISBN 978-5-9916-3190-7 Дополнительная литература
- 1. Основы проектирования химических производств:учебник / В. И. Косинцев [идр.]; Под ред. А. И.Михайличенко. М.:Академкнига, 2008.
- 2. Схиртладзе, А. Г. Технологические процессы в машиностроении : учебник / А. Г. Схиртладзе, С. Г. Ярушин. 4-е изд., перераб. и доп. Старый Оскол : ТНТ, 2015. 524 с. : ил. Гриф: Доп. МО. Библиогр.: с. 520-523. ISBN 978-5-94178-122
- 3. Пискунов, В. Н. Динамика аэрозолей: монография / В.Н. Пискунов. Москва: Физматлит, 2010. 294 с.: ил., схем., табл. http://biblioclub.ru/. Библиогр. в кн. ISBN 978-5-9221-1286-4

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению практических и лабораторных работ по дисциплине « Технологические процессы аэрозольного производства» для студентов очной/заочной формы обучения направления подготовки

15.03.2 Технологические машины и оборудование

Составители

 $E.C.\$ Антипина, канд.mехн.наук, доцент. $A.И.\$ Свидченко, канд.mехн.наук,

Отв. редактор

доцент.

Редактор Л.Д. Бородастова			
Подписано в печать 10.04.2016 г.	Формат 60 х 84 1/16		
Учизд. л. 0,4 п.л.	Усл. печ. л. 0,5 п.л.Тираж		
	50экз.		
Северо-Кавказский федеральный университет			
Невинномысский технологический инстит	гут (филиал)		

357108, г. Невинномысск, ул. Гагарина, 1