МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

	УТВЕРЖДАЮ:
Зав.	кафедрой ХТМиАХП
	Е. Н. Павленко

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

проведения текущего контроля успеваемости и промежуточной аттестации по дисциплине «Химические реакторы»

(ЭЛЕКТРОННЫЙ ДОКУМЕНТ)

Направление подготовки 18.03.01 Химическая технология

Направленность (профиль) <u>Химическая технология синтетических биологически</u>

активных веществ, химико-фармацевтических препаратов

и косметических средств

Квалификация выпускника

Форма обучения Год начала обучения

Изучается в 6 семестре

Бакалавр

<u>очная</u> 2020

Предисловие

1. Назначение: для проведения текущего контроля и промежуточной аттестации по дисциплине «Химические реакторы» для студентов направления подготовки 18.03.01

Химическая технология.	
 Фонд оценочных средств текущего контр разработан на основе рабочей программы диск соответствии с образовательной программой вы подготовки 18.03.01 Химическая технология, у методического совета СКФУ, протокол № от 	циплины «Химические реакторы» в исшего образования по направлению твержденной на заседании Учебно-
3. Разработчик Проскурнин А.Л., доцент кафедры	ы ХТМиАХП.
4. ФОС рассмотрен и утвержден на заседании кас Протокол № от «»г.	федры ХТМиАХП.
5. ФОС согласован с выпускающей кафедрой XT Протокол № от «»г.	МиАХП.
6. Проведена экспертиза ФОС. Члены экспертной экспертизу:	й группы, проводившие внутреннюю
Председатель	(Ф.И.О., должность)
	(Ф.И.О., должность)
	(Ф.И.О., должность).
Экспертное заключение: фонд оценочных средс федерального государственного образовательного направлению подготовки 18.03.01 Химическая (Зарегистрирован в Минюсте России 29.08.2 формированию профессиональных компетенций.	о стандарта высшего образования по и технология (уровень бакалавра)
« <u> </u>	(подпись)
7. Срок действия ФОС	

Паспорт фонда оценочных средств для проведения текущего контроля и промежуточной аттестации

По дисциплине Химические реакторы

Направление подготовки 18.03.01 Химическая технология

Специализация Химическая технология синтетических биологически

активных веществ, химико-фармацевтических

препаратов и косметических средств

 Квалификация выпускника
 Бакалавр

 Форма обучения
 очная

 Учебный план
 2020

Код	Этап	Средства и	Вид	Тип	Наименование	Колич	нество
оцениваемой	формирова-	техноло-	контроля,	контроля	оценочного	задан	ий для
компетенции	ния	гии оценки	аттестация		средства	каждого	уровня,
	компетенции					П	IT.
	(№ темы)					Базовый	Продви-
							нутый
ПК-4	Темы №1-5	Собеседо-	устный	текущий	Вопросы для	2	1
		вание			собеседования		
		Собеседо-	письменный	текущий	Комплект	2	1
		вание			заданий для		
					текущего		
					контроля		
ПК-7		Собеседо-	письменный	текущий	Комплект	2	1
		вание			заданий для		
					текущего		
					контроля		
		Собеседо-	устный	текущий	Вопросы для	2	1
		вание			собеседования		
ПК-8	Темы № 6 7	Собеседо-	устный	текущий	Вопросы для	2	1
	8	вание			собеседования		
		Собеседо-	письменный	текущий	Комплект	2	1
		вание			заданий для		
					текущего		
					контроля		
ПК-4	Темы №1-18	Экзамен	устный	промежу	Вопросы к	2	1
ПК-7 ПК-8				точный	экзамену		

Составитель		А.Л. Проскурнин
	(подпись)	
« »	2020 г.	

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ:		
И.о. зав кафо	едрой ХТМиАХП	
	E. H. Павленко	
«»	2020 г.	

Вопросы к экзамену

по дисциплине «Химические реакторы»

Вопросы к экзамену (6 семестр)

Вопросы (задача, задание) для проверки уровня обученности Базовый

Знать

- 1. Какие признаки могут быть положены в основу классификации химических реакторов? Приведите классификацию химических аппаратов и режимов их работы.
- 2. Какие конструктивные материалы наиболее широко используются при изготовлении реакторов?
- 3. Перечислите требования, предъявляемые к реакторам.
- 4. Какие технологические показатели используются для оценки эффективности работы химических аппаратов?
- 5. Сформулируйте основные требования, предъявляемые к математической модели химического реактора.
- 6. В чем заключается различие между действительным и средним временем пребывания реагентов в проточном реакторе? Для какого типа проточных реакторов действительное и среднее время пребывания совпадают?
- 7. Почему при ламинарном течении реакционного потока режим идеального вытеснения не может быть достигнут? При каких условиях можно приблизиться в реальном реакторе к идеальному вытеснению?
- 8. Укажите причины отклонений от идеальности в проточных реакторах.
- 9. Какая величина называется параметром модели реактора с неидеальной структурой потока?
- 10. Что такое продольная диффузия? Как она учитывается в рамках однопараметрической диффузионной модели?
- 11. Как рассчитывается среднее время пребывания в реакторе при использовании функции распределения?
- 12. Как проводится экспериментальное изучение функций распределения?
- 13. Какие реакции называются простыми (элементарными), формально простыми, сложными?
- 14. Какие факторы оказывают влияние на дифференциальную селективность?
- 15. Перечислите элементарные стадии гетерогенного процесса газ-твердое. Какой смысл вкладывается в понятия «кинетическая область гетерогенного процесса»?

- 16. Как увеличить коэффициент массоотдачи на стадии внешней диффузии?
- 17. Приведите основные типы реакторов, используемые для процессов в системе газ-твердое.
- 18. Каким образом увеличивают скорость процесса в системе газ-жидкость при протекании процесса в диффузионной области, кинетической области?
- 19. Что понимают под степенью использования внутренней поверхности? Какие факторы и как влияют на степень использования внутренней поверхности?
- 20. Какие тепловые потоки учитываются при составлении теплового баланса реактора?
- 21. В чем состоят принципиальные различия в условиях теплообмена для изотермического и адиабатического режимов работы реактора?
- 22. Сформулируйте понятие тепловой устойчивости химического реактора.
- 23. Дайте понятие параметрической чувствительности.
- 24. Какой температурный режим в реакторе является оптимальным?
- 25. Приведите зависимость скорости обратимой экзотермической реакции от температуры.
- 26. Дайте определение линии оптимальных температур.
- 27. Расскажите о способах теплообмена, используемых в реакторах для проведения гомогенных реакций.
- 28. Какие типы реакторов используются для проведения реакции в жидкой фазе?
- 29. От чего зависит конструкция реакторов для проведения гомогенных жидкофазных реакций?
- 30. Приведите классификацию реакторов для системы газ-жидкость в зависимости от способа создания поверхности контакта фаз.
- 31. Опишите конструкцию трехполочного реактора синтеза аммиака с аксиально-радиальным потоком газа и двумя теплообменниками, расположенными в центре реактора. Каковы преимущества этого реактора?
- 32. Опишите конструкцию реактора для окисления аммиака. Каковы его особенности?

Уметь Владеть

- 33. В чем преимущества горизонтальных реакторов? В чем их недостатки?
- 34. Приведите показатели качества, характеризующие основные свойства реакторов.
- 35. Как оценивается эксплуатационная надежность технологического оборудования?
- 1. Определите условие стационарной работы непрерывного реактора при протекании экзотермической реакции?
- 2. Определите условие устойчивой работы непрерывного реактора при протекании экзотермической реакции?
- 3. Составьте уравнение материального баланса для стационарного проточного реактора идеального вытеснения.
- 4. Составьте математическое описание реактора, работающего в изотермическом режиме, с использованием ячеечной модели. Что служит параметром в этой модели?
- 5. Методы и этапы разработки проектов (в составе авторского коллектива).
- 3нать 6. Как определить лимитирующую стадию гетерогенного процесса в системе газ-твердое?
 - 7. Составьте систему уравнений материального и теплового балансов для проточного реактора идеального смешения в неизотермическом режиме.

- 8. Составьте систему уравнений материального и теплового балансов для изотермического реактора идеального смешения.
- 9. Приведите функцию распределения времени пребывания в идеальных проточных реакторах (вытеснения и смешения) при импульсном вводе индикатора.
- 10. Приведите функцию распределения времени пребывания в идеальных проточных реакторах (вытеснения и смешения) при ступенчатом вводе индикатора.
- 13. Приведите конструкции реакторов без теплообменных устройств для проведения реакций в газовой фазе в присутствии твердого катализатора с неподвижным слоем.
- 14. Приведите конструкцию барботажных аппаратов. Каким образом подводится тепло в реактор? Для каких реакций используются такие реакторы?
- 15. Приведите конструкции радиальных аппаратов. Каковы преимущества и недостатки радиальных аппаратов по сравнению с аксиальными?
- 16. Приведите основные направления совершенствования конструкции реакторов.

Повышенный

- 1. Техническая диагностика реакторов. Методы неразрушающего контроля.
- 2. Производственная эксплуатация оборудования.
- 3. Ввод оборудования в эксплуатацию.
- 4. Организация эксплуатации оборудования. Руководство по эксплуатации оборудования.
- 5. Техническое обслуживание оборудования.
- 6. Ремонт технологического оборудования.
- 7. Важнейшие факторы, определяющие безопасность эксплуатации реакторов. Поддержание параметров процесса.
- 8. Защита от коррозии.
- 9. Методы и средства взрывозащиты химических реакторов.
- 10. Проектирование химических реакторов. Основные стадии проектирования химического оборудования.
- 11. Данные для расчета, конструирования и выбора реакционного оборудования.
- 12. Системы автоматизированного проектирования.
- 13. Уравнения материального баланса. Стехиометрические расчеты.
- 14. Термодинамический анализ. Расчет состава равновесной смеси.
- 15. Кинетика реакции. Практический материальный баланс.
- 16. Технологический расчет реакторов. Расчет объема реактора, высоты, диаметра штуцеров.
- 17. Гидравлические расчеты. Расчет гидравлического сопротивления слоя катализатора.

Уметь, владеть

- 1. Планирование работ по техническому обслуживанию.
- 2. Оценка эксплуатационной надежности технологического оборудования.
- 3. Выбор метода диагностики химического реактора.
- 4. Ввод оборудования в эксплуатацию.
- 5. Ремонт оборудования, в том числе реакторов.
- 6. Обеспечение пожарной безопасности реакторов.
- 7. Загрузка катализатора в реактор и выгрузка его из реактора.

- 8. Расчет материального и теплового балансов реактора с использованием стехиометрической модели.
- 9. Расчет материального и теплового балансов реактора с использованием равновесной модели.

Критерии оценки ответов на экзамене:

Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал монографической литературы, правильно обосновывает принятое решение, владеет разносторонними навыками и приемами выполнения практических задач.

Оценка «хорошо» выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практических работ.

Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы.

Описание шкалы оценивания

Промежуточная аттестация в форме экзамена предусматривает проведение обязательной экзаменационной процедуры и оценивается 40 баллами из 100. В случае если рейтинговый балл студента по дисциплине по итогам семестра равен 60, то программой автоматически добавляется 32 премиальных балла и выставляется оценка «отлично». Положительный ответ студента на экзамене оценивается рейтинговыми баллами в диапазоне от 20 до 40 (20 < S3K3 ^ 40), оценка меньше 20 баллов считается неудовлетворительной.

Шкала соответствия рейтингового балла экзамена 5-балльной системе

Рейтинговый балл по дисциплине	Оценка по 5-балльной системе
35 – 40	Отлично
28 - 34	Хорошо
20 - 27	Удовлетворительно

Итоговая оценка по дисциплине, изучаемой в одном семестре, определяется по сумме баллов, набранных за работу в течение семестра, и баллов, полученных при сдаче экзамена:

Шкала пересчета рейтингового балла по дисциплине в оценку по 5-балльной системе

Рейтинговый балл по дисциплине	Оценка по 5-балльной системе
88 – 100	Отлично
72 – 87	Хорошо
53 – 71	Удовлетворительно
<53	Неудовлетворительно

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедура проведения экзамена осуществляется в соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования - программам бакалавриата, программам специалитета, программам магистратуры - в СКФУ.

В экзаменационный билет включаются 2 теоретических вопроса и 1 практическое задание.

Для подготовки по билету отводится 30 минут.

При подготовке к ответу студенту предоставляется право пользования справочной литературой.

При проверке практического задания, оцениваются последовательность и рациональность выполнения.

Составитель		А.Л. Проскурнин
	(подпись)	
« »	2020 г.	

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

YT	ВЕРЖДАЮ:
И.о. зав кафе	дрой ХТМиАХП
	_ Е. Н. Павленко
«»	2020 г.

Вопросы для собеседования

по дисциплине «Химические реакторы»

Базовый уровень

- 1. Приведите признаки, которые могут быть положены в основу классификации химических реакторов?
- 2. Какие факторы влияют на выбор конструктивных материалов при изготовлении реакторов?
 - 3. Каким требованиям должен удовлетворять реакционный аппарат?
- 4. Для какого типа проточных реакторов действительное и среднее время пребывания совпадают?
- 5. Почему в проточных реакторах не соблюдается идеальный гидродинамический режим?.
- 6. Как учитывается продольная диффузия в рамках однопараметрической диффузионной модели?
 - 7. Какие факторы оказывают влияние на дифференциальную селективность?
- 8. Каково условие стационарной работы непрерывного реактора при протекании экзотермической реакции?
 - 9. Какой температурный режим в реакторе является оптимальным?
- 10. Дайте определение линии оптимальных температур для обратимых экзотермических реакций.
 - 11. Как осуществляют теплообмен в реакторах для проведения гомогенных реакций.
- 12. Какие типы реакторов используются для проведения гомогенных жидкофазных реакций?
 - 13. Почему используются радиальные реакторы для синтеза аммиака?
 - 14. Каковы особенности реактора для окисления аммиака?
- 15. Как влияет температура на скорость и равновесие обратимой экзотермической реакции?
 - 16. . Методы и этапы разработки проектов (в составе авторского коллектива).
- 17. Как определить лимитирующую стадию гетерогенного процесса в системе газ-твердое?
- 18. Какие методы используют для определения функции распределения времени пребывания в проточных реакторах?
- 19. Чем отличается дифференциальная функция распределения времени пребывания от интегральной функции распределения?
- 20. Каковы преимущества и недостатки радиальных аппаратов по сравнению с аксиальными?
- 21. Какие тепловые потоки учитываются при составлении теплового баланса реактора?

- 22. В чем состоят принципиальные различия в условиях теплообмена для изотермического и адиабатического режимов работы реактора?
- 23. Каково условие стационарной работы непрерывного реактора при протекании экзотермической реакции?
- 24. Как можно увеличить скорость процесса в системе газ–жидкость при протекании процесса в диффузионной области, кинетической области?
- 25. Для чего ввели понятие «степень использования внутренней поверхности»? Какие факторы и как влияют на степень использования внутренней поверхности?
 - 26. В чем преимущества горизонтальных реакторов?
 - 27. Как обеспечивается пожарная безопасность химических реакторов?
 - 28. Как защитить реактор от коррозии?
 - 29. Приведите методы и средства взрывозащиты химических реакторов.
- 30. Укажите важнейшие факторы, определяющие безопасность эксплуатации реакторов.
 - 31. Как осуществляется техническая диагностика реакторов?
 - 32. Каким образом осуществляется защита реакторов от коррозии?
- 33. Приведите данные, необходимые для расчета, конструирования и выбора реакционного оборудования.

Продвинутый уровень

- 1. Предложите оценку эффективности работы химических аппаратов?
- 2. Сравните эффективность физического и математического моделирования химических реакторов.
- 3. Имеются различия между действительным и средним временем пребывания реагентов в проточном реакторе?
- 4. Объясните, почему при ламинарном течении реакционного потока режимы идеального вытеснения и идеального смешения не могут быть достигнуты?
- 5. Какая величина называется параметром ячеечной модели реактора с неидеальной структурой потока?
- 6. Какая величина называется параметром диффузионной модели реактора с неидеальной структурой потока?
- 7. Как можно снизить внутридиффузионное торможение при протекании гетерогенно-каталитической реакции?
 - 8. Чем определяется скорость циркуляции в таких реакторах типа «эрлифт»?
- 9. Почему повышение температуры более эффективно в кинетической области протекания реакции и менее эффективно в диффузионной области?
 - 10. Что служит параметром в ячеечной модели реакторного устройства?
- 11. В каких случаях расчета систему уравнений материального и теплового балансов реактора решают совместно?
- 12. Сравните дифференциальную и интегральную функции распределения времени пребывания для реактора идеального смешения.
- 13. Сравните дифференциальную и интегральную функции распределения времени пребывания для реактора идеального вытеснения.
- 14. Каким образом можно обеспечить оптимальный температурный режим при проведении обратимой экзотермической реакции:
- 15. Какие факторы и как влияют на конструкцию реакторов для проведения газожидкостных реакций?
 - 16. Каким образом можно подвести тепло в барботажный реактор?
 - 17. Предложите методы совершенствования конструкции реакторов.
 - 18. Как оценить эксплуатационную надежность технологического оборудования.
 - 19. Перечислите методы неразрушающего контроля оборудования.

- 20. Как осуществляется загрузка и выгрузка катализатора в реакционную печь для осуществления паровой конверсии метана?
- 21. Какие системы автоматизированного проектирования используются для проектирования химических реакторов?
- 22. Как осуществляется и для чего проводится расчет гидравлического сопротивления слоя катализатора?

Критерии оценки ответов при собеседовании:

Оценка «зачтено» выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения. Допускаются некоторые неточности, недостаточно правильные формулировки в изложении программного материала, затруднения при выполнении практических работ.

Оценка «не зачтено» выставляется студенту, если он не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы.

Критерии оценивания лабораторной работы

Оценка «отлично» ставится, если обучающийся выполняет работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил техники безопасности; правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления.

Оценка «хорошо» ставится, если выполнены требования к оценке 5, но было допущено два-три недочета.

Оценка «удовлетворительно» ставится, если работа выполнена не полностью, но объем выполненной её части позволяет получить правильный результат и вывод; или если в ходе проведения опыта и измерения были допущены ошибки.

Оценка «неудовлетворительно» ставится, если работа выполнена не полностью или объем выполненной части работ не позволяет сделать правильных выводов; или если опыты, измерения, вычисления, наблюдения производились неправильно.

Составитель		А.Л. Проскурнин
	(подпись)	_ 1 11
« »	2020 г.	

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ:		
И.о. зав кафе	едрой ХТМиАХП	
	E. H. Павленко	
«»	2020 г.	

Комплект заданий для контрольной работы (домашнего задания)

Контрольная работа (домашнее задание) выполняется по номеру варианта, который совпадает с номером его фамилии с журнале группы. Студент может предложить свою тему, согласовав ее с преподавателем.

Целью домашнего задания (контрольной работы) является обзор и анализ существующих конструкций реакторных устройств (либо основного аппарата), на основе которого выбирается реактор; обоснование оптимальных параметров его работы; материальный и тепловой балансы реакционного аппарата; эксплуатация аппарата (если процесс каталитический, то загрузка и выгрузка катализатора).

В качестве объектов работы назначаются:

- 1. Печь обжига серного колчедана;
- 2. Реактор гидрирования сернистых соединений, содержащихся в природном газе;
- 3. Реакционная печь паровой конверсии природного газа;
- 4. Шахтный реактор паровоздушной конверсии метана;
- 5. Реактор паровой конверсии оксида углерода;
- 6. Реактор очистки синтез-газа от кислородосодержащих соединений;
- 7. Колонна синтеза аммиака;
- 8. Реактор синтеза метанола;
- 9. Реактор окисления аммиака;
- 10. Абсорбер нитрозных газов;
- 11. Реактор высокотемпературной очистки «выхлопных» газов;
- 12. Реактор низкотемпературной очистки «хвостовых» газов;
- 13. Абсорбер поташной очистки синтез-газа от диоксида углерода;
- 14. Абсорбер очистки синтез-газа от диоксида углерода раствором МЭА (МДЭА);
- 15. Аппарат синтеза аммиачной селитры;
- 16. Реактор окисления SO2 в SO3;
- 17. Реакционная печь пароуглекислой конверсии природного газа;
- 18. Экстрактор фосфорной кислоты;
- 19. Комбинированный выпарной аппарат в производстве аммиачной селитры.
- 20. Реактор синтеза ацетилена;
- 21. Реактор синтеза сложных удобрений;
- 22. Колонна синтез карбамида

Указания по выполнению контрольной работы (домашнего задания), включают требования к содержанию его разделов и оформлению, а также список рекомендуемой литературы.

Критерии оценивания компетенций

Оценка «отлично» выставляется студенту, если он без ошибок выполнил домашнее задание (контрольную работу). Собрал и обобщил материал, имеющийся в библиотеке электронно-библиотечной системе ПО заданной теме. Проработал дополнительный материал с использованием периодических изданий научных журналов, сборников конференций, имеющихся в наличии в библиотеке и сети Internet, использовал патентные базы данных. Выполнил все задания, представленные в методических указаниях, провел расчеты с использованием прикладных программ или использовал компьютерные модели. Свободно владеет материалом, умеет преподнести и проанализировать основные имеющиеся В работе. При защите домашнего задания мультимедийное оборудование для показа презентации работы.

Оценка «хорошо» выставляется студенту, если он без ошибок выполнил домашнее задание (контрольную работу). Собрал и обобщил материал, имеющийся в библиотеке института и электронно-библиотечной системе по заданной теме. Проработал дополнительный материал с использованием периодических изданий научных журналов, сборников конференций, имеющихся в наличии в библиотеке и сети Internet. Выполнил все задания, представленные в методических указаниях, провел расчеты с использованием прикладных программ или использовал компьютерные модели. Свободно владеет материалом, умеет преподнести и проанализировать основные сведения, имеющиеся в работе.

Оценка «удовлетворительно» выставляется студенту, если он с ошибками выполнил домашнее задание (контрольную работу). Собрал и обобщил материал, имеющийся в библиотеке института и электронно-библиотечной системе по заданной теме. Не проработал дополнительный материал с использованием периодических изданий научных журналов, сборников конференций, имеющихся в наличии в библиотеке и сети Internet. Выполнил с ошибками задания, представленные в методических указаниях, провел расчеты материального и теплового балансов и основных размеров реактора. Владеет материалом, но не умеет преподнести и проанализировать основные сведения, имеющиеся в работе.

Оценка «неудовлетворительно» выставляется студенту, если он с ошибками выполнил домашнее задание (контрольную работу). Собрал и обобщил, не весь имеющийся в библиотеке института материал по заданной теме. Не проработал дополнительный материал с использованием периодических изданий научных журналов, сборников конференций, имеющихся в наличии в библиотеке и сети Internet. Выполнил не все задания, представленные в методических указаниях. Не умеет преподнести и проанализировать основные сведения, имеющиеся в работе.

Описание шкалы оценивания

Максимально возможный балл за весь текущий контроль устанавливается равным **55**. Текущее контрольное мероприятие считается сданным, если студент получил за него не менее 60% от установленного для этого контроля максимального балла. Рейтинговый балл, выставляемый студенту за текущее контрольное мероприятие, сданное студентом в установленные графиком контрольных мероприятий сроки, определяется следующим образом:

Уровень выполнения контрольного	Рейтинговый балл (в % от максимального
задания	балла за контрольное задание)
Отличный	100
Хороший	80
Удовлетворительный	60
Неудовлетворительный	0

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедура проведения данного оценочного мероприятия включает в себя все этапы работы над домашним заданием: изучение литературных источников с использованием Интернета, их анализ и обобщение, подготовка и выполнение работы.

Предлагаемые студенту задания позволяют проверить профессиональные компетенции ПК-4, ПК-7, ПК-8.

Домашнее задание (контрольная работа) оформляется на листах формата А4, материал представляется в распечатанном. Содержание работы должно полностью соответствовать заданию, выданному преподавателем. Рисунки, таблицы и список литературы должны быть выполнены в соответствии с ГОСТ. Примеры оформления приведены в методических указаниях.

При защите домашнего задания (контрольной работы) учитываются:

- аккуратность оформления работы;
- соответствие требованиям ГОСТа;
- соответствие выданному заданию;
- владение материалом при докладе и его информативность (наличие презентации и качество её выполнения).

Составитель		А.Л. Проскурнин
	(подпись)	
« »	2020 г.	

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

	\mathbf{y}'	ГВЕРЖДАЮ:
И.о	. зав каф	редрой ХТМиАХП
		Е. Н. Павленко
«	»	2020 г

Комплект заданий для текущего контроля

по дисциплине «Химические реакторы» при проведении практических занятий

Тема: Технологические показатели работы химических реакторов

- 1. Рассчитать расход колчедана, содержащего 40% S, на 1 т H₂SO₄, если потери S и SO_2 составляют 3%, а степень абсорбции $SO_3 - 99\%$.
- 2. При термоокислительном крекинге метана (с целью получения ацетилена) смесь газов имеет состав [% (об.)]: $C_2H_2 - 8.5$; $H_2 - 57.0$; CO - 25.3; $CO_2 - 3.7$; $C_2H_4 - 0.5$; $CH_4 - 4.0$; Ar – 1,0. Определить количество метана, которое нужно подвергнуть крекингу, чтобы из отходов крекинга после отделения ацетилена получить 1 т метанола по реакции

$$CO + 2H_2 = CH_3OH$$
.

По практическим данным из 1 т исходного метана получается после выделения ацетилена 1160 кг смеси газов.

3. Рассчитать объем 65%-й серной кислоты (плотностью 1,56 г/л) с 5%-м избытком от теоретического количества, требуемый для разложения 100 кг апатитового концентрата (содержащего $38\% P_2O_5$) по реакции

$$2Ca_5F(PO_4)_3 + 7H_2SO_4 = 3Ca(H_2PO_4)_2 + 7CaSO_4 + 2HF.$$

4. Определите состав смеси (N_A, N_E, N_B, N_D) и степень превращения вещества $E(x_E)$ для реакции

$$A + 2E \rightarrow 2R + D$$

$$A + 2E \longrightarrow 2B + D,$$
 если $x_A = 0,6, \ N_A^0 = 1 \, \kappa$ $\vec{M}, \ N_E^0 = 1.5 \, \kappa$ \vec{M} .

5. Рассчитайте выход продукта B, если известно, что при проведении последовательных реакций

$$A + E \rightarrow B + D$$
,
 $B + M \rightarrow F + P$

получено 12 моль продукта B, 4 моль продукта F, а для проведения реакции взято по 20 моль реагентов A и E.

6. Протекают параллельные реакции

$$2A \rightarrow B + D$$
,
 $A \rightarrow 3F$.

Определить выход продукта B, степень превращения x_A , полную селективность образования $B(S_{B(A)})$, если на выходе из реактора $N_A = 2$ кмоль/м³, $N_B = 3$ кмоль/м³, $N_F = 3$ 3,5кмоль/м³.

7. При термоокислительном пиролизе метана с целью получения ацетилена смесь газов имеет состав [% (об.)]: $C_2H_2 - 8.5$; $H_2 - 57.0$; CO - 25.3; $CO_2 - 3.7$; $C_2H_4 - 0.5$; $CH_4 - 4.0$; Ar – 1,0. Определить количество метана, которое нужно подвергнуть пиролизу, чтобы из отходящего газа, образующегося после отделения ацетилена, получить 1 т метанола по реакции

$$CO + 2H_2 = CH_3OH$$
,

выход метанола по которой составляет 95%.

- 8. Определить количество и состав продуктов на выходе из контактного аппарата для каталитического окисления SO_2 в SO_3 . Производительность реактора $10000 \text{ м}^3/\text{ч}$ исходного газа следующего состава, % (об.): $SO_2 8.5$; $O_2 12.5$; $N_2 79$. Степень окисления SO_2 в SO_3 составляет 98%.
- 9. Сколько потребуется сульфата железа $FeSO_4 \cdot 7H_2O$ и хромового ангидрида CrO_3 для получения 1 т железохромового катализатора конверсии оксида углерода, имеющего состав (%): $Fe_2O_3 90$; $CrO_3 10$.
- 10. Определить расходный коэффициент технического карбида кальция в производстве ацетилена (на 1000 кг ацетилена). Содержание CaC_2 в техническом продукте 83%, а степень использования CaC_2 в производстве 0,88.

Тема: Тепловая устойчивость реактора

Проведите анализ устойчивости реактора идеального смешения с использованием диаграммы интенсивности тепловыделения и теплоотвода. Для ее построения и дальнейшего анализа необходимо выполнить следующие этапы:

- 1) привести имеющиеся параметры к безразмерному виду;
- 2) выполнить необходимые расчеты, построить диаграмму «тепловыделение теплоотвод» для номинального режима и определить число и характер стационарных режимов;
- 3) построить линии тепловыделения и теплоотвода при варьировании следующих параметров: температуры входа, параметра теплоотвода и адиабатического разогрева и определить статические характеристики реактора идеального смешения;
- 4) определить условия существования единственного низко- или высокотемпературного режима;
- 5) найти условия, при которых промежуточный режим может быть устойчивым и оценить реалистичность этих условий;

Варианты заданий приведены в таблицах 1 и 2.

Таблица 1 – Исходные данные вариантов расчета

		Параметры процесса							
Вариант	C_{θ}	(- ∆H)	E	K ₃₂₃	F	α	T_{ex}	T_x	V_{0}
1	5.5	179.8	84.2	0.0155	6.0	41.9	287	295	0.1
2	7.1	104.8	103.5	0.023	2.5	50.3	282	291	0.05
3	4.5	142.9	126.1	0.027	1.0	62.9	285	288	0.025
4	3.5	160.9	151,7	1,226	6,0	41,9	281	286	0,1
5	3.7	122.3	174.7	3.68	2.5	50.3	282	284	0.05
6	2.5	178.0	189.4	4.0	1.0	62.9	274	283	0.025
7	4.0	92.6	206.6	6.44	1.5	41.9	279	282	0.025
8	6.2	199.5	84.2	0.0155	16	21.0	274	295	0.1
9	6.8	142.0	103.5	0.023	5.0	33.5	283	291	0.05

10	5.8	132.0	126.1	0.027	8.0	10.5	283	288	0.025
11	3.9	172.6	151.7	1.226	10	33.5	277	286	0.1
12	2.4	220.8	174.7	3.68	12	14.0	276	284	0.05
13	3.1	161.3	189.4	4,0	5,0	16,8	275	283	0,025
14	4.2	115,2	206,6	6,44	10	8,4	281	282	0,025
15	5.8	189,2	84,2	0,0155	11	26,7	279	295	0,1
16	6.9	122,0	103,5	0,023	3,8	38,6	282	291	0,05
17	5.3	136.3	126.1	0.027	4,5	16,3	284	288	0,025
18	3.7	166,1	151,7	1,226	9,0	32,6	278	286	0,1
19	3.2	148.5	174.7	3.68	7.3	20.0	275	284	0.05
20	2.8	171.1	189.4	4.0	3.9	18.8	274	283	0.025
21	4.1	106.4	206.6	6.44	5.8	12.6	280	282	0.05
22	6.1	191.7	84.2	0.0155	14	22.5	275	293	0.025

Таблица 2 – Диапазон варьирования параметров процесса

	Диапазон варьирования				
Вариант	$arDelta oldsymbol{arTheta}_{ex}$	Δγ	$\Delta(\Delta \boldsymbol{\Theta}_{a\dot{o}})$		
1	-4 /+2	-0.2/+0.5	-4 / +6		
2	-3 /+2	-0.2/+0.3	-6 / +5		
3	-4 /+3	-0.2/+0.5	-5 / +5		
4	-6 /+3	-0.2/+0.4	-4 / +6		
5	-6 /+2	-0.2/+0.5	-6 / +6		
6	-4 /+4	-0.2/+0.6	-6 / +5		
7	-5 /+3	-0.2/+0.5	-5 / +5		
8	-4 /+4	-0.3/+0.5	-8 / +6		
9	-5 /+3	-0.3/+0.5	-6 / +6		
10	-5 /+2	-0.3/+0.5	-6 / +6		
11	-4 /+3	-0.2/+0.5	-6 / +6		
12	-4 /+2	-0.2/+0.4	-4 / +6		
13	-6 /+3	-0.3/+0.5	-6 / +6		
14	-7 /+2	-0.2/+0.5	-6 / +6		
15	-3 /+4	-0.2/+0.4	-5 / +5		
16	-4 /+5	-0.2/+0.5	-4 / +6		
17	-5 /+3	-0.3/+0.4	-6 / +6		
18	-4/+4	-0.2/+0.5	-5 / +5		
19	-5 /+2	-0.2/+0.3	-4 / +4		
20	-4 /+3	-0.1 /+0.4	-7 / +6		
21	-4 /+4	-0.2/+0.4	-6 / +6		
22	-3 /+3	-0.2/+0.5	-7 / +7		

Размерность величин:

$$C_0 - [\text{моль/м}^3]; (-\Delta H) - [\kappa Дж/моль]; E - [кДж/моль]; K_{323} - [1/c];$$

$$F - [M^2]; \ \alpha - [BT/M^2 \cdot K]; \ T_{ex} - [K]; \ T_x - [K]; \ V_0 - [M^3/c].$$

Общие данные для всех вариантов:

$$V_P = 5 \text{ M}^3$$
; $T_{on} = 273 \text{ K}$; $C_p = 5000 \text{ Джc/(кг} \text{ Г/S})$; $\rho = 1,676 \text{ KT/M}$

Тема: Оптимальный температурный режим и способы его осуществления

Вопросы:

- 1. Какой режим называется оптимальным?
- 2. Как влияет температура на константу равновесия обратимой экзотермической реакции?
- 3. Как определяется оптимальная температура для обратимых эндотермических процессов?
- 4. Каков характер изменения скорости процесса для обратимых эндо- и экзотермических реакций?
 - 5. От каких параметров зависит скорость обратимой каталитической реакции?
- 6. Как определяется оптимальная температура для обратимых экзотермических реакций?
- 7. Почему скорость обратимой экзотермической реакции при постоянной степени превращения проходит через максимум?
 - 8. Как рассчитывается максимальная скорость процесса в системе Mathcad?
- 9. Как изменяется скорость химической реакции в зависимости от степени превращения?
- 10. Каким образом изменяется температура, обеспечивающая максимальную скорость процесса, в зависимости от степени превращения?

Задание: Построить линию оптимальных температур.

Для построения линии оптимальных температур воспользоваться кинетическими уравнениями, приведенными в методических указаниях. Исходные данные приведены в таблице 3.

Таблица 3 – Варианты заданий

Вариант	Кинетическое уравнение	a	b	Хн	Хк	P
1	окисление SO ₂	6,0	12,7	70	95	0,1
2	окисление SO ₂	7,0	11,3	60	95	0,1
3	окисление SO ₂	8,0	9,8	70	95	0,2
4	окисление SO ₂	8,5	9,4	60	95	0,2
5	синтез аммиака	_	_	4	12	20
6	синтез аммиака	_	_	10	20	30
7	синтез аммиака	_	_	8	18	25
8	синтез метанола	_	_	30	60	15
9	синтез метанола	_	_	20	50	10
10	синтез метанола	_	_	10	30	5

1. Критерии оценивания компетенций

Оценка «отлично» выставляется студенту, если на практических занятиях выполнено все задания с незначительными погрешностями.

Оценка «хорошо» выставляется студенту, если на всех практических занятиях выполнено не менее 80% заданий с незначительными погрешностями.

Оценка «удовлетворительно» выставляется студенту, если на всех практических занятиях выполнено не менее 70% заданий с незначительными погрешностями.

Оценка «неудовлетворительно» выставляется студенту, если , если на всех практических занятиях выполнено менее чем на 70% заданий.

2. Описание шкалы оценивания

Максимально возможный балл за весь текущий контроль устанавливается равным **55.** Текущее контрольное мероприятие считается сданным, если студент получил за него не менее 60% от установленного для этого контроля максимального балла. Рейтинговый балл, выставляемый студенту за текущее контрольное мероприятие, сданное студентом в установленные графиком контрольных мероприятий сроки, определяется следующим образом:

Уровень выполнения контрольного	Рейтинговый балл (в % от максимально-
задания	го балла за контрольное задание)
Отличный	100
Хороший	80
Удовлетворительный	60
Неудовлетворительный	0

3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенний

Текущий контроль обучающихся проводится преподавателями, ведущими практические занятия по дисциплине, в следующих формах:

- Экспресс-метод оценивания знаний.
- Выполнение и защита практического задания.
- Ответы на вопросы преподавателя при проведении практических занятий.

Предлагаемые студенту задания позволяют проверить профессиональные компетенции ПК-4, ПК-7, ПК-8.

Максимальное количество баллов студент получает, если оформление отчета соответствует установленным требованиям, а отчет полностью раскрывает суть работы. Основанием снижения оценки являются:

- недостаточная полнота ответа при оценивании знаний и ответа на вопросы;
- ошибки в выполнении расчетного задания;
- неумение логично и последовательно излагать материал;
- неправильное оформление задания.

Составитель		А.Л. Проскурнин
	(подпись)	
«»	2020 г.	