Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ефанов Алексей Валеменистерство науки и высшего образования Российской Федерации Должность: Директор Невином (ското института (филмал) СКОУ Дата подписания: 11.10.2027 10.05:59

высшего образовательное учреждение высшего образования

Уникальный программный ключ: высшего образования 49214306dd433e7a1b0f8632f64GEBEPO/KABKA3CKИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ
И. о. зав. кафедрой ИСЭиА
_____ Колдаев А.И.
«____»_____20____г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля и промежуточной аттестации по дисциплине «**Теория автоматического управления**»

(ЭЛЕКТРОННЫЙ ДОКУМЕНТ)

Направление подготовки: 15.03.04 Автоматизация технологических процессов и

производств

Направленность (профиль): Информационно-управляющие системы

Квалификация выпускника: Бакалавр Форма обучения: Очная/заочная

Учебный план: 2021 г.

Предисловие

- 1. Назначение: данный фонд оценочных средств предназначен для оценивания уровня сформированности компетенций при проведении текущего контроля успеваемости и промежуточной аттестации студентов, обучающихся по направлению подготовки 15.03.04 «Автоматизация технологических процессов и производств», направленность (профиль) «Информационно-управляющие системы» по дисциплине «Теория автоматического управления»
- 2. Фонд оценочных средств текущего контроля успеваемости и промежуточной аттестации разработан на основе рабочей программы дисциплины «Теория автоматического управления» в соответствии с образовательной программой по направлению подготовки 15.03.04 «Автоматизация технологических процессов и производств», направленность (профиль) «Информационно-управляющие системы» по дисциплине «Теория автоматического управления»
- 3. Разработчик: доцент кафедры Информационных систем, электропривода и автоматики Д.В. Болдырев,
- 4. ФОС рассмотрен и утвержден на заседании кафедры Информационных систем, электропривода и автоматики.
- 5. ФОС согласован с выпускающей кафедрой Информационных систем, электропривода и автоматики.
- 6. Проведена экспертиза ФОС. Члены экспертной группы, проводившие внутреннюю экспертизу:

Председатель: Е.Н. Мельникова — председатель УМК НТИ (филиал) СКФУ

Члены экспертной группы

А.И. Колдаев — и. о зав. кафедрой ИСЭиА

Д.В. Болдырев — доцент кафедры ИСЭиА

Эксперт, проводивший внешнюю экспертизу:

Д.И. Лищенко — ведущий специалист ЦЦРТО КИПиА АО «Невинномысский Азот» Экспертное заключение: фонд оценочных средств соответствует ОП ВО по направлению подготовки 15.03.04 «Автоматизация технологических процессов и производств», направленность (профиль) «Информационно-управляющие системы» и рекомендуется для оценивания уровня сформированности компетенций при проведении текущего контроля успеваемости и промежуточной аттестации студентов по дисциплине «Теория автоматического управления».

7. Срок действия ФОС: на срок реализации образовательной программы.

Паспорт фонда оценочных средств

для проведения текущего контроля и промежуточной аттестации по дисциплине «Теория автоматического управления»

Направление подготовки: 15.03.04 Автоматизация технологических процессов и

производств

Направленность (профиль): Информационно-управляющие системы

Квалификация выпускника: Бакалавр

Форма обучения: Очная/заочная

Учебный план: 2021 г.

Код	Этап форми-	Средства и	Вид кон-	Тип кон-	Наиме-	Количе	ество
оцени-	рования ком-	техноло-	троля,	троля	нование	задани	й для
ваемой	петенции (№	гии оценки	аттеста-		оценоч-	каждог	O'
компе-	темы)		ции		ного	уровня	
тенции					средства	Базо-	Повы
						вый	вы-
							шен-
							ный
OK-5	Темы: 1-6	Собеседо-	Текущий	Устный	Вопросы	73	42
ОПК-4		вание			для собе-		
					седова-		
					ния		
OK-5	Темы: 1-6	Устный	Проме-	Устный	Вопросы	17	23
ОПК-4		экзамен	жуточ-		к устно-		
			ный		му экза-		
					мену		

Составитель: Д.В. Болдырев

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Вопросы для собеседования по дисциплине «Теория автоматического управления»

Базовый уровень

Тема 1. Основные понятия и определения

- 1. Что является объектом управления?
- 2. Что является целью управления?
- 3. Из каких элементов состоит АСР? Как они связаны между собой?
- 4. Каково назначение регулирующего параметра?
- 5. В чем достоинства и недостатки АСР по возмущению? АСР по отклонению?
- 6. Что такое обратная связь? В каких АСР (по возмущению или по отклонению) она используется? Какова ее роль в процессе регулирования?
- 7. Чем обеспечивается большая точность регулирования в комбинированных АСР?
- 8. Чем отличается программная ACP от следящей и они обе от стабилизирующей ACP?
- 9. По какому признаку можно отличить статическую АСР от астатической?
- 10. Что называется автоматическим регулятором?

Тема 2. Математическое описание систем автоматического управления

- 1. Что называется статической характеристикой объекта регулирования?
- 2. У каких объектов нет статической характеристики?
- 3. Что называется динамической характеристикой объекта?
- 4. Что понимают под переходным процессом в объекте?
- 5. Что называется постоянной времени объекта регулирования?
- 6. Что называется коэффициентом усиления объекта регулирования?
- 7. Что называется кривой разгона?
- 8. Что называется временными характеристиками системы?
- 9. Какие типовые воздействия вам известны?
- 10. Что называется переходной характеристикой?
- 11. Что называется переходной функцией?
- 12. Что понимается под единичным импульсным воздействием?
- 13. Что называется импульсной переходной характеристикой?
- 14. Что называется импульсной переходной (или весовой) функцией?
- 15. Что называется амплитудно-частотной характеристикой (АЧХ) системы?
- 16. Что называется фазо-частотной характеристикой (ФЧХ) системы?
- 17. Что называется типовым звеном АСР?
- 18. Запишите уравнение движения усилительного звена и получите с помощью него соответствующую передаточную функцию.
- 19. Приведите пример усилительного звена.
- 20. Запишите уравнение движения интегрирующего звена и получите с помощью него соответствующую передаточную функцию.
- 21. Приведите пример интегрирующего звена.
- 22. Запишите уравнение движения апериодического звена и получите с помощью него соответствующую передаточную функцию.
- 23. Приведите пример апериодического звена.

- 24. Запишите уравнение движения дифференцирующего звена и получите с помощью него соответствующую передаточную функцию.
- 25. Приведите пример дифференцирующего звена.
- 26. Запишите уравнение движения колебательного звена и получите с помощью него соответствующую передаточную функцию.
- 27. Приведите пример колебательного звена.
- 28. Запишите уравнение движения звена запаздывания и получите с помощью него соответствующую передаточную функцию.
- 29. Приведите пример звена запаздывания.
- 30. Что называется последовательным соединением звеньев?
- 31. Чему равна передаточная функция последовательно соединенных звеньев?
- 32. Что называется параллельным соединением звеньев?
- 33. Чему равна передаточная функция параллельно соединенных звеньев?
- 34. Что называется встречно-параллельным соединением звеньев?
- 35. Чему равна передаточная функция встречно-параллельного соединения звеньев?

Тема 3. Устойчивость линейных систем автоматического управления

- 1. Что называется устойчивой САУ?
- 2. Дайте понятие устойчивости «в малом» и «в большом».
- 3. В чем заключается необходимое и достаточное условие устойчивости САУ?
- 4. Сформулируйте критерий устойчивости Гурвица.
- 5. Каков порядок составления определителя Гурвица?
- 6. Сформулируйте критерий устойчивости Рауса.
- 7. Как составляется таблица Рауса?
- 8. Сформулируйте критерий устойчивости Михайлова.
- 9. Сформулируйте критерий устойчивости Найквиста.
- 10. Как штрихуется граница D-разбиения?

Тема 4. Качество линейных систем автоматического управления

- 1. Что называется временем регулирования?
- 2. Как определяется перерегулирование?
- 3. Что называется степенью затухания?
- 4. Что такое колебательность переходного процесса?
- 5. Какие методы исследования качества относятся к косвенным?

Тема 5. Синтез линейных систем автоматического управления

- 1. В чем состоит задача анализа САУ?
- 2. В чем состоит задача синтеза САУ?
- 3. Что называется корректирующими элементами или корректирующими устройствами (КУ)?

Тема 6. Нелинейные системы автоматического управления

- 1. Что такое автоколебания?
- 2. При каких условиях применим метод гармонической линеаризации?
- 3. Аналитические и графические способы определения параметров автоколебаний.
- 4. Аналитические и графические способы исследования устойчивости режима.
- 5. Сформулируйте правило для направления движения изображающей точки по фазовым траекториям.
- 6. В чем заключается метод фазовой плоскости и его особенности?
- 7. Охарактеризуйте сходства и различия графических изображений в виде переходных процессов и фазовых траекторий.

- 8. Как можно судить об устойчивости и качестве движения системы по фазовому портрету?
- 9. Какие автоматические системы управления можно исследовать методом фазового пространства?
- 10. Какие системы регулирования относятся к классу систем с переменной структурой?

Повышенный уровень

Тема 1. Основные понятия и определения

- 1. В чем сущность способа регулирования по возмущению? по отклонению?
- 2. Почему в АСР по отклонению может возникать запаздывание регулирующего воздействия и как это сказывается на точности регулирования?
- 3. Может ли обратная связь в АСР полностью компенсировать действие возмущений?

Тема 2. Математическое описание систем автоматического управления

- 1. Как получают динамическую характеристику объекта?
- 2. Чем отличаются переходные процессы в устойчивых, нейтральных и неустойчивых объектах?
- 3. Как графически определить параметры объекта регулирования (постоянную времени и коэффициент усиления)?
- 4. Дайте определение передаточной функции элемента системы.
- 5. Запишите математическое выражение единичного ступенчатого воздействия.
- 6. Дайте определение амплитудно-фазовой частотной характеристике (AФЧX) системы.
- 7. Перечислите типовые звенья АСР.
- 8. Запишите частотную передаточную функцию усилительного звена и получите с помощью него соответствующую АЧХ и ФЧХ.
- 9. Запишите частотную передаточную функцию интегрирующего звена и получите с помощью него соответствующую АЧХ и ФЧХ.
- 10. Запишите частотную передаточную функцию апериодического звена и получите с помощью него соответствующую АЧХ и ФЧХ.
- 11. Запишите частотную передаточную функцию дифференцирующего звена и получите с помощью него соответствующую АЧХ и ФЧХ.
- 12. Запишите частотную передаточную функцию колебательного звена и получите с помощью него соответствующую АЧХ и ФЧХ.
- 13. Запишите частотную передаточную функцию звена запаздывания и получите с помощью него соответствующую АЧХ и ФЧХ.
- 14. Докажите, чему равна передаточная функция последовательно соединенных звеньев
- 15. Докажите, чему равна передаточная функция параллельно соединенных звеньев
- 16. Докажите, чему равна передаточная функция встречно-параллельного соединения звеньев
- 17. Сформулируйте основные правила эквивалентного преобразования структурных схем.

Тема 3. Устойчивость линейных систем автоматического управления

- 1. Приведите классификацию методов исследования устойчивости.
- 2. Сформулируйте теоремы Ляпунова об устойчивости линеаризованных систем.
- 3. Чем объясняется наиболее широкое практическое применение частотных критериев устойчивости?
- 4. Как производится D-разбиение в плоскости одного параметра?

- 5. Как производится D-разбиение в плоскости двух параметров?
- 6. Как построить особые прямые?
- 7. Как построить области устойчивости в плоскости a_1 и a_2 коэффициентов характеристического уравнения системы регулирования вида $a_0p^n+a_1p^{n-1}+...+a_{n-1}p+a_n=0$?

Тема 4. Качество линейных систем автоматического управления

- 1. Что понимается под оптимальным процессом регулирования?
- 2. Что такое степень устойчивости?
- 3. Что такое колебательность системы?
- 4. Какие интегральные оценки вам известны?

Тема 5. Синтез линейных систем автоматического управления

- 11. Что называется последовательной коррекцией? параллельной коррекцией?
- 12. Как влияет введение жесткой обратной связи на динамические свойства системы?
- 13. Как влияет введение гибкой обратной связи на динамические свойства системы?

Тема 6. Нелинейные системы автоматического управления

- 1. В чем заключается гармоническая линеаризация?
- 2. Каков порядок определения параметров автоколебаний методом гармонического баланса?
- 3. Дайте понятие скользящего процесса.
- 4. Запишите уравнение движения изображающей точки в скользящем процессе.
- 5. Как влияют параметры прямой цепи системы на скользящий процесс?
- 6. Как влияют параметры обратной связи на скользящий процесс?
- 7. Что такое скользящий режим и как его можно получить в системе с переменной структурой?
- 8. Почему ключевые элементы в системе с переменной структурой называются логическими переключающими устройствами?

1. Критерии оценивания компетенций

Оценка «зачтено» выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения. Допускаются некоторые неточности, недостаточно правильные формулировки в изложении программного материала, затруднения при выполнении практических работ.

Оценка «не зачтено» выставляется студенту, если он не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические задания.

2. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедура проведения данного оценочного мероприятия включает в себя: вопросы для определения уровня освоения знаний по предложенным темам.

Предлагаемые студенту вопросы позволяют проверить компонент компетенции:

Знать: принципы саморазвития и самореализации, принципы автоматизации производства.

Уметь: использовать собственный творческий потенциал, разрабатывать обобщенные варианты решения проблем, связанных с автоматизацией производства.

Владеть: навыками самообразования, навыками анализа вариантов оптимального прогнозирования последствий принятого решения.

Предлагаемые студенту задания позволяют сформировать у студентов систему профессиональных знаний, позволяющих успешно осуществлять деятельность в области автоматизации технологических процессов и производств.

Вопросы повышенного уровня требуют от студентов умения анализировать и обобщать важные проблемы деятельности в области автоматизации технологических процессов и производств.

Для подготовки к данному оценочному мероприятию необходимо подготовить ответы на вопросы в устной форме. При подготовке к ответу студенту предоставляется право пользования любыми справочными материалами, предложенными в рабочей программе дисциплины.

При проверке задания, оцениваются знания основных положений, регламентирующих деятельность в области автоматизации технологических процессов и производств.

Оценочный лист

№	Фами-	Вид работы						Итог
Π/Π	лия,	Соответ-	Раскры-	Ясность,	Обосно-	Самосто-	Четкость,	
	ИМЯ	ствие от-	тие про-	четкость,	ванность	ятель-	обосно-	
	студен-	вета зада-	блемы,	логич-	излагае-	ность в	ванность,	
	та	нию	темы	ность,	мой пози-	формули-	научность	
				научность	ции, отве-	ровке по-	выводов	
				изложе-	та	зиции		
				ния				
1								
2								

Составитель: Д.В. Болдырев

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Вопросы к экзамену по дисциплине «Теория автоматического управления»

Базовый уровень

- 1. Системы автоматического управления
- 2. Классификация систем автоматического управления
- 3. Виды систем автоматического управления
- 4. Статические и астатические системы автоматического управления
- 5. Фундаментальные принципы управления
- 6. Фундаментальные законы управления
- 7. Уравнения статики и динамики систем управления
- 8. Временные и частотные характеристики систем управления
- 9. Элементарные динамические звенья
- 10. Типовые динамические звенья и их характеристики
- 11. Понятие об устойчивости систем управления. Корневой критерий устойчивости
- 12. Оценка качества систем автоматического управления. Корневые методы оценки качества
- 13. Постановка задачи синтеза систем автоматического управления
- 14. Понятие о нелинейных системах автоматического управления
- 15. Типовые нелинейные элементы и их характеристики
- 16. Автоколебания в нелинейных системах
- 17. Абсолютная устойчивость нелинейных систем. Критерий Попова

Повышенный уровень

- 1. Линеаризация уравнений статики и динамики систем управления
- 2. Передаточные функции систем управления
- 3. Структурные схемы систем управления. Эквивалентные преобразования структурных схем
- 4. Алгебраические критерии устойчивости
- 5. Частотные критерии устойчивости. Принцип аргумента
- 6. Критерий устойчивости Михайлова
- 7. Критерий устойчивости Найквиста
- 8. Построение областей устойчивости в плоскости одного параметра системы
- 9. Построение областей устойчивости в плоскости двух параметров системы
- 10. Оценка качества систем автоматического управления по переходным характеристика
- 11. Оценка качества систем автоматического управления по частотным характеристика
- 12. Оценка точности систем автоматического управления
- 13. Интегральные оценки качества систем автоматического управления
- 14. Синтез корректирующих устройств

- 15. Повышение точности системы в установившемся режиме
- 16. Повышение запаса устойчивости системы в установившемся режиме
- 17. Введение производной в закон регулирования
- 18. Введение интеграла в закон регулирования
- 19. Исследование нелинейных систем методом фазовой плоскости
- 20. Исследование нелинейных систем методом изоклин
- 21. Исследование нелинейных систем методом припасовывания
- 22. Исследование нелинейных систем методом точечных преобразований
- 23. Исследование нелинейных систем методом гармонической линеаризации

1. Критерии оценивания компетенций

Оценка «отлично» выставляется студенту, если он имеет глубокие знания об аналитических и численных методах анализа математических моделей технических систем и технологических процессов; умеет использовать современные методы системного анализа процессов и принятия решений в системах управления, методы и инструментальные средства моделирования при исследовании и проектировании систем управления; уверенное владеет методами математического моделирования и автоматизированного проектирования при разработке и совершенствовании программно-технических средств и систем автоматизации и управления.

Оценка «хорошо» выставляется студенту, если он знает аналитические и численные методы анализа математических моделей технических систем и технологических процессов; умеет использовать современные методы системного анализа процессов и принятия решений в системах управления, методы и инструментальные средства моделирования при исследовании и проектировании систем управления; владеет методами математического моделирования и автоматизированного проектирования при разработке и совершенствовании программно-технических средств и систем автоматизации и управления.

Оценка «удовлетворительно» выставляется студенту, если он имеет поверхностные знания об аналитических и численных методах анализа математических моделей технических систем и технологических процессов; ограниченно умеет использовать современные методы системного анализа процессов и принятия решений в системах управления, методы и инструментальные средства моделирования при исследовании и проектировании систем управления; неуверенно владеет методами математического моделирования и автоматизированного проектирования при разработке и совершенствовании программнотехнических средств и систем автоматизации и управления.

Оценка «неудовлетворительно» выставляется студенту, если он не знает аналитические и численные методы анализа математических моделей технических систем и технологических процессов; не умеет использовать современные методы системного анализа процессов и принятия решений в системах управления, методы и инструментальные средства моделирования при исследовании и проектировании систем управления; не умеет применять методы математического моделирования и автоматизированного проектирования при разработке и совершенствовании программно-технических средств и систем автоматизации и управления.

2. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедура проведения данного оценочного мероприятия включает в себя: вопросы для определения уровня освоения знаний по предложенным темам.

Предлагаемые студенту вопросы позволяют проверить компонент компетенции:

Знать: принципы саморазвития и самореализации, принципы автоматизации производства.

Уметь: использовать собственный творческий потенциал, разрабатывать обобщенные варианты решения проблем, связанных с автоматизацией производства.

Владеть: навыками самообразования, навыками анализа вариантов оптимального прогнозирования последствий принятого решения.

Предлагаемые студенту задания позволяют сформировать у студентов систему профессиональных знаний, позволяющих успешно осуществлять деятельность в области автоматизации технологических процессов и производств.

Вопросы повышенного уровня требуют от студентов умения анализировать и обобщать важные проблемы деятельности в области автоматизации технологических процессов и производств.

Для подготовки к данному оценочному мероприятию необходимо подготовить ответы на вопросы в устной форме. При подготовке к ответу студенту предоставляется право пользования любыми справочными материалами, предложенными в рабочей программе лисциплины.

При проверке задания, оцениваются знания основных положений, регламентирующих деятельность в области автоматизации технологических процессов и производств.

Опеночный лист

No	Фами-	Вид работы						Итог
Π/Π	лия,	Соответ-	Раскры-	Ясность,	Обосно-	Самосто-	Четкость,	
	имя	ствие от-	тие про-	четкость,	ванность	ятель-	обосно-	
	студен-	вета зада-	блемы,	логич-	излагае-	ность в	ванность,	
	та	нию	темы	ность,	мой пози-	формули-	научность	
				научность	ции, отве-	ровке по-	выводов	
				изложе-	та	зиции		
				ния				
1								
2								

Составитель: Д.В. Болдырев

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Оценочные средства для курсовой работы

по дисциплине «Теория автоматического управления»

1. Примерная тематика курсовых работ

Направление	Примерная тематика
деятельности	
Научно-	1. Анализ устойчивости линейной системы автоматического
исследовательская	регулирования
	2. Синтез линейной системы автоматического регулирования из
	условия устойчивости
	3. Синтез линейной системы автоматического регулирования по
	критерию максимальной степени устойчивости
	4. Синтез линейной системы автоматического регулирования по
	критерию равной степени затухания

2. Структура работы

1. Аналитический раздел

Уровень	Формулировка задания	Контролируем	ые компетенциі	и или их части
обученност		Общекульту	Общепрофес	Профессиона
И		рные	сиональные	льные
		компетенции	компетенции	компетенции
ЗНАТЬ	Правила и приемы	ОК-5	ОПК-4	
	идентификации объектов			
	управления			
УМЕТЬ	Строить математическую	ОК-5	ОПК-4	
	модель объекта управления			
ВЛАДЕТЬ	Методиками идентификации	ОК-5	ОПК-4	
	объекта управления			

2. Расчетный раздел

Уровень	Формулировка задания	Контролируемые компетенции или их части		
обученност		Общекульту	Общепрофес	Профессиона
И		рные	сиональные	льные
		компетенции	компетенции	компетенции
ЗНАТЬ	Правила расчета параметров	ОК-5	ОПК-4	
	автоматических регуляторов			
	Показатели качества процесса			
	управления			
УМЕТЬ	Определять структуру и	ОК-5	ОПК-4	
	параметры устройств			
	управления			

	Оценивать качество процесса			
	управления			
ВЛАДЕТЬ	Методиками расчета	ОК-5	ОПК-4	
	параметров автоматических			
	регуляторов			
	Методиками оценки качества			
	процесса регулирования			

1. Критерии оценивания компетенций

Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал монографической литературы, правильно обосновывает принятое решение, владеет разносторонними навыками и приемами выполнения практических задач.

Оценка «хорошо» выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практических работ.

Оценка «неудовлетворительно» выставляется студенту, если он не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы. Отметка «неудовлетворительно» выставляется также, если обучающийся отказался защищать курсовой проект.

2. Описание шкалы оценивания

Рейтинговая оценка знаний студентов заочной формы обучения не предусмотрена.

3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенний

Процедура проведения данного оценочного мероприятия осуществляется в соответствии Положением о выполнении и защите курсовых работ (проектов) в СКФУ. Предлагаемые студенту задания позволяют проверить компетенции ОК-5, ОПК-4.

При выполнении курсовой работы студент должен:

- изучить теоретический материал;
- выполнить идентификацию объекта управления;
- выполнить расчет системы автоматического регулирования;
- оформить полученные результаты в соответствии с требованиями ГОСТ;
- представить их к защите.

При проверке проекта, оцениваются:

- соответствие выполненной работы заданию;
- правильность расчетеов параметров системы регулирования.

При защите проекта учитываются:

- знание теоретического материала и основной терминологии;
- умение применять теоретические знания для решения практических задач;
- качество представления результатов;

- степень самостоятельности при решении поставленной задачи;
- своевременность выполнения работы. Оценочный лист:

№	Фамилия И.О.	Оценка уровня	Оценка метода	Оценка качества	Оценка досто-
	студента	теоретической	решения задачи	представления	верности полу-
		подготовки	синтеза системы	результатов	ченных резуль-
			управления		татов

Составитель	_		(подпись)	Д.В. Болдырев
« »	20	Γ.		