МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Невинномысский технологический институт (филиал)

А.И. Свидченко

КОНСТРУИРОВАНИЕ И РАСЧЕТ ЭЛЕМЕНТОВ ОБОРУДОВАНИЯ ОТРАСЛИ

Методические указания по выполнению лабораторных работ

Направление подготовки — 15.03.02 Технологические машины и оборудование Профиль подготовки: Проектирование технических и технологических комплексов

Квалификация (степень) выпускника бакалавр

УДК: ББК С24 Печатается по решению УМС НТИ (филиал) Северо-Кавказского федерального университета

Рецензенты: доцент кафедры химической технологии, машин и аппаратов химических производств, канд. хим. наук A.Л. Проскурнин; начальник отдела технического развития AO «Невинномысский Азот» A.М. Новоселов

Составитель: А.И. Свидченко

С24 Конструирование и расчет элементов оборудования отрасли. Методические указания по выполнению лабораторных работ. / — Невинномысск: Изд-во НТИ (филиал) СКФУ, 2020. - 37 с.

Методические указания подготовлены в соответствии с программой дисциплины «Конструирование и расчет элементов оборудования отрасли», разработанной в соответствии с требованиями ФГОС ВО направления подготовки бакалавров. Последовательно изложены основы теории в соответствии с темой занятия, порядок проведения лабораторных работ, перечень вопросов для обсуждения и самоподготовки, а также список рекомендуемой литературы [1-10]. Предназначено для получения знаний по дисциплине «Конструирование и расчет элементов оборудования отрасли» студентами направления подготовки: 15.03.02 Технологические машины и оборудование.

УДК ББК

- © Свидченко А.И.
- © ФГАОУ ВПО «Северо-Кавказский федеральный университет», Невинномысский технологический институт (филиал), 2020

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ4
ВВЕДЕНИЕ6
Лабораторная работа №1. Определение напряжений, действующих в стенках
цилиндрического сосуда с эллиптическими днищами под действием
внутреннего избыточного давления7
Лабораторная работа №2. Определение напряженного состояния
цилиндрической оболочки под действием внешнего давления и осевой
сжимающей силы
Лабораторная работа №3. Практическое изучение условий работы разъемных
соединений в аппаратах, трубопроводах, арматуре9
Лабораторная работа №4. Практическое изучение условий работы разъемных
соединений в сосудах и аппаратах высокого давления10
Лабораторная работа №5. Расчет вертикального аппарата на устойчивость . 11
Лабораторная работа №6. Исследование напряженно-деформированного
состояния колец в оборудовании16
Лабораторная работа №7. Исследование напряженно-деформированного
состояния бандажей тихоходных барабанов17
Лабораторная работа №8. Исследование напряженного состояния
быстровращающихся деталей машин
Лабораторная работа №9. Изучение способов динамической балансировки
валов машинного оборудования
Лабораторная работа №10. Определение критической скорости вращения вала
машинного оборудования26
ЛИТЕРАТУРА

ПРЕДИСЛОВИЕ

Методические указания составлены на современном научном уровне и рассчитаны на студентов, обладающих достаточной подготовкой по разделам дисциплин: техническая механика, материаловедение, технология конструкционных материалов и др.

Методические указания составлены для проведения лабораторных занятий по дисциплине «Конструирование и расчет элементов оборудования отрасли» с учетом требований стандарта третьего поколения ФГОС ВО для подготовки бакалавров направления 15.03.02 Технологические машины и оборудование.

При подготовке издания учтены основные изменения в программе дисциплины и тенденции ее развития. Последовательность разделов соответствует логической структуре курса. Предлагаемые методические указания включают материал, который используется при подготовке и проведении лабораторных занятий. В конце каждого материала занятий представлены вопросы для контроля знаний студента. В результате освоения материала методических указаний по дисциплине «Конструирование и расчет элементов оборудования отрасли» ОП студент приобретает следующие компетенции:

общекультурные: ОК-7: способен к самоорганизации и самообразованию; общепрофессиональные: ОПК-4: понимает сущность и значение информации в развитии современного общества, способен получать и обрабатывать информацию из различных источников, готов интерпретировать, структурировать и оформлять информацию в доступном для других виде;

профессиональные: ПК-5: способен принимать участие в работах по расчету и проектированию деталей и узлов машиностроительных конструкций в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования; ПК-6: способен разрабатывать рабочую проектную и техническую документацию, оформлять законченные проектно-конструкторские работы с проверкой соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим

нормативным документам; ПК-9: умеет применять методы контроля качества изделий и объектов в сфере профессиональной деятельности, проводить анализ причин нарушений технологических процессов и разрабатывать мероприятия по их предупреждению.

Содержание методических указаний соответствует требованиям Федерального государственного образовательного стандарта высшего профессионального образования к содержанию дисциплины «Конструирование и расчет элементов оборудования отрасли» для студентов направления 15.03.02 Технологические машины и оборудование.

ВВЕДЕНИЕ

Приобретаемые компетенции ОП при освоении материала методических указаний – ОК-7, ОПК-4, ПК-5, ПК-6, ПК-9. Изучив этот материал, бакалавр будет:

3НАТЬ - свойства и принципы выбора конструкционных материалов с

учетом их физических и химических свойств, условий работы;

УМЕТЬ - выбирать конструкционные материалы, методики конструи-

рования и расчета машин и оборудования, включая использо-

вание стандартных средств автоматизации проектирования;

ВЛАДЕТЬ - методами конструирования и расчета основных технологи-

ческих машин и оборудования химических производств.

Ниже приведены материалы для лабораторных и практических занятий, рассматриваемые по основным темам дисциплины, согласно ФГОС ВО и рабочей учебной программы.

Лабораторная работа №1. Определение напряжений, действующих в стенках цилиндрического сосуда с эллиптическими днищами под действием внутреннего избыточного давления.

Лабораторная работа №2. Определение напряженного состояния цилиндрической оболочки под действием внешнего давления и осевой сжимающей силы.

Лабораторная работа №3. Практическое изучение условий работы разъемных соединений в аппаратах, трубопроводах, арматуре.

Лабораторная работа выполняется в соответствии с методическими указаниями преподавателя с использованием литературных источников [5-9].

Лабораторная работа №4. Практическое изучение условий работы разъемных соединений в сосудах и аппаратах высокого давления.

Лабораторная работа выполняется в соответствии с методическими указаниями преподавателя с использованием литературных источников [5-9].

Лабораторная работа №5. Расчет вертикального аппарата на устойчивость

Цель: изучение методик расчета колонных аппаратов на прочность и устойчивость с применением ЭВМ.

Организационная форма занятия – индивидуальные занятия с применением ПЭВМ.

Вопросы для обсуждения

- 1. Разновидности колонных аппаратов химических производств.
- 2. Что понимают под прочностными расчетами сосудов и аппаратов?
- 3. В каких случаях необходим расчет оборудования на устойчивость?
- 4. В каких случаях колонный аппарат может считаться устойчивым?

Методические рекомендации

Для подготовки к проведению лабораторной работы необходимы знания теоретических материалов, связанных с расчетами колонных аппаратов на прочность и устойчивость.

Расчет на прочность является одним из завершающих этапов создания технического проекта массообменной колонны. При расчете вертикальных аппаратов на прочность решают следующие задачи:

- определяют толщины стенок корпуса, днищ, крышек, штуцеров;
- определяют размер максимального одиночного отверстия на корпусе,
 не подлежащего укреплению;
 - рассчитывают укрепления всех отверстий большего диаметра;
 - рассчитывают фланцевые соединения;
- проводят расчет на действие ветровых и сейсмических сил, собственного веса колонны с трубопроводами, теплоизоляцией, площадками и др.

При расчете на ветровые нагрузки аппарат рассматривают в трех состояниях:

- при рабочих условиях;
- при испытании;

после монтажа.

Расчет включает:

- выбор размеров опорной поверхности фундаментного кольца и про-

верку фундамента на напряжения сжатия;

определение толщины фундаментного кольца и других элементов опо-

ры;

– расчет аппарата на устойчивость против опрокидывания;

– расчет прочности сварного шва, соединяющего опору с колонной;

проверку устойчивости формы опоры;

– проверку устойчивости формы корпуса в нижней части.

Создаваемые модели прочностных расчетов в основном следуют [4-8] и

требованиям группы стандартов «Сосуды и аппараты. Нормы и методы расче-

тов на прочность». Как показал опыт, хорошие результаты дает применение ин-

тегрированной системы MathCAD.

Такие программы позволяют использовать в расчетах необходимые спра-

вочные данные в виде графиков или таблиц (после преобразования их в масси-

вы-матрицы) для автоматического выбора требуемых значений или создания

интерполяционных функций. Результаты ряда вычислений могут быть пред-

ставлены в графической форме, что повышает их наглядность. В отличие от

других математических систем MathCAD обладает свойствами текстового ре-

дактора и позволяет оформлять результаты расчетов как проектные документы.

Фрагменты программы прочностного расчета массообменной колонны

(на примере абсорбера) в системе MathCAD в части блока исходных данных,

определения допускаемых напряжений материала и расчета толщины стенки

корпуса приведены ниже.

Исходные данные:

Диаметр аппарата внутренний: D:=2400 мм

Рабочая температура в аппарате: T:=40 C°

Давление в аппарате: Р:=3.6 МПа

Материал аппарата: сталь 12ХМ

12

Предел текучести материала: от:=240 МПа

Предел временной прочности материала: ов:=450 МПа

Предел длительной прочности материала: $\sigma_{\text{Д}}$:=410 МПа

Коэффициент прочности сварного шва: ϕ :=.9

Высота аппарата: х:=45000 мм

Номер района на карте районирования по скоростным напорам ветра: No:=1

Объем аппарата: V:=204 м³

Аэродинамический коэффициент аппарата: с:=.7

Модуль продольной упругости стенки аппарата: Е:=200 МПа

Коэффициент упругого неравномерного сжатия грунта: C_{ϕ} :=100 MH/м³

Сейсмичность района в баллах: z:=7

Плотность абсорбента: $\rho := 965 \text{ кг/м}^3$

Диаметр аппарата с теплоизоляцией: D_{и3}:= D·1.01

Число фундаментных болтов: пф:=6

Скорость коррозии: V_K :=.1 мм в год

Срок службы: К:=10 лет

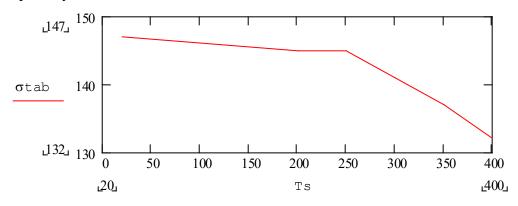


Рисунок 2.1 - Зависимость нормативных допускаемых напряжений от температуры для стали 12XM

Толщина стенки аппарата по кольцевым напряжениям:

При рабочих условиях

$$S1 := \frac{P_r \cdot D}{2 \cdot \sigma_{\text{HOII}} \cdot \phi - P_r}$$

S 1=37.206 mm

При условиях гидроиспытания

$$S2 := \frac{P_i \cdot D}{2 \cdot \sigma_{II} \cdot \phi - P_i}$$

S 2=34.14 mm

Определение наибольшей толщины

 $S:=So_r+C$

Округление до ближайшего большего целого числа

S:=ceil(S)

S = 39 MM

Указания по технике безопасности

Для безопасного проведения практических занятий в классе ЭВМ необходимо:

- перед началом работы проверить, чтобы ЭВМ была заземлена и все токоведущие части закрыты;
 - проводить работу только в присутствии лаборанта;
 - выполнять работу в строгом соответствии с методическими указаниями.

Методика выполнения работы

Задания выполняются по вариантам. В качестве исходных данных используются результаты технологического проектирования ректификационной или абсорбционной колонны.

Для использования имеющейся программы кафедры *Вертикальный аппарат* ее следует загрузить в ЭВМ (необходимо иметь навыки работы с программами в системе MathCAD). Результаты расчета толщины стенки корпуса, днищ и опоры необходимо скопировать и перенести в *Word*. Полученные результаты необходимо сопроводить комментариями.

Конструирование, материальное оформление и прочностные расчеты позволяют разработать *чертеж общего вида* массообменной колонны для оформления заказа на изготовление.

Содержание отчета

В отчете о выполненной лабораторной работе должны содержаться следующие данные:

1. Дата выполнения и цель работы.

- 2. Краткие сведения о содержании расчетов.
- 3. Основные результаты расчетов.
- 4. Выводы.

Контрольные вопросы

- 1. Для каких целей проводят прочностной расчет колонных сосудов и аппаратов?
 - 2. Какие виды нагрузок учитывают для колонного оборудования?
 - 3. Для каких состояний вертикальных аппаратов проводят расчеты?
- 4. Сочетание каких нагрузок для вертикальных колонн наименее благоприятное?
- 5. Для каких целей используют результаты прочностного расчета колонного оборудования?

Лабораторная работа №6. Исследование напряженно-деформированного состояния колец в оборудовании.

Лабораторная работа №7. Исследование напряженно-деформированного состояния бандажей тихоходных барабанов.

Лабораторная работа №8. Исследование напряженного состояния быстровращающихся деталей машин.

Лабораторная работа №9. Изучение способов динамической балансировки валов машинного оборудования.

Цель: Практическое ознакомление с конструкцией балансировочных стендов и приобретение навыков динамической балансировки вала машинного оборудования.

Организационная форма занятия – традиционная.

Вопросы для обсуждения

- 1. Вибрации машинного оборудования. Что служит их источником?
- 2. Каковы пути снижения динамических колебаний машин?
- 3. Назначение балансировочных стендов и их разновидности.
- 4. Сущность методики балансировки валов машинного оборудования.

Методические рекомендации

Для подготовки к проведению лабораторной работы необходимы знания теоретических материалов, связанных с конструкциями, принципами работы стендов для динамической балансировки роторов машин.

Статическая балансировка не дает возможности обнаружить неуравновешенные пары сил и иногда может быть причиной их появления в длинных роторах (см. рисунок 9.1).

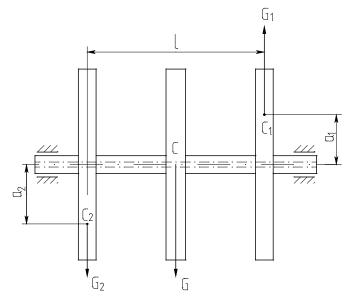


Рисунок 9.1 — Схема, поясняющая возникновение динамической неуравновешенности: С — центр тяжести ротора, совпадающий с осью его вращения; С₁ и С₂ — центры тяжести отдельных элементов ротора, смещенные от оси вращения; a_1 и a_2 — плечи (эксцентриситеты) неуравновешенных сил тяжести G_1 и G_2

Во всяком случае, всегда остается некоторая неуравновешенность ротора

вследствие трения цапф балансируемого ротора о другие приспособления для балансировки.

Динамическая неуравновешенность заключается в том, что, несмотря на расположение центра тяжести ротора на оси его вращения, вследствие неравномерного распределения массы по длине ротора при вращении возникают пары центробежных сил, которые вызывают вибрацию машины (рисунок 9.1).

Динамическая неуравновешенность характерна для роторов, имеющих значительное отношение длины к диаметру (роторы многоступенчатых центробежных машин, коленчатые валы многоцилиндровых поршневых машин и др.).

При динамической балансировке подбирают пару таких грузов, чтобы образуемый при их вращении момент уравновешивал момент, возникающий вследствие несбалансированности ротора.

Для динамической балансировки применяют специальные балансировочные станки (стенды), которые позволяют выполнять балансировку роторов массой до нескольких тонн. По конструкции балансировочные устройства могут быть различного типа.

Схема станка с маятниковой рамой для динамической балансировки приведена на рисунке 9.2.

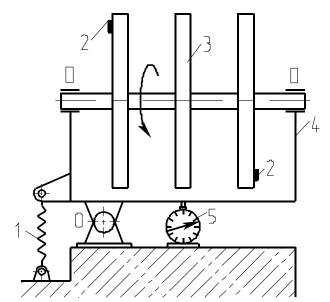


Рисунок 9.2 — Схема станка с маятниковой рамой для динамической балансировки: 1 — пружина; 2 — балансировочный груз; 3 — балансируемый ротор; 4 — рама станка; 5 — индикатор

Любой неуравновешенный ротор можно уравновесить двумя противовесами, расположенными в двух произвольно выбранных плоскостях.

На рисунке 9.2 маятниковая рама станка соединена пружиной с фундаментом и может поворачиваться в вертикальной плоскости вокруг неподвижной горизонтальной оси О.

Балансируемый ротор устанавливают горизонтально в подшипниках П рамы. Плоскость размещения одного из противовесов должна проходить через ось качения рамы. Собственные колебания ротора при невращающемся режиме имеют запирающий характер.

Ротор разгоняют до частоты вращения 350 – 400 об/мин при помощи разгонного устройства и затем наблюдают за выбегом ротора. При этом по индикатору фиксируют максимальную амплитуду колебаний ротора.

Подбирая положения балансировочных грузов на окружности в двух плоскостях, добиваются получения минимальной амплитуды колебаний рамы станка с вращающимся ротором при его «выбеге». Точность динамической балансировки составляет 1-2% от силы тяжести балансируемого ротора.

Наибольшего значения амплитуды колебаний достигают на резонансных режимах. В свою очередь, резонансный режим наступает тем раньше, чем меньше жесткость опоры. Этим свойством опор и пользуются при динамической балансировке роторов. Одна из опор делается гибкой, вторая – жесткой.

Аппаратура и материалы

- 1. Стенд для динамической балансировки.
- 2. Набор грузов.
- 3. Индикатор часового типа.

Указания по технике безопасности

Для безопасного проведения опытной части работы необходимо:

- проводить работу только в присутствии лаборанта;
- пуск установки проводить только при опущенном кожухе.

Методика и порядок выполнения работы

В настоящей работе применяется балансировочный станок рамного типа, схематически изображенный на рисунке 9.3.

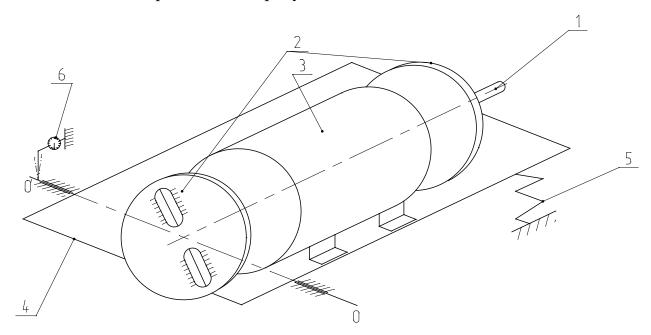


Рисунок 9.3 – Схема опытного стенда для балансировки ротора

Станок состоит из вала 1 с дисками 2. Ротор с валом и дисками укреплен в подшипниковом узле на раме 4, которая может колебаться вокруг оси 00. Восстанавливающий момент при колебаниях рамы создается пружиной 5. Колебания некоторой точки рамы фиксируются с помощью индикатора 6. Вместе с ротором вращаются два диска, в прорези которых (рисунок 9.3) можно устанавливать дополнительный груз на расстоянии г от оси вращения.

Метод, который используется в данной работе для балансировки, называется *методом трех испытательных разгонов*. Известно, что балансировка сводится к решению двух задач:

- 1. Определению диаметральной плоскости расположения уравновешивающих грузов.
 - 2. Определению статических моментов уравновешивающих грузов.

Опытная часть работы проводится в следующем порядке.

- 1. Сообщить ротору вращение с угловой скоростью выше области резонанса и измерить амплитуду колебаний при переходе через резонанс A_0 .
 - 2. Выбрать радиус крепления $r_{\text{п}}$, укрепить пробный груз $m_{\text{пр}}$ (точка 1 ри-

сунок 9.4) и, повторив испытания, измерить амплитуду колебаний A₁.

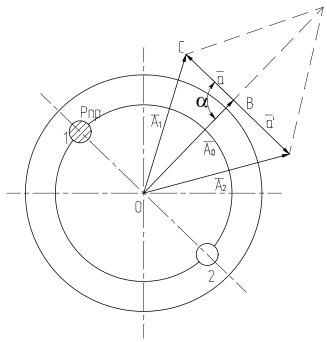


Рисунок 9.4 – Схема к обработке результатов балансировки

- 3. Установить тот же пробный груз в противоположный паз на том же радиусе $\mathbf{r}_{_{\! I}}$; произвести пуск и измерить амплитуду $\grave{A}_{_{\! 2}}.$
 - 4. Рассчитать амплитуду а от действия пробного груза.

Если известны векторы амплитуд $A_{_0}$ и $\grave{A}_{_1}$ (в первых двух испытаниях), то можно определить вектор $a=A_{_1}-A_{_0}$, выражающий вектор амплитуды от пробного груза в точке 1.

Так как во втором испытании груз был закреплен со смещением на 180° , то вектор амплитуды \overline{a}' от действия пробного груза в точке 2 будет $\overline{a}'=-\overline{a}$. Вектор амплитуды \overline{A}_2 будет равен $\overline{A}_2=\overline{A}_0+\overline{a}'$. Если на векторах \overline{A}_1 и \overline{A}_2 построить параллелограмм, то одна диагональ его будет равна 2a, а вторая $-2A_0$. Зная, что сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов двух его сторон, запишем

$$4a^{2} + 4A_{0}^{2} = 2(A_{1}^{2} + A_{2}^{2}), (9.1)$$

откуда

$$a = \sqrt{\frac{A_{_1}^2 + A_{_2}^2}{2} - A_{_0}^2} \ .$$

Из условия, что амплитуда колебаний прямо пропорциональна возмущающей силе, следует

$$a = m_n \cdot r_n \cdot \mu$$

где $\mathbf{m}_{_{n}}$ — масса пробного груза; $\mathbf{r}_{_{n}}$ — радиус крепления пробного груза; $\boldsymbol{\mu}$ — масштабный коэффициент.

Тогда

$$\mu = \frac{a}{m_n \cdot r_n}.$$

5. Определить радиус крепления уравновешивающего груза. (Величина уравновешивающего груза задана $m_{_{\rm V}}=30\,{\rm \, F}$).

Очевидно, что возмущающая сила от уравновешивающего груза должна быть пропорциональна амплитуде небаланса ${\bf A}_{_0}$, тогда

$$\mathbf{m}_{\mathbf{y}}\cdot\mathbf{r}_{\mathbf{y}}=\frac{\mathbf{A}_{\mathbf{0}}}{\mathbf{\mu}},$$

где m_y — масса уравновешивающего груза; r_y — радиус крепления уравновешивающего груза.

Отсюда

$$r_{y} = \frac{A_{0}}{m_{y} \cdot \mu} \cdot$$

6. Вычислить угол поворота диска с закрепленным уравновешивающим грузом.

Из рисунка 4.4 ясно, что вектор силы уравновешивающего груза должен быть направлен противоположно вектору \overline{A}_0 . Поскольку известен угол крепления пробного груза, то остается найти угол α , на который нужно повернуть диск 3 (рисунок 9.3). Угол α легко определить из треугольника ОВС. Применяя к этому треугольнику теорему косинусов, получим:

$$\cos \alpha = \frac{A_0^2 + a^2 - A_1^2}{2A_0 \cdot a}.$$

Используя выражение (9.1), имеем

$$\cos \alpha = \frac{A_2^2 - A_1^2}{4a \cdot A_0}.$$
 (9.2)

Найденное по формуле (9.2) значение угла α неоднозначно, так как каждому значению $\cos \alpha$ отвечают два значения $\pm \alpha$. В связи с этим необходимо провести еще один испытательный разгон. Уравновешивающий груз нужно установить на окружности радиуса r_y под углом к первому положению пробного груза в точке 1 (рисунок 9.4) и, повторив испытание, измерить амплитуду. Если эта амплитуда окажется больше амплитуд A_1 и A_2 , то угол α отложен не в ту сторону. Если же амплитуда будет значительно меньше, то направление отсчета угла α выбрано правильно.

Содержание отчета

В отчете о выполненной работе должны содержаться следующие данные:

- 1. Дата проведения работы.
- 2. Цель работы.
- 3. Дать краткие сведения по теории динамической балансировки.
- 4. Привести и необходимые расчеты и схемы.

Контрольные вопросы

- 1. Что понимают под динамической неуравновешенностью ротора?
- 2. Что представляет собой комбинированная неуравновешенность ротора?
- 3. В чем заключается задача динамической балансировки ротора?
- 4. Какие роторы подвергаются динамической балансировке?
- 5. Как определить положение уравновешивающего груза при балансировке ротора?
 - 6. Как проверить правильность балансировки ротора?

Лабораторная работа №10. Определение критической скорости вращения вала машинного оборудования

Цель: практическое приобретение навыков экспериментального исследования динамических характеристик машин.

Организационная форма занятия – традиционная.

Вопросы для обсуждения

- 1. Разновидности машин химических производств.
- 2. Что понимают под динамическими характеристиками машин?
- 3. Проявления динамики машин положительные и негативные примеры.
- 4. Пути снижения колебаний машинного оборудования.

Методические рекомендации

Для подготовки к проведению лабораторной работы необходимы знания теоретических материалов, связанных с исследованиями динамических характеристик машин.

Наличие дисбаланса «Д» в любом роторе при его вращении в подшипниках относительно корпуса с некоторой угловой скоростью ω , которая может изменяться от нуля до бесконечности (условно), приводит к появлению вращающейся силы на рассматриваемом валу, направленной радиально от центра вращения. Рассмотрим вал, на который с эксцентриситетом e насажен диск массой m (рисунок 10.1).

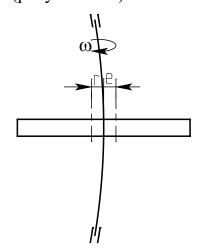


Рисунок 10.1 – Схема прогиба неуравновещенного ротора

В начале движения при начальной угловой скорости $\omega_{\scriptscriptstyle H}$ центробежная сила $F_{\scriptscriptstyle H}$ будет равняться

$$F_{H} = m\omega_{\pi}^{2} \cdot e. \tag{10.1}$$

С ростом скорости вращения ω эта сила будет увеличиваться не только в квадратичной зависимости от числа оборотов, но к ней будет добавляться сила от прогиба вала, вызванного этой силой.

Чем больше будут обороты вала n [об/мин], тем выше угловая скорость ω^2 , т.к. $\omega=\frac{\pi\cdot n}{30}$. При этом вращающаяся нагрузка растет в соответствии с уравнением

$$F_{u\delta} = m\omega^2 \cdot (e + r_{\delta}), \qquad (10.2)$$

где $r_{\text{д}}$ – динамический прогиб вала ротора.

Прогиб вала ротора от роста вращающейся нагрузки будет тоже увеличиваться, что приведет к увеличению составляющей динамического прогиба $r_{_{\rm J}}$ в сравнении со статическим начальным прогибом $y_{_{\rm CT}}$, вызванным силой земного притяжения (весом ротора массы «m», направленным сверху вниз). Величина прогиба вращающегося ротора будет равна

$$r = \frac{m\omega^2(e+r)}{c},$$
 (10.3)

где с – жесткость вала.

Если неподвижный вал подвергнуть кратковременному удару в некотором месте между опорами, то под действием удара вал прогнется от нейтрального положения и под действием упругих сил начнет движение к начальному положению, относительно которого будет в дальнейшем колебаться линейно с частотой собственных поперечных колебаний ω_0 . Из теории колебаний ω_0 определяется формулой

$$\omega_0 = \sqrt{c/m}$$
.

После преобразования можно получить

$$c = m \omega_0^2$$
.

Если подставить это выражение в формулу (10.3), то получим следующее соотношение

$$r = \frac{m\omega^2 e}{m\omega_0^2 - m\omega^2}.$$
 (10.4)

Если постепенно увеличивать угловую скорость вращения вала ω в сравнении с ω_0^2 , то знаменатель выражения (10.4) будет уменьшаться до нуля, и при $\omega = \omega_0$ прогиб г стремится к бесконечности. При скорости вращения вала ω =p, равной собственной частоте ω_0 линейных колебаний, наступает увеличение амплитуды колебаний до больших значений, многократно превышающих статический прогиб у_{ст.} Только наличие трения о воздух, трения внутри материала вала, трения в опорах не дает увеличения прогиба до бесконечности и поломки ротора. Такой режим вращения вала называют критическим, и ему соответствует критическая скорость вращения $\omega_{\rm kp}$. Работа в этом режиме длительное время недопустима, необходимо или увеличить скорость вращения вала до значений ω >1,25 $\omega_{\rm kp}$ или снизить до величин ω <0,75 $\omega_{\rm kp}$.

Критическая скорость вращения вала $\omega_{\kappa p} \equiv p$ может быть определена теоретически. Численно она совпадает с частотой собственных колебаний вала ω_0 и зависит от соотношения упругости на изгиб системы ротора и его массы «m»

$$\omega_{\rm kp} = p \equiv \omega_0 = \sqrt{c/m} \ . \tag{10.5}$$

Период (время) Т одного колебания можно определить из соотношения

$$T = 2\pi/\omega_0, \tag{10.6}$$

откуда

$$T = 2\pi \cdot \sqrt{\frac{m}{c}}.$$
 (10.7)

Из формулы (10.4) получаем относительный прогиб ротора

$$\frac{\mathbf{r}}{\mathbf{e}} = \frac{1}{1 - \frac{\omega^2}{\mathbf{p}^2}}.\tag{10.8}$$

Кривая зависимости r/e от отношения ω/p приведена на рисунке 10.2.

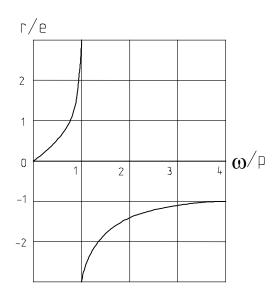


Рисунок 10.2 – Схема относительного прогиба вала

Анализ формулы (10.8) и рисунка 10.2 показывают, что при медленном вращении прогибы г малы и возрастают с ростом угловой скорости. Если $\omega/p=1$, то прогиб равен бесконечности (критическое состояние). В закритической области, когда $\omega > \omega_{\rm kp}$, прогибы опять оказываются конечными, но они меняют знак. Чем больше угловая скорость, тем ближе располагается центр тяжести диска к центру вращения, если $\omega \to \infty$, то центр тяжести диска устанавливается на оси вращения. Таким образом, при больших угловых скоростях, происходит самоцентрование диска.

Из формулы (10.8) следует также, что для одного и того же относительного прогиба с уменьшением е (абсолютного дисбаланса) происходит уменьшение амплитуды колебания r_i = A_i на заданной частоте ω_i . Поэтому целесообразно для уменьшения динамического воздействия колебаний (тряски) ротора на операторов и приборы уменьшать величину дисбаланса ротора, проводя тщательную статическую и динамическую балансировку каждого изготовленного ротора машины.

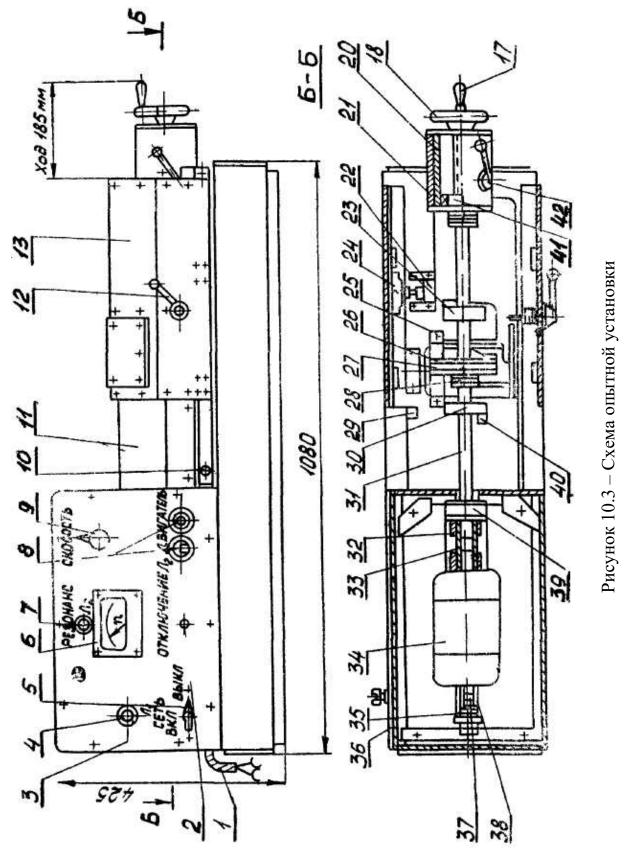
Уменьшение вдвое величины дисбаланса данного ротора, в четыре раза уменьшает энергию колебательных воздействий на окружающее машину пространство, т.к. амплитуда колебаний «А» влияет на мощность колебательного процесса в функции $N_{\kappa}=f(A^2)$, т.е. в квадратичной зависимости. Поэтому роторы машин необходимо подвергать динамической балансировке не только при

изготовлении, но и при периодических регламентных работах на специальных балансировочных стендах.

При вращении несбалансированного вала, например, в центрифуге, турбогенераторе и т.п. всегда наблюдаются более или менее интенсивные колебания. Амплитуды колебаний зависят от угловой скорости вращения и при определенных для данного вала критических значениях возрастают настолько сильно, что нарушают нормальные условия эксплуатации и могут вызвать поломку вала. При этом критическое состояние не может быть устранено даже самой тщательной балансировкой. Поэтому следует принимать такие меры, чтобы в условиях эксплуатации не наступали критические состояния.

Приборы и материалы

В измерениях используется установка для определения критической скорости вращения вала типа ДМ36 (комплект).


Установка представляет собой вал 30 (рисунок 10.3) с одним диском 26, вращающийся в двух сферических шарикоподшипниках, установленных на кронштейне 38 и задней опоре 41. Вал приводится во вращение через гибкую упругую муфту 32 универсальным коллекторным двигателем 33 типа УП-062. Этот же двигатель приводит во вращение через муфту 37 тахогенератор 35.

На валу насажен диск 26, фиксируемый с помощью цангового механизма 27. Для увеличения массы диска на него навинчиваются дополнительные кольца 25, в одно из которых можно ввернуть винт 24, тем самым, создав в диске с кольцами дисбаланс, равный Д.

Передняя опора вала 29 неподвижная. Для изменения жесткости вала задняя опора 41 меняет свое положение относительно передней опоры. Она выполнена в виде пиноли 19, которая выдвигается с помощью винта с маховиком 18 и рукояткой 17 и затем зажимается рукояткой 42. Втулка с сидящим на ней подшипником фиксируется на валу с помощью цангового механизма 20.

Для ограничения максимальной амплитуды колебаний вала и предотвращения поломки при достижении критического числа оборотов имеются два кронштейна 22 и 29 с полиэтиленовыми втулками. К левому кронштейну прикреплено

контактное устройство 40, включающее расположенную на пульте 3 красную лампочку 7 в момент начала резонанса.

Для определения статического прогиба вала имеется подвеска с грузом и стойка со штангой, в которой крепится индикатор часового типа.

Вал с диском, задняя опора и оба ограничительных кронштейна закрыты подвижным кожухом 13 с прозрачным окном для наблюдения за диском. Вал между передней опорой и левым ограничительным кронштейном прикрыт неподвижным защитным кожухом 11. Подвижный кожух на четырех роликах перемещается по направляющим планкам вправо или влево. Во всех положениях кожух зажимается с помощью рукоятки с прихватом 12.

На установке имеется блокирующее устройство, состоящее из кулачка 23, связанного с кожухом и микропереключателем 21. В любом положении подвижного кожуха кулачок съезжает с микропереключателя и электродвигатель обесточен.

Кроме того, подвижный кожух станет в среднее рабочее положение лишь тогда, когда подвеска с грузом и штанга с индикатором будут убраны в нерабочее положение. В противном случае кожух упрется в них и кулачок не нажмет на микропереключатель.

На передней панели пульта 3 находятся: пакетный выключатель 5 для выключения установки; лампочка 4 включения установки с зеленым глазком; кнопка 8 пуск — стоп электродвигателя; рукоятка 9 прибора РНС-250-05 для плавного регулирования чисел оборотов электродвигателя; миллиамперметр 6, шкала которого проградуирована в об/мин; лампочка 7 сигнализации начала резонанса с красным глазком; тумблер включения лампочки сигнализации 2.

Методика выполнения работы

- 1. Ознакомиться с теорией работы гибкого вала и с описанием лабораторной установки.
- 2. Установить заднюю опору в положении, максимально удаленном от передней опоры. Диск без добавочных колец.
- 3. Рассчитать теоретически поперечную изгибную жесткость вала по формуле, H/см

$$c = 3E J L/ a^2 b^2$$
,

где E — модуль упругости материала вала, H/cm^2 ; J — осевой момент инерции сечения вала в cm^4 ; a — расстояние от левой опоры до диска; b — расстояние от

правой опоры до диска; L – расстояние между опорами.

Осевой момент инерции сечения вала определяется из выражения, см⁴

$$J = \pi d^4 / 64 = 0.0491 d^4$$

где d – диаметр вала, см.

4. Закрепить индикатор, нагрузить вал грузом P, определить экспериментально жесткость вала с из выражения, Н/см

$$c = P / y_{cr}$$

где у_{ст} – статический прогиб вала, см.

5. Подсчитать критическое число оборотов вала для двух значений жесткости по выражению, об/мин

$$n_{\text{kp}} = 300 \sqrt{c/(0.1 \cdot G)}$$
,

где с — поперечная изгибная жесткость вала, H/см; G — вес вращающейся детали, H.

- 6. Снять подвеску с грузом, отвести индикатор от диска, закрыть кожух и включить двигатель.
- 7. Регулируя рукояткой число оборотов электродвигателя, довести до состояния резонанса и, не задерживая работу установки в этом положении, увеличить число оборотов, переходя в закритическую область. Затем вал из закритической области через состояние резонанса ввести в докритическую область.

Это повторить несколько раз и с помощью тахогенератора с миллиамперметром фиксировать число оборотов вала перед входом в резонанс $\mathbf{n'}_{\mathrm{kp}}$ и после выхода из него $\mathbf{n''}_{\mathrm{kp}}$.

- 8. Подсчитать среднеарифметическое значение $n_{\kappa p}$. Сравнить с расчетным.
- 9. Увеличить массу диска. Повторить работу (пункты 3-10). Показать влияние массы диска на критическое число оборотов вала.
- 10. Заднюю опору приблизить к передней. Повторить работу (пункты 3 10). Показать влияние увеличения жесткости вала на критическое число оборотов вала.

Основные параметры лабораторной установки приведены в таблице 10.1.

Таблица 10.1 – Параметры лабораторной установки

№ п/п	Наименование величин	Един. измерения	Величины	
1	Диаметр вала	СМ	1,25	
2	Масса диска	КГ	1,98	
3	Масса кольца	КГ	0,34	
4	Масса вала	КГ	0,63	
5	Усилие статического прогиба	Н	90	

Указания по технике безопасности

Для безопасности проведения опытной части работы необходимо:

- проводить работу только в присутствии лаборанта;
- тщательно ознакомиться с устройством испытательной машины;
- неукоснительно выполнять порядок проведения испытаний, изложенный ниже.

Порядок проведения работы

- 1. Получите задание для выполнения работы от преподавателя.
- 2. Выполните задание в соответствии с методикой (см. выше).
- 3. Составьте отчет о выполненной работе.

Содержание отчета

В отчете о выполненной лабораторной работе должны содержаться следующие данные:

- 1. Дата выполнения и цель работы.
- 2. Краткие теоретические сведения об устойчивости валов.
- 3. Основные расчетные формулы.
- 4. Кинематическая схема лабораторной установки. Описание ее работы.
- 5. Таблица расчетных и экспериментальных данных:

	Величина								
№ опыта	L, см	а, см	b, см	G, H	Срасч.	Сэксп.	n _{кp} ,	n' _{кр}	n" _{кр}
					Н/см	Н/см	расч.		

6. Выводы.

Контрольные вопросы

- 1. Какова причина возникновения изгибных колебаний вращающегося вала?
 - 2. При каких условиях прогиб r стремится к бесконечности?
- 3. При каких условиях центр тяжести вращающегося вала стремится к центру вращения?
- 4. Как экспериментально определить поперечную изгибную жесткость вала?

ЛИТЕРАТУРА

- 1. Леонтьева, А. И. Оборудование химических производств / А.И. Леонтьева; Министерство образования и науки Российской Федерации; Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет», 2. Тамбов: Издательство ФГБОУ ВПО «ТГТУ», 2012. 281 с.: ил., табл., схем. http://biblioclub.ru
- 2. . Калекин, В. С. Конструирование и расчет элементов оборудования отрасли : Учебное пособие / В. С. Калекин, Б. Н. Барсуков. Омск : ОмГТУ, 2007. 152с. Библиогр.: с. 117. ISBN 5-8149-0391-0
- 3. Ким В.С. Конструирование и расчет механизмов и деталей машин химических и нефтеперерабатывающих производств. М.: КолосС, 2007.
- 4. Курочкин А.А. Основы расчета и конструирования машин и аппаратов перерабатывающих производств: Учебное пособие. М.: КолосС, 2006.
- 5. Поникаров И.И., Гайнуллин М.Г. Машины и аппараты химических производств и нефтегазопереработки. М.: Альфа-М, 2006. 608 с.
- 6. Поникаров И.И., Поникаров С.И., Рачковский С.В. Расчеты машин и аппаратов химических производств и нефтегазопереработки (примеры и задачи): Учебное пособие. М: Альфа-М, 2008. 720 с.
- 7. Тимонин А.С. Основы конструирования и расчета химикотехнологического и природоохранного оборудования. – Калуга: изд. Н. Бочка-

- ревой, 2002. т.1, 852 с.; т.2, 1028 с.; т.3, 968 с.
- 8. Конструирование и расчет машин химических производств/ Ю.Н. Гусев, И.Н. Карасев, Э.Э. Кольман-Иванов и др. М.: Машиностроение, 1985. 408 с.
- 9. Расчет и конструирование машин и аппаратов химических производств. Примеры и задачи. / Под ред. Михалёва М.Ф. М: Машиностроение, $1984-301~{\rm c}.$
- 10. Ким В.Б. Расчет и конструирование элементов оборудования отрасли: методические указания к лабораторному практикуму. / В.Б.Ким Оренбург: ГОУ ОГУ,2009. 87 с.

КОНСТРУИРОВАНИЕ И РАСЧЕТ ЭЛЕМЕНТОВ ОБОРУДОВАНИЯ ОТРАСЛИ

Методические указания для лабораторных занятий

Направление подготовки — 15.03.02 Технологические машины и оборудование Профиль подготовки - Проектирование технических и технологических комплексов

Составитель доц. А.И. Свидченко

Рецензенты доц. А.Л. Проскурнин, доц. А.М. Новоселов

Редактор

Подписано в печать 20 г. Формат 60 х 84 1/16 Уч.-изд. л. Усл. печ. л. Тираж Заказ № Невинномысский технологический институт (филиал) ФГАОУ ВО «Северо-Кавказский федеральный университет»

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Невинномысский технологический институт (филиал)

КОНСТРУИРОВАНИЕ И РАСЧЕТ ЭЛЕМЕНТОВ ОБОРУДОВАНИЯ ОТРАСЛИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению практических занятий для студентов направления 15.03.02 — Технологические машины и оборудование

Часть 1

Методические указания по выполнению практических занятий по дисциплине «Конструирование и расчет элементов оборудования отрасли» (часть 1) разработаны в соответствии с требованиями Государственного образовательного стандарта в части содержания и уровня подготовки выпускников по направлению 15.03.02 — Технологические машины и оборудование

Методические указания имеют целью закрепить у студентов теоретически полученные знания по дисциплине, выработать практические навыки конструирования и материального оформления оборудования химических производств и проведения его расчетов на прочность.

Приведены исходные данные и методические указания по выполнению практических заданий, список рекомендуемой литературы.

Составитель доц. А.И. Свидченко

Редактор доц. А.М. Новоселов

СОДЕРЖАНИЕ

ЗАНЯТИЕ 1	
РАСЧЕТ ТОЛЩИНЫ СТЕНКИ ОБЕЧАЙКИ И ДНИЩА,	
НАГРУЖЕННЫХ ВНУТРЕННИМ ДАВЛЕНИЕМ	4
ЗАНЯТИЕ 2	
РАСЧЕТ ТОЛЩИНЫ СТЕНКИ АППАРАТА, НАГРУЖЕННО	ГО
НАРУЖНЫМ ДАВЛЕНИЕМ, ОСЕВОЙ СЖИМАЮЩЕЙ СИЛ	ЮЙ И
ИЗГИБАЮЩИМ МОМЕНТОМ	8
ЗАНЯТИЕ 3	
РАСЧЕТ НА ПРОЧНОСТЬ СОЕДИНЕНИЙ ОБЕЧАЙКА – ДН	ИЩЕ11
ЗАНЯТИЕ 4	
РАСЧЕТ НА УКРЕПЛЕНИЯ ОТВЕРСТИЙ. ВЫБОР ТИПА	
УКРЕПЛЕНИЯ	14
ЗАНЯТИЕ 5	
РАСЧЕТ ФЛАНЦЕВОГО СОЕДИНЕНИЯ	17
ЗАНЯТИЕ 6	
РАСЧЕТ НА ПРОЧНОСТЬ БАРАБАННОЙ СУШИЛКИ	19
ЗАНЯТИЕ 7	
РАСЧЕТ УПЛОТНЯЮЩИХ УСТРОЙСТВ САЛЬНИКОВОГО	ТИПА С
МЯГКОЙ НАБИВКОЙ	21
ЛИТЕРАТУРА	24

РАСЧЕТ ТОЛЩИНЫ СТЕНКИ ОБЕЧАЙКИ И ДНИЩА, НАГРУЖЕННЫХ ВНУТРЕННИМ ДАВЛЕНИЕМ

По данной теме необходимо рассчитать толщину стенки обечайки и днища тонкостенных сосудов в соответствии с вариантами, приведенными в таблицах 1 и 2.

Нормативные допускаемые напряжения, пределы текучести материалов при заданных температурах, модули упругости, коэффициенты прочности сварных швов указаны в таблицах [1].

При расчете обечаек, которые представляют собой оболочки вращения, находящихся под воздействием равномерно распределенного давления, изгибающие моменты и поперечную силу не учитывают.

Теорию расчета оболочек (рисунок 1), учитывающую только $\sigma_{\scriptscriptstyle M}$ и $\sigma_{\scriptscriptstyle K}$, называют безмоментной теорией оболочек, основным уравнением которой является уравнение Лапласа

$$\frac{\sigma_{\scriptscriptstyle M}}{\rho_{\scriptscriptstyle M}} + \frac{\sigma_{\scriptscriptstyle K}}{\rho_{\scriptscriptstyle K}} = \frac{p}{S},$$

где σ_{M} – меридиональное напряжение;

 $\sigma_{\scriptscriptstyle K}$ – кольцевое напряжение;

 $\rho_{\text{м}}, \, \rho_{\text{k}} -$ радиусы кривизны срединной поверхности оболочки.

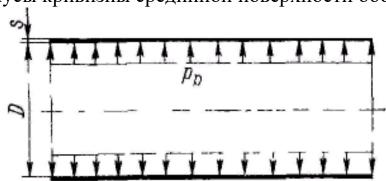


Рисунок 1 – Расчетная схема цилиндрической обечайки

На основе данного уравнения получают основные расчетные зависимости для цилиндрических, конических, сферических и эллиптических оболочек.

Исполнительную толщину стенки цилиндрической обечайки s определяют по формулам:

$$S_{p}=\max \begin{cases} p_{p} \cdot D / (2 \cdot \varphi[\sigma] - p_{p}) \\ p_{u} \cdot D / (2 \cdot \varphi[\sigma]_{u} - p_{u}) \end{cases};$$

$$S=S_{p}+c+c_{0},$$

где рр – расчетное давление;

ри – пробное давление;

ф – коэффициент прочности сварных швов;

D – диаметр аппарата;

[σ] – допускаемое напряжение для рабочего состояния;

 $[\sigma]_{\text{и}}$ – допускаемое напряжение при испытаниях;

с – прибавка к расчетной толщине обечайки;

 c_0 – прибавка на округление размера до стандартного значения.

Расчетную и исполнительную толщину стенки конической обечайки (рисунок 2) определяют по формулам:

$$\mathbf{S}_{\text{K.p}} = \max \begin{cases} p_p \cdot D / [(2 \cdot \varphi[\sigma] - p_p) \cdot \cos \alpha] \\ p_u \cdot D / [(2 \cdot \varphi[\sigma]_u - p_u) \cdot \cos \alpha] \end{cases};$$

$$\mathbf{S}_{\text{K}} = \mathbf{S}_{\text{K.p}} + \mathbf{c} + \mathbf{c}_0,$$

где $S_{\kappa,p}$ – расчетная толщина стенки конической оболочки;

 α — угол при вершине конуса, градусы.

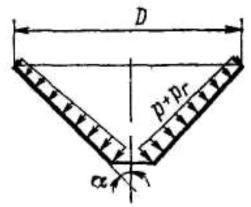


Рисунок 2 — Расчетная схема конического днища Толщина стенки эллиптической крышки (днища) (рисунок 3):

$$\mathbf{S}_{3.p} = \max \begin{cases} p_p \cdot D / (2 \cdot \varphi[\sigma] - 0.5 \cdot p_p) \\ p_u \cdot D / (2 \cdot \varphi[\sigma]_u - 0.5 \cdot p_u) \end{cases};$$

$$\mathbf{S} = \mathbf{S}_{3.p} + \mathbf{c} + \mathbf{c}_{0},$$

где $S_{\mathfrak{d},p}$ — расчетная толщина стенки эллиптического днища.

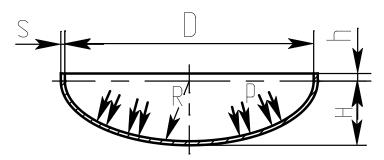


Рисунок 3 – Расчетная схема эллиптического днища

Затем для днищ проводится проверка допускаемого давления как в рабочем состоянии, так и при испытаниях:

$$p_p < [p];$$

$$p_{\scriptscriptstyle H} < [p],$$

Вышеуказанные формулы применимы при условии $\frac{S-c}{D} \le 0,1$.

Варианты задания представлены в таблицах 1 и 2. Необходимо рассчитать толщину стенки обечайки и днища.

Таблица 1 – Параметры вулканизационного котла

	Размер	ы котла	Рабочее				Ско-	Cnor
№	Внут- ренний диаметр D, мм	Длина цилин- дриче- ской ча- сти l _ц , м	давле- ние в котле р, МПа	Температура в котле t_c , °С	Объ- ем котла V, м ³	Марка стали	рость корро- зии П, мм/год	Срок экс- плуа- тации т _в , лет
1	800	0,9	0,90	180	0,68	10	0,05	15
2	1100	1,5	0,60	160	1,85	20	0,09	12
3	1500	3,0	0,60	160	6,30	ВСт3пс	0,10	10
4	2000	4,0	0,60	160	16,00	ВСт3пс	0,08	12
5	2200	6,0	0,60	160	26,00	ВСт3Гпс	0,06	15
6	2800	6,0	0,40	150	43,20	10	0,05	10
7	2800	8,0	1,25	190	57,00	20	0,07	12
8	2800	16,0	0,60	150	91,00	ВСт3пс	0,09	10
9	3600	8,0	1,00	180	98,00	20	0,04	15

Таблица 2 — Параметры вертикального кожухотрубчатого теплообменника

	Размерн	ы корпуса	Рабо-	Темпе-			Ско-	
No	Внут- ренний диа- метр D, мм	Высота цилин- дриче- ской ча- сти $H_{\rm II}$, м	чее дав- ление р, МПа	ратура в межтруб ном про- стран- стве t _c , °C	Плот- ность среды, р _с , кг/м ³	Марка стали	рость кор- розии П, мм/ год	Срок экс- плуа- тации $\tau_{\text{в}}$, лет
1	500	3	6,4	5	1000	ВСт3сп	0,05	10
2	500	6	4,0	30	900	ВСт3сп	0,04	15
3	600	6	2,5	200	1200	16ГС	0,03	10
4	600	9	1,6	320	1160	16ГС	0,06	12
5	800	6	2,0	-5	1300	Двухслой- ная 16ГС+ 12Х18Н10Т	0,02	15
6	800	9	3,0	120	1400	Двухслой- ная 16ГС+ 12Х18Н10Т	0,03	10
7	1000	6	4,2	20	800	ВСт3сп5	0,07	15
8	1000	9	1,6	-10	1270	16ГС	0,04	12
9	1200	6	2,5	10	1000	16ГС	0,01	18
10	1200	9	6,4	60	1250	Двухслой- ная 16ГС+ 12Х18Н10Т	0,02	10
11	1400	6	3,0	100	1100	ВСт3сп5	0,07	12
12	1400	9	2,0	80	950	ВСт3сп5	0,08	15

Примечание: при расчете теплообменника необходимо учесть, что рабочая среда жидкая.

РАСЧЕТ ТОЛЩИНЫ СТЕНКИ АППАРАТА, НАГРУЖЕННОГО НАРУЖНЫМ ДАВЛЕНИЕМ, ОСЕВОЙ СЖИМАЮЩЕЙ СИЛОЙ И ИЗГИБАЮЩИМ МОМЕНТОМ

При расчете толщины стенки необходимо учесть, что тонкостенный цилиндр под внешним давлением находятся по сравнению с таким же цилиндром, нагруженным внутренним давлением в худших условиях, это объясняется тем, что нагружается цилиндрическая форма аппарата и появляются дополнительные напряжения.

Внешнее давление, под действием которого первоначальная форма цилиндрической оболочки начинает искажаться, называется критическим (рисунок 4).

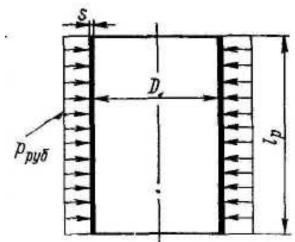


Рисунок 4 — Расчетная схема цилиндрической обечайки, нагруженной наружным давлением

Расчетная и исполнительная толщина стенки определяется по формулам:

$$S_{p}=\max \begin{cases} K_{2} \cdot D \cdot 10^{-2} \\ 1.1 \cdot p_{H} \cdot D / 2 \cdot [\sigma] \end{cases},$$

$$S=S_{p}+c+c_{0},$$

где K_2 – коэффициент, определяемый по номограммам [1];

 $p_{\text{н.р}}$ – рабочее давление;

с – прибавка к расчетной толщине обечайки;

 c_0 – прибавка на округление размера до стандартного значения.

Пробное давление при гидравлических испытаниях

$$p_{\text{\tiny H}} = 1,25 \cdot p_{\text{\tiny H},p} \cdot [\sigma]_{20} / [\sigma]$$

где $[\sigma]_{20}$ — допускаемое напряжение для заданной марки стали при $t=20^{\circ}\mathrm{C};$

[σ] – допускаемое напряжение для рабочего состояния.

Условие устойчивости цилиндрической обечайки должно выполняться для рабочего состояния аппарата:

$$p_{\text{H.p}} < [p_{\text{H}}]$$

при испытании

$$p_{u} < [p_{H}]_{u}$$

где $[p_H]$ и $[p_H]_u$ — допускаемое наружное давление соответственно в рабочем состоянии и при испытании с учетом условия прочности в рабочем состоянии и условия устойчивости в пределах упругости, в зависимости от рабочей длины обечайки l_p [1].

Варианты задания представлены в таблицах 3 и 4. Необходимо рассчитать толщину стенки цилиндрической обечайки.

Таблица 3 – Параметры вертикального цельносварного аппарата

№	Внутрен- ний диа- метр D, мм	Диаметр нижнего штуцера внут- ренний D_0 , мм	Высота цилин- дриче- ской части H_{u} , м	Остаточ- ное дав- ление в аппарате р _{ост} , МПа	Тем- пера- тура t _c , °C	Марка стали	Прибав- ка к рас- четной толщине с, мм
1	1000	50	2130	0,010	30	09Г2С	1,0
2	1400	80	2220	0,020	40	10X17H13M2T	0,9
3	1400	120	3070	0,015	60	12X18H10T	1,3
4	1800	100	3385	0,010	80	Двухслойная 20К+ 10Х17Н13М2Т	0,6
5	1800	150	3785	0,020	180	ВСт3пс	1,2
6	2200	200	4020	0,015	120	Двухслойная 20К+ 12Х18Н10Т	0,8

Таблица 4 — Параметры вертикального аппарата с перемешивающим устройством

						Прибав-	
	Внут-	Высота	Остаточ-	Тем		ка к	Macca
	ренний	цилин-	ное дав-	пе-		расчет-	крышки
№	диаметр	дриче-	ление в	pa-	Марка стали	ной	с при-
	D, мм	ской ча-	аппарате	тура		тол-	водом
	D, WIWI	сти Нц, м	рост, МПа	t _c , °C		щине с,	т, кг
						MM	
1	1000	1100	0,010	25	ВСт3сп	1,0	730
2	1400	1100	0,009	60	12X18H10T	0,7	1000
3	1600	1200	0,011	80	16ГС	0,9	1270
4	1600	1700	0,018	40	09Г2С	1,1	1770
5	1800	1300	0,021	120	10X17H13M2T	0,6	2150
6	1800	1800	0,012	130	20К	0,8	2300

РАСЧЕТ НА ПРОЧНОСТЬ СОЕДИНЕНИЙ ОБЕЧАЙКА - ДНИЩЕ

Расчетные формулы, использованные в предыдущих занятиях, выведены для случая нагружения оболочек равномерно распределенными по поверхности статическими нагрузками и справедливы для оболочек, у которых не закреплены края, а также для участков, удаленных от закрепленных краев оболочки.

В реальных конструкциях машин и аппаратов края оболочек прикрепляются к другим оболочкам и к соответствующим деталям (фланцы, трубные решетки и т.п.). В таких узлах сопряжения возникают дополнительно, так называемые, краевые нагрузки, вызывающие местные напряжения изгиба в материалах сопрягаемых элементов [2].

Краевая сила Q_0 и краевой момент M_0 являются реакциями заделки края оболочки (рисунок 5).

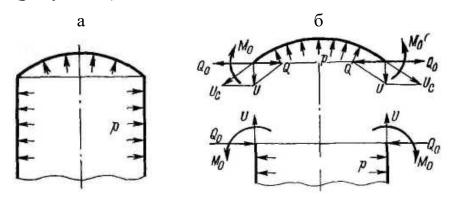


Рисунок 5 — Схема к определению краевых сил и моментов: а — соединение сферической и цилиндрической оболочек; б — расчетная схема; U и U_c — меридиональные усилия соответственно цилиндрической и сферической оболочек.

Основными уравнениями для определения напряжений являются уравнения совместности деформаций:

$$\begin{cases} \Delta_p^{II} - \Delta_{Q_0}^{II} + \Delta_{M_0}^{II} = \Delta_p^C + \Delta_{(Q_0 - Q)}^C + \Delta_{M_0}^C; \\ \Theta_p^{II} - \Theta_{Q_0}^{II} + \Theta_{M_0}^{II} = -\Theta_p^C - \Theta_{(Q_0 - Q)}^C - \Theta_{M_0}^C, \end{cases}$$

где $\Delta_p^{\mathcal{U}}$, $\Delta_{Q_0}^{\mathcal{U}}$, $\Delta_{M_0}^{\mathcal{U}}$, $\Theta_p^{\mathcal{U}}$, $\Theta_{Q_0}^{\mathcal{U}}$, $\Theta_{M_0}^{\mathcal{U}}$ – радиальные, угловые деформации края цилиндрической оболочки под действием нагрузок р, Q_0 , M_0 ;

 Δ_p^C , $\Delta_{(Q_0-Q)}^C$, $\Delta_{M_0}^C$, Θ_p^C , $\Theta_{(Q_0-Q)}^C$, $\Theta_{M_0}^C$ — то же для сферической оболочки.

Подставляя соответствующие значения деформаций из таблицы [1] в данном уравнении, с учетом известных геометрических размеров аппарата, получим значения Q_0 , M_0 .

Суммарные значения напряжений также определяются по таблицам [1].

Максимальные напряжения по краю оболочек должны быть проверены по условию прочности [1].

По данной теме необходимо: рассчитать на прочность соединение цилиндрической и конической обечаек с 1,2 мм по исходным данным таблицы 5.

Таблица 5 – Параметры вертикального колонного аппарата

No	Внут- ренний диаметр низа ап- парата D ₀ , мм	Внутренний диаметр верха аппарата D,	Угол ко- нуса α °C	Тол- щина стенки s=s _к , мм	Внут- реннее давле- ние р _р , МПа	Температура стенки t, °C	Марка стали (меди, латуни, титана)
1	1000	1200	30	8	0,25	100	М3р (медь)
2	1400	1800	45	12	0,30	50	ЛЖМц (латунь)
3	1200	1200	70	10	0,45	200	08X22H6T
4	2200	2400	45	8	0,20	150	09Г2С
5	1000	2200	30	14	080	100	10X17H13M2T
6	1800	2400	30	12	0,75	300	ОТ4 (титан)
7	1600	1800	70	16	1,00	250	08X18Γ8M2T
8	1200	2400	45	10	1,20	200	ВТ1-0 (титан)
9	2000	2200	70	8	0,60	150	10X17H13M3T
10	1400	2400	30	14	0,90	50	М2 (медь)
11	2200	2400	45	12	1,00	300	08X22H6T
12	1800	2200	45	16	1,40	100	ЛС59-1 (латунь)
13	1600	2000	30	10	1,20	150	08X21H6M2T

Рассчитать на прочность соединение двух цилиндрических обечаек, имеющих разную толщину стенки с=1 мм, по данным таблицы 6.

Таблица 6 – Параметры вертикального колонного аппарата постоянного сечения

№	Внутренний диаметр аппа- рата D, мм	Внутреннее давление p _p , МПа	Темпера- тура стен- ки t, °C	Марка стали (ме- ди, латуни, титана)	Толи стен	ки,
1				003/1011107	S ₁	S ₂
1	1600	0,90	200	08X18H10T	8	16
2	200	0,65	250	ВТ1-1 (титан)	10	18
3	2000	0,85	150	М2 (медь)	12	24
4	2400	1,00	100	16ГС	8	14
5	2000	1,60	100	ЛС59-1 (латунь)	10	20
6	1200	1,00	300	ВСт3сп	14	24
7	1000	0,80	300	20К	12	18
8	2400	1,20	250	М3р (медь)	12	20
9	1000	1,50	150	08X18H12T	10	18
10	1200	0,75	200	ОТ4 (титан)	8	18
11	1600	0,50	150	ЛЖМц (латунь)	14	24
12	1000	0,60	100	ВСт3сп5	16	24
13	1200	0,35	200	12X18H10T	10	18
14	2000	0,25	300	ВТ1-0 (титан)	12	24
15	2400	0,50	100	08X18H10T	12	18
16	2200	0,40	250	10X17H13M3T	8	14

РАСЧЕТ НА УКРЕПЛЕНИЯ ОТВЕРСТИЙ. ВЫБОР ТИПА УКРЕПЛЕНИЯ

В корпусе и днище цилиндрических аппаратов для установки люков и штуцеров вырезают отверстия. Вырезанное отверстие возможно укрепить: за счет увеличения толщины стенки штуцера, торообразной вставкой, накладным кольцом. В расчетной практике наибольшее распространение получил способ укрепления отверстия накладным кольцом (рисунок 6).

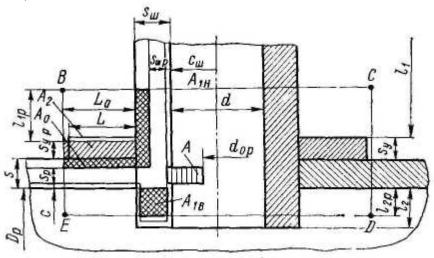


Рисунок 6 – Схема к расчету укрепления отверстия

Расчетный диаметр отверстия, не требующего дополнительного укрепления при отсутствии избыточной толщины стенки укрепленного элемента

$$d_{0p}=0,4\sqrt{D_p(s-c)}$$
.

Условие укрепления отверстия утолщением стенки аппарата, штуцером, накладным кольцом или комбинированным укреплением.

$$[(l_{1p} + s_{yp} + s - s_p - c) \cdot (s_m - s_{mp} - c_m) + l_{2p} \cdot (s_m - 2c_m)] \cdot \chi_1 + \sqrt{D_p \cdot (s_{yp} + s - c)} \times (\chi_2 \cdot s_{yp} + s - s_p - c) \ge 0, 5 \cdot (d_p - d_{0p}) \cdot s_p,$$

где 1_{1p} – расчетная длина внешней части штуцера;

 l_{2p} – расчетная длина внутренней части штуцера;

 S_{yp} – расчетная толщина накладного кольца;

 l_1 – общая длина штуцера, l_1 =200 мм;

s – исполнительная толщина стенки аппарата;

s_p – расчетная толщина стенки аппарата;

с – прибавка к расчетной толщине стенки аппарата;

 $s_{\text{ш}}$ – исполнительная толщина стенки штуцера;

s_{шp}- расчетная толщина стенки штуцера;

 c_{u} — прибавка к расчетной толщине стенки штуцера;

 $\chi_1 = [\sigma]_{III}/[\sigma];$

 $[\sigma]_{\text{ш}}$ – допускаемое напряжение материала корпуса;

 $\chi_2=[\sigma]_y/[\sigma];$

 $[\sigma]_{v}$ – допускаемое напряжение усиливающего элемента;

 d_p – расчетный диаметр отверстия;

 d_{0p} – расчетный диаметр отверстия, не требующего укрепления.

Расчетная толщина накладного кольца S_{yp} определяется методом последовательных приближений из условия укрепления отверстия.

Исполнительная толщина накладного кольца принимается по конструктивным соображениям [1].

По теме данного занятия необходимо рассчитать укрепление отверстия, предварительно выбрав тип укрепления.

Исходные данные представлены в таблице 7.

Таблица 7 – Параметры укрепляемых цилиндрических оболочек

№	Внутренний диаметр оболочки (максималь- ный) D, мм	Марка стали	Расчетное давление, МПа	Расчетная температу- ра t, °C	Длина неукрепленной части оболочки I, мм	Исполнительная тол- щина стенки оболочки s, мм	Диаметр отверстия d, мм	Длина внешней части штуцера I _I , мм	Длина внутренней части штуцера l_2 , мм	Прибавка к расчетной толщине стенки с, мм
1	2	3	4	5	6	7	8	9	10	11
1	2400	ВСт3сп	0,6	100	2500	7	500	300	15	0,8
2	2400	12X18H10T	1,0	100	2500	10	150	250	5	1,0
3	2400	08X18H10T	1,6	100	2500	18	200	250	5	1,2
4	2800	09Г2С	0,3	200	7200	5	200	150	-	1,0
5	2800	20K	0,8	200	9000	12	300	150	5	0,8
6	2800	10X17H13M2T	1,2	200	1200	16	300	250	5	1,0
7	3000	ВСт3сп	1,0	300	1300	18	500	250	-	1,2

Продолжение таблицы 7

1	2	3	4	5	6	7	8	9	10	11
8	2000	ВСт3сп	0,6	100	2500	8	150	150	ı	1,0
9	2800	09Г2С	0,5	150	7200	8	200	150	ı	0,8
10	2400	20К	0,5	200	4500	8	250	200	5	1,0
11	2800	10X17H13M2T	0,4	250	9000	8	300	200	ı	1,2
12	2800	08X18H10T	0,5	300	7200	10	400	300	10	1,0
13	2000	08X18H10T	1,6	20	2500	16	200	200	5	1,2
14	1800	20К	0,6	20	2800	6	180	200	ı	1,0
15	1000	12X18H10T	1,2	20	1800	8	120	150	10	1,0
16	1000	ВСт3сп	1,0	20	2000	8	150	250	•	1,2
17	1200	12X18H10T	0,6	20	1500	5	200	250	ı	1,0
18	1800	12X18H10T	0,8	20	2800	7	100	120	ı	1,0
19	1800	12X18H10T	0,8	20	2500	7	200	200	10	1,0
20	1200	09Г2С	0,8	100	2500	6	150	200	-	1,2

РАСЧЕТ ФЛАНЦЕВОГО СОЕДИНЕНИЯ

Фланцевое соединение – наиболее широко применяемый вид разъемных соединений в химическом машиностроении, обеспечивающий герметичность и прочность конструкций, а также простоту изготовления, сборки и разборки.

Существующие типы фланцев: плоский приварной, приварной встык, свободный [1].

Основные типы уплотнительных поверхностей [1]: гладкая уплотнительная поверхность, выступ-впадина, шип-паз, под металлическую прокладку.

Пределы применения фланцев осуществляются согласно [1].

Комплексный расчет фланцевого соединения состоит из определения геометрических размеров его основных элементов (фланцев, прокладки, болтов), удовлетворяющих условиям герметичности и прочности (рисунок 7).

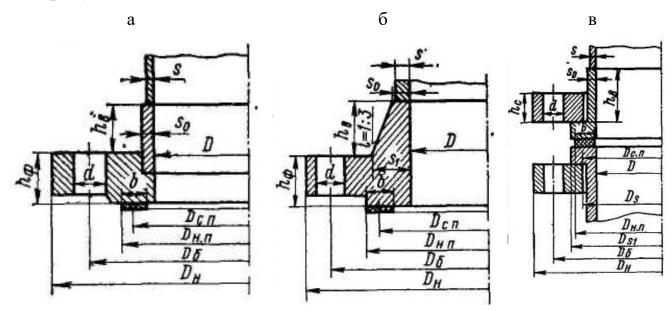


Рисунок 7 – Типы фланцев:

а – плоский приварной; б – приварной встык; в – свободный

По данной теме необходимо произвести расчет на прочность и герметичность фланцевого соединения аппарата, работающего под внутренним давлением по таблице 8.

Таблица 8 – Параметры аппарата, имеющего фланцевое соединение

№	Внут-	Тол	Материал аппа-	Сумма	Внут	Рабочая	Внешн	ие нагрузки
	ренний	щи-	рата (сталь)	приба-	рен-	темпе-		
	диа-	на		вок к	нее	ратура t,		
	метр	стен		расчет-	дав-	°C		
	аппа-	ки ѕ,		ной	ле-			
	рата D, мм	MM		тол- щине	ние		Осевая	Изгибаю-
	IVIIVI			стенки	р _р , МПа		сила F,	щий момент
				c, MM	1,1110		MH	М, МН∙м
1	400	6	20	1,2	0,60	100	-0,30	3,40
2	500	8	15XM	0,9	0,95	200	-0,36	4,06
3	600	10	09Г2С	0,8	1,40	250	-0,40	2,80
4	700	12	12X18H10T	0,7	1,60	60	-	-
5	800	8	16ГС	1,0	0,50	260	-0,32	-
6	900	10	15XM	1,1	0,90	120	-0,50	-
7	1000	8	20К	0,8	0,25	200	-1,80	-
8	1100	10	10X17H13M2T	0,5	0,45	300	-	-
9	1200	14	20	1,2	1,50	180	-0,80	1,90
10	1300	12	12X18H10T	0,9	1,00	80	-0,08	0,10
11	1400	8	20К	0,8	0,30	70	-0,06	0,15
12	1500	14	09Г2С	1,3	0,80	250	-	-
13	1600	16	16ГС	1,2	1,30	200	-0,20	0,20
14	1700	10	20	1,0	0,55	160	-0,90	-
15	1800	16	15XM	0,8	1,44	120	-0,80	1,20
16	1900	12	20K	1,4	0,60	45	-	-
17	2000	16	15X5M	1,1	0,90	160	-1,80	-
18	2200	18	12MX	0,6	1,00	75	-1,00	2,00
19	2400	20	16ГС	1,6	1,40	220	-0,50	-
20	2600	10	20	1,2	0,30	50	-0,07	-
21	2800	20	15X5M	1,5	0,85	300	-0,10	-
22	3000	20	12X18H10T	0,8	0,90	90	-0,20	-
23	3200	12	10X17H13M2T	0,7	0,60	100	-0,22	-
24	3400	12	20К	0,5	0,30	20	-0,30	-
25	3600	12	20	0,60	0,25	120	-0,40	-

РАСЧЕТ НА ПРОЧНОСТЬ БАРАБАННОЙ СУШИЛКИ

Аппараты, выполненные в виде вращающихся горизонтальных барабанов, широко распространены в промышленности (рисунок 8).

При выполнении расчета барабанов на прочность используются следующие основные зависимости [3].

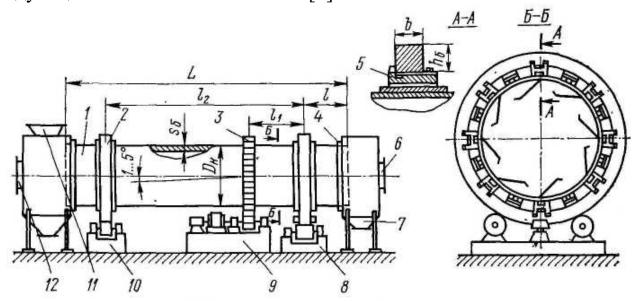


Рисунок 8 – Вращающийся барабанный аппарат:

1 — барабан; 2 — бандаж; 3 — венцовая шестерня; 4 — уплотнение;

5 — башмак; 6 — штуцер входа сушильного агента; 7 — штуцер выхода материала; 8 — опорно-упорная станция; 9 — приводная станция;

11 – штуцер входа материала; 12 – штуцер выхода газа

Толщина стенки барабана

$$S_6 = (0.007 \div 0.01) \cdot D_{_H},$$

где $D_{\text{н}}$ – наружный диаметр барабана.

Масса обрабатываемого материала

$$m_{_{M}} = \rho_{_{M}} \cdot L \cdot \psi \cdot \pi \cdot D_{_{\theta}}^{2} / 4,$$

где $D_{\scriptscriptstyle B}$ – внутренний диаметр барабана;

 $\rho_{\scriptscriptstyle M}-$ насыпная плотность материала;

L – длина барабана;

ψ – коэффициент заполнения барабана.

Футеровка барабана не предусмотрена.

Масса обрабатываемого материала и барабана

$$m^* = m_{_M} + m_{_K}$$

Линейная нагрузка

$$q = \frac{m \cdot g}{L}$$

После нахождения реакций опор от действия q и $Q_{\text{в}}$, определяют максимальный изгибающий момент, действующий на барабан M_{max} , момент сопротивления сечения барабана w и напряжение в барабане σ [1].

 $[\sigma]$ =5÷10 МПа — допускаемое напряжение для аппаратов из сталей марок Ст2, Ст3, 10, 15 без футеровки.

Исходные данные для расчета на прочность барабанной сушилки представлены в таблице 9.

Таблица 9 – Расчетные параметры корпуса сушилки

№	Наруж ный диа- метр бара- бана D _н	Тол щина стен- ки ба- ра- бана s ₆	Длин L	а барабана 1 ₁	, MM	Коэф- фици- ент запол- нения бара- бана ф	Плот- ность обраба- тываемо- го мате- риала $\rho_{\rm M}$, $\kappa \Gamma/{\rm M}^3$	Масса корпуса бараба- на т _к , кг	Сила, дей- ствующая на барабан в ме- сте установки венцовой ше- стерни, Q _в , Н
1	1000	5	4000	2300	800	0,15	600	900	5000
2	1000	5	6000	3500	800	0,15	600	1270	5000
3	1200	6	6000	3500	900	0,18	600	1860	7500
4	1200	6	10000	5900	900	0,18	2000	3010	7500
5	1600	8	8000	4700	1100	0,18	2000	4740	10950
6	1600	8	12000	7000	1100	0,25	2500	6940	10950
7	2000	10	8000	4700	1200	0,21	2500	7695	18600
8	2000	10	10000	5900	1200	0,21	2000	9635	18600
9	2200	12	14000	8200	1200	0,15	1500	17320	20900
10	2200	12	16000	9300	1200	0,18	1500	19700	20900
11	2500	16	12000	7000	2500	0,18	2500	25600	72000
12	2500	16	14000	8200	2500	0,15	2500	34220	72000
13	2800	20	14000	8200	2500	0,21	1500	45830	93000
14	2800	20	16000	9300	2500	0,21	1500	60560	93000
15	3000	20	18000	10500	2500	0,25	2000	140000	150000
16	3000	20	20000	117007	2500	0,25	2000	140000	150000

РАСЧЕТ УПЛОТНЯЮЩИХ УСТРОЙСТВ САЛЬНИКОВОГО ТИПА С МЯГКОЙ НАБИВКОЙ

Принцип работы сальника состоит в следующем (рисунок 9). При затяге сальника давление от нажимной стрелки заставляет мягкую набивку уплотняться, которая, деформируясь, за счет стыкового давления плотно прижимается к валу и стенке сальниковой камеры, в результате чего обеспечивается надежная герметизация в месте ввода вала или штока.

Расчет сальника, как правило, включает определение геометрических параметров элементов его конструкции; усилия затяга, обеспечивающего герметичность, потерь мощности на преодоление сил трения, возникающих в сальнике [1].

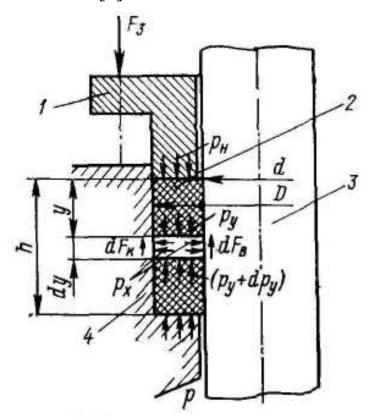


Рисунок 9 — Расчетная схема сальника:

1 – нажимная втулка; 2 – набивка; 3 – вал; 4 – сальниковая камера

По теме данного занятия необходимо рассчитать уплотняющее устройство сальникового типа с мягкой набивкой по данным таблицы 10.

Таблица 10 – Параметры сальников различных агрегатов

_		ı					1	ı	ı	I
№	Тип агрегата	Рабочая среда и температу- ра t °C	Дав- ление сре- ды р, МПа	Частота вращения или число двойных ходов n, мин-1	Дли на хо- да L, мм	Диа- метр рабо- чего органа d, мм	Размер сече- ния набив- ки мм×мм	Тип наби вки	Ко- личе- ство колец набив ки п, шт	Глу- бина рас- точки каме- ры Нс, мм
1	2	3	4	5	6	7	8	9	10	11
1	Пусковой масляный насос для центробежного компрессора	Масло турбинное УТ-20, t=28 °C	2,2	1460	-	24	8×8	АПР	5	-
2	Теплооб- менник ПВ- 35 подогре- ва воздуха	Воздух, t=400 °C	0,025	-	-	108	16×16	АШ	6	-
3	Плунжер- ный насос	Мине- ральное масло, t=80 °C	5,0	60	80	16	10×10	АΠ	7 -	
4	Вентиль гидросисте- мы	Масло, t=20 °C	7,0	0,2	-	40	4×4	ПП	-	40
5	Аппарат с мешалкой	Водный раствор КОН, t=20 °C	1,2	630	-	75	*	АПР	8	-
6	Насос фильтр- пресса ФПР-200	Мине- ральные масла, t=50 °C	4,0	1460	-	24	8×8	*	5	-
7	Теплооб- менник по- догрева воз- духа	Воздух, t=320 °C	0,6	-	-	108	*	*	6	-
8	Распыли- тельная турбинка сушилки	Нитрозил- серная 85%-ая кислота, t=75 °C	0,3	170	-	48	10×10	ФГ	-	85
9	Вентили	Азотная 965%-ая кислота, t=20 °C	10	15	-	30	4×4	ФГ	8	-
10	Паровой шток ком- прессора	Перегре- тый пар, t=300 °C	1,4	60	100	40	8×8	АΓ	*	-

Продолжение таблицы 10

1	2	3	4	5	6	7	8	9	10	11
11	Сырьевой насос 4НК	Нефте- продукты, t=180 °C	1,6	735	-	55	12×12	АΠ	4	-
12	Коллектор смеси	Углерод- но-газовая смесь, t=200 °C	0,003	-	-	1000	25×25	АΓ	-	150
13	Клапан острого па- ра	Острый пар, t=300 °C	1,4	60	20	35	*	*	8	-
14	Вентиль	Плав мо- чевины, t=200 °C	40	10	1	40	*	*	*	-
15	Аппарат с мешалкой	Водный раствор H ₂ SO ₄ , t=20 °C	1,5	400	ı	120	*	Ф4с	1	120
16	Центробеж- ный насос	Водный раствор HNO ₃ , t=100 °C	2,0	980	-	50	*	Ф4с	8	-
17	Теплооб- менник	Промыш- ленная во- да, t=90 °C	1,2	-	-	1000	25×25	ХБП	7	-
18	Паровой пи- тательный насос	Насыщен- ный пар, t=180 °C	1,2	60	180	50	10×10	Ф4	-	80
19	Вентиль воздушной системы	Воздух, t=20 °C	8,2	1,0	ı	60	6×6	Ф4	ı	50
20	Аппарат с мешалкой	Глицерин, t=280 °C	1,45	63	-	42	*	ХБП	6	-
21	Центробеж- ный насос	Кремне- фтористая кислота, t=20 °C	0,3	1460	-	24	6×6	Ф4с	6	-
22	Теплооб- менник	Водяной пар t=100 °C	2,2	-	-	800	19×19	ХБС	-	180
23	Золотник насоса	Насыщен- ный пар, t=180 °C	1,2	60	50	40	8×8	*	*	-
24	Задвижка	Едкий натр, t=6 °C	60	20	-	40	*	ПН	-	60
25	Аппарат с мешалкой	Нефте- продукты, t=60 °C	0,88	80	-	68	*	*	*	-

ЛИТЕРАТУРА

- 1. Расчет и конструирование машин и аппаратов химических производств./Под ред. М.Ф.Михалева — Л.: Машиностроение, 1984. - 301 с.
- 2. Вихман Г.Л., Круглов С.А. Основы конструирования аппаратов и машин нефтеперерабатывающих заводов М.: Машиностроение, 1978. 328 с.
- 3. Конструирование и расчет машин химических производств./Под ред. Э. Э. Кольмана Иванова М.: Машиностроение, 1985. 405 с.

КОНСТРУИРОВАНИЕ И РАСЧЕТ ЭЛЕМЕНТОВ ОБОРУДОВАНИЯ ОТРАСЛИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к практическим занятиям для студентов направления 15.03.02 — Технологические машины и оборудование Часть 1

Составитель ст. препод. А.Л. Воробьева

Редактор доц. А.И. Свидченко

Редактор

Подписано в печать 20 г. Формат 60 х 84 1/16 Уч.- изд. л. Усл. печ. л. Тираж Заказ № Невинномысский технологический институт (филиал) ФГАОУ ВО «Северо-Кавказский федеральный университет»

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Невинномысский технологический институт (филиал)

КОНСТРУИРОВАНИЕ И РАСЧЕТ ЭЛЕМЕНТОВ ОБОРУДОВАНИЯ ОТРАСЛИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению практических занятий для студентов направления 15.03.02 — Технологические машины и оборудование

Часть 2

Методические указания по выполнению практических занятий по дисциплине «Конструирование и расчет элементов оборудования отрасли» (часть 2) разработаны в соответствии с требованиями Государственного образовательного стандарта в части содержания и уровня подготовки выпускников по направлению 15.03.02 — Технологические машины и оборудование.

Методические указания имеют целью закрепить у студентов теоретически полученные знания по дисциплине, выработать практические навыки конструирования и материального оформления оборудования химических производств и проведения его расчетов на прочность.

Приведены исходные данные и методические указания по выполнению практических заданий, список рекомендуемой литературы.

Составитель доц. А.И. Свидченко

Редактор доц. А.М. Новоселов

СОДЕРЖАНИЕ

ЗАНЯТИЕ 1	
РАСЧЕТ ОБЕЧАЕК ТОЛСТОСТЕННЫХ СОСУДОВ И	
АППАРАТОВ	4
ЗАНЯТИЕ 2	
РАСЧЕТ ДНИЩ ТОЛСТОСТЕННЫХ АППАРАТОВ	9
ЗАНЯТИЕ 3	
МАШИНЫ И АППАРАТЫ С ВРАЩАЮЩИМИСЯ ЭЛЕМЕНТАМ	ИИ,
РАСЧЕТ ВАЛОВ НА ВИБРОУСТОЙЧИВОСТЬ, ЖЕСТКОСТЬ И	
ПРОЧНОСТЬ	11
ЗАНЯТИЕ 4	
РАСЧЕТ БЫСТРОВРАЩАЮЩИХСЯ ДИСКОВ	21
ЗАНЯТИЕ 5	
РАСЧЕТ БЫСТРОВРАЩАЮЩИХСЯ ОБЕЧАЕК	24
ЗАНЯТИЕ 6	
РАСЧЕТ ЩЕКОВЫХ ДРОБИЛОК	28
ЗАНЯТИЕ 7	
РСЧЕТ ОПОР ДЛЯ ВЕРТИКАЛЬНЫХ СОСУДОВ И АППАРАТО	32
ЗАНЯТИЕ 8	
РАСЧЕТ РАЗВАЛЬЦОВОЧНОГО СОЕДИНЕНИЯ ТРУБ, ТРУБНЬ	ΙX
РЕШЕТОК ТЕПЛООБМЕННЫХ АППАРАТОВ ЖЕСТКОГО ТИП	A
36	
ЛИТЕРАТУРА	40

РАСЧЕТ ОБЕЧАЕК ТОЛСТОСТЕННЫХ СОСУДОВ И АППА-РАТОВ

К аппаратам высокого давления относят аппараты, работающие над давлением свыше 10 МПа. Коэффициент толстостенности таких аппаратов $\beta = D_{\scriptscriptstyle H}/D$ > 1.2/

Аппараты высокого давления изготавливают по возможности меньшего диаметра. Наиболее употребительное отношение диаметра корпуса к его высоте D:H = 1:10 и 1:15.

По данной тоже необходимо рассчитать толщину стенки обечайки толстостенного аппарата. Механические свойства материалов, применимых для сосудов высокого давления указаны в справочных таблицах [1].

В отличии от тонкостенных для толстостенных обечаек нельзя принимать распределение тангенциальных напряжений равномерным по толщине стенки и пренебрегать радиальными напряжениями, которые при высоких давлениях соизмеримы с тангенциальными.

Результатом проектного расчета цилиндрической обечайки является определение толщины стенки (рисунок 1)

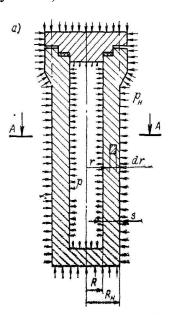


Рисунок 1 – Расчетная схема толстостенной обечайки

Из геометрических соотношений находим

$$S = R_H - R = 0.5D (\beta_p - 1),$$

где $R_{\scriptscriptstyle H},\,R$ — соответственно наружный и внутренний радиусы толстостенной обечайки;

 β_p – расчетный коэффициент толстостенности.

Нормативное допускаемое напряжение определяется по формуле

$$\sigma^* = \min \left\{ \frac{\sigma_B / n_B}{\sigma_T / n_T} \right\};$$

где $n_{\scriptscriptstyle B}$ и $n_{\scriptscriptstyle T}$ – коэффициенты запаса прочности соответственно по пределу прочности и текучести ($n_{\scriptscriptstyle B}=2,6,\,n_{\scriptscriptstyle T}=1,5$).

Допускаемое напряжение в материале при расчетной температуре равно $[\sigma] = \eta \ \sigma^*,$

η – коэффициент, характеризующий токсичность и пожароопасность среды;

 $\eta = 0.9$ – для токсичной и пожароопасной среды;

 $\eta = 1$ – для нетоксичной и пожароопасной среды.

Расчетный коэффициент толстостенности равен

$$\ln \beta_p = p / ([\sigma] * \phi),$$

где р – рабочее давление в аппарате;

[σ] – допускаемое напряжение;

ф – коэффициент прочности сварных швов [1].

После расчета толщины стенки обечайки проводится проверка допускаемого давления и эквивалентных напряжений. Допускаемое давление равно $[p] = [\sigma] * \phi \ln \beta$,

где β – исполнительный коэффициент толстостенности, равный

$$\beta = (D+2S)/(D+2c)/$$

Условие прочности

p > [p].

Эквивалентные напряжения равны

$$\sigma_{_{3KB}} = \frac{1}{\beta^2 - 1} \sqrt{3p^2 + 3p\kappa_1 \Delta t + \kappa_1^2 \Delta t^2}$$

$$\kappa_1 = \frac{\alpha E}{1 - \mu} (\frac{\beta^2 - 1}{2 \ln \beta} - 1);$$

Е – модуль упругости материала обечайки;

 μ – коэффициент Пуассона (для стали μ = 0,3);

$$\Delta t = t_{\scriptscriptstyle B} - t_{\scriptscriptstyle H};$$

 $t_{\mbox{\tiny B}}$ – температура внутренней поверхности обечайки;

 $t_{\scriptscriptstyle H}$ – температура наружной поверхности обечайки.

Варианты задания представлены в таблице 1

Таблица 1 – параметры аппарата высокого давления

	Размеры корпуса					Тем-		Диа-
№	Внут- ренний диа- метр аппа- рата D, мм	Высота аппарата Н, м	Днище	Крыш ка	Ра- бочее дав- ле- ние р, МПа	пера- тура рабо- таю- щей сре- ды t _c , °C	Марка стали	метр от- вер- стия в крыш ке и дни- ще, мм
1	200	2000	Плоское отборто- ванное	Вы- пуклая сфери- ческая	10	300	20	20
2	1000	6000	Слабо- выпуклое	-	50	500	12X18H10T	70
3	2000	20000	Выпук- лое	Плос- кая	20	280	22K	80
4	2800	30000	Плоское отборто- ванное	-	10	400	09Г2С	90
5	300	4000	Слабо- выпуклое	Вы- пуклая сфери- ческая	60	100	20	30
6	1200	16000	Выпук-	Плос-	30	400	12X18H10T	50

			лое	кая				
7	2200	24000	Плоское отборто- ванное	Вы- пуклая сфери- ческая	20	300	12X18H10T	70
8	3000	30000	Слабо- выпуклое	Плос- кая	30	200	09Г2С	80
9	400	3000	Выпук- лое	-	40	150	09Г2С	50
10	1400	8000	Плоское отборто- ванное	Вы- пуклая сфери- ческая	10	250	22K	60
11	2400	25000	Слабо- выпуклое	-	70	200	20	70
12	3200	32000	Выпук-	Плос- кая	20	100	09Г2С	80
13	500	3500	Плоское отборто- ванное	-	10	510	12X18H10T	20
14	1600	18000	Слабо- выпуклое	Вы- пуклая сфери- ческая	40	300	22К	50
15	2600	30000	Выпук-	-	50	350	22К	60
16	600	4000	-	Плос- кая	20	450	12X18H10T	50
17	1800	20000	Слабо- выпуклое	Вы- пуклая сфери- ческая	70	350	09Г2С	60
18	800	25000	Плоское отборто- ванное	-	32	410	09Г2С	50
19	1400	9000	Выпук-	Плос- кая	20	395	12X18H10T	50
20	1000	8000	Слабо- выпуклое	Вы- пуклая сфери- ческая	50	280	22К	60
21	600	18000	Плоское отборто- ванное	Плос- кая	32	180	22K	50

22	1400	14000	Слабо-	-	10	300	20	70
			выпуклое					
23	1200	7000	Выпук-	Вы-	70	250	09Г2С	50
			лое	пуклая				

Примечание: при расчете многослойной обечайки необходимо рассчитать количество слоев (с учетом способа изготовления обечайки).

РАСЧЕТ ДНИЩ ТОЛСТОСТЕННЫХ АППАРАТОВ

В аппаратах высокого давления применяют в основном плоские днища. Кроме плоских днищ используют слабовыпуклые, выпуклые и эллиптические днища. Так как в цилиндрической обечайке аппарата высокого давления отверстия допускается выполнять только в случае крайней необходимости, то трубопроводы и контрольно-измерительные приборы присоединяют в основном к отверстиям, имеющимся в крышках и днищах (рисунок 2).

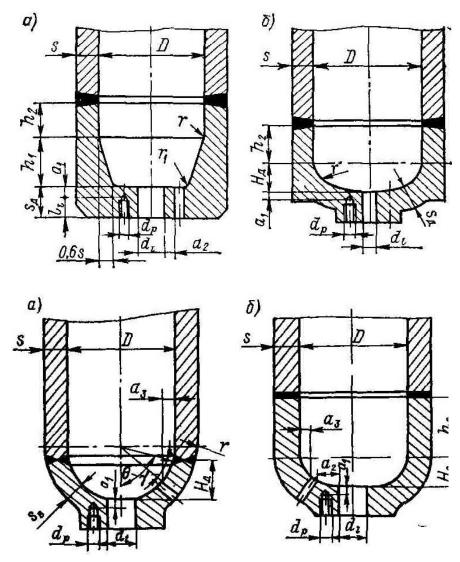


Рисунок 2 – Днища:

а — плоское отбортованное; б — слабовыпуклое ($H_D/D \le 0.25$); в — сферическое; г — отбортованное эллиптическое.

Расчетная толщина плоских отбортованных и слабовыпуклых днищ с $H_D/D \leq 0.25$ определяется по формуле

$$S_{\text{A.p.}} = 0.45 D \sqrt{p_p / [D] \psi_0},$$

где ψ_0 - коэффициент ослабления днища отверстиями, равный

$$\psi_0 = \frac{1 - \sum d_i / D}{1 - \sum (d_i / D)^3},$$

где $\sum d_i$ - сумма диаметров отверстий для наиболее ослабленного диаметрального сечения, при $\sum d_i \: / \: D \ge 0.6$ следует принимать $\psi_0 = 0.4$.

В случае одиночного центрального отверстия диаметром d_0 используют формулу

$$\psi_0 = \frac{1}{1 + d_0 / D + (d_0 / D)^2}$$

Расчетная толщина выпуклых (сферических и эллиптических) днищ при соблюдении условий $H_{\text{д}}/D > 0.25$ и $(S_{\text{B}}-c)/D < 0.15$ Определяется по формуле

$$S_{B,p} = \frac{p_p D}{4[\sigma]\phi - p_p} \frac{D}{2H_{\pi}},$$

<u>где</u> $H_{\text{д}}$ – внутренняя высота выпуклой части днища;

 $[\sigma]$ - допускаемое напряжение при расчетной температуре.

Исполнительная толщина $S_{\scriptscriptstyle B}$ должна удовлетворять условию

$$S_B > S_B p + c$$
.

Рабочее допускаемое давление определяется по формуле

$$[p] = 4[\sigma] \varphi / (\frac{D}{S_B - c} * \frac{D}{2H_{\pi}} + 1).$$

Условие прочности

$$p < [p]$$
.

Исходные данные к проведению расчетов представлены в таблице 1.

ЗАНЯТИЕ 3

МАШИНЫ И АППАТЫ С ВРАЩАЮЩИМИСЯ ЭЛЕМЕНТА-МИ. РАСЧЕТ ВАЛОВ НА ВИБРОУСТОЙЧИВОСТЬ, ЖЕСТ-КОСТЬ И ПРОЧНОСТЬ

Вал любого роторного агрегата является его важнейшей составной частью. К валу непосредственно примыкают многие узлы и детали ротора и корпуса, надежность и экономичность которых в первую очередь зависит от работоспособности и размеров вала. [1].

В зависимости от количества установленных на валу дисков, шкивов, барабанов, мешалок, зубчатых колес, муфт и других узлов деталей разнообразного назначения различают валы с одной и многими сосредоточенными массами.

В зависимости от места установки подшипников валы подразделяют на однопролетные (с концевой опорой) и консольные (рисунок 3).

Рисунок 3 — Конструктивные и расчетные схемы однопролетного (a) и консольного (б) быстроходных валов

Расчет вала с мешалками на виброустойчивость производится по схеме, представленной на рисунке 4.

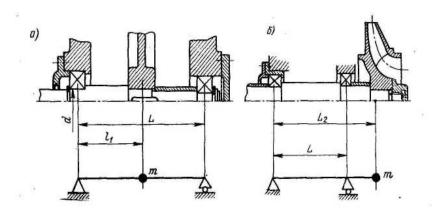


Рисунок 4 — Схема к расчету вала на виброустойчивость, прочность и жесткость Относительные координаты центров тяжести перемешивающихся устройств равны:

$$\overline{\ell_1} = \ell_1 / L;$$

$$\overline{\ell_2} = \ell_2 / L.$$

Безразмерные динамические прогибы вала в центре тяжести перемешивающихся устройств (рисунок 5) равны:

$$\overline{y_{z3}} = \overline{y}\ell_1 = f(\overline{\ell_1}); \ \overline{y_{z4}} = \overline{y}\ell_2 = f(\overline{\ell_2})$$

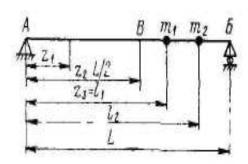


Рисунок 5 — Графики для определения безразмерных прогибов: а — в пролете консольного вала; б — на консоли консольного вала; в — однопролетного вала. Безразмерный коэффициент ξ , учитывающий приведенную массу вала, равен:

$$\xi = \rho w^2 L^2 / (3E),$$

где w – угловая скорость вращения вала;

L – общая длина вала;

Е – модуль упругости материала вала.

Суммарная приведенная масса мешалок равна:

$$\mathbf{m}_{\mathfrak{I}.\pi\mathfrak{p}} = \mathbf{m}_{\mathfrak{I}\pi\mathfrak{p}} + \mathbf{m}_{\mathfrak{I}\pi\mathfrak{p}},$$

где $m_{1\pi p}$ и $m_{2\pi p}$ — приведенные массы мешалок.

Расчетный диаметр вала определяется по формуле

$$d = \sqrt{A_5 + \sqrt{A_5^2 + A_6}} ,$$

где $A_5,\,A_6$ – постоянные, определяемые формулами:

$$A_5 = 0.5\xi L^2;$$

$$A_6 = 8 \, m_{9.\pi p} \, \xi L/(\pi \rho).$$

Необходимо принять ближайший больший стандартный диаметр вала d.

Масса единицы длины вала равна

$$m_{\pi} = \pi d^2 \rho / 4$$

где ρ — плотность материала вала.

Относительная масса мешалок

$$\overline{m}_{\mathfrak{I},\Pi p} = m_{\mathfrak{I},\Pi p} / (m_{\Pi} L).$$

Корень частного уравнения α_1 определяется по графику (рисунок 6)

$$\alpha_1 = f[m_{\scriptscriptstyle 3.\Pi p}/(m_{\scriptscriptstyle M}/L)].$$

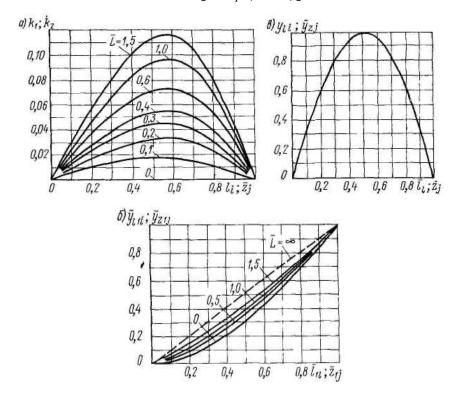


Рисунок 6 — Корни α_1 частного уравнения для вала; а — консольного; б — однопролетного

Момент инерции сочетания вала равен

$$Y = \pi d4/b4$$

Первая критическая угловая скорость вала равна

$$w_{\kappa p} = (\alpha_1/L)^2 \sqrt{EY/m_{_{\rm II}}}$$

Условие виброустойчивости вала $w/w_{\kappa p} < 0.7$.

Эксцентриситет массы мешалок определяется по формуле

$$\ell_1 = \ell_2 = 10^{-3} / \sqrt{w}$$

Относительная координата опасного по жесткости сечения в месте установки уплотнения вала равна

$$\overline{Z}_1 = Z_1 / L$$

Безразмерный динамический прогиб вала в опасном по жесткости сечении равен

$$\mathbf{y}_{\mathbf{z}_1} = \int (\mathbf{\overline{Z}}_1)$$

Приведенные эксцентриситеты масс равны:

$$e_{1\pi p} = e_1 \, / \, \overline{y}_{e_1}$$

$$\mathbf{e}_{2\pi p} = \mathbf{e}_2 / \mathbf{\bar{y}}_{e2}$$

Приведенная масса для однопролетного вала постоянного поперечного сечения $(d_z = 1)$ равна

$$m_{\text{впр}} = 0.5 \text{ m}_{\text{L}} \text{L}$$

Смещение оси вала от оси вращения за счет зазоров в опорах:

- в месте установки верхней мешалки

$$\Delta \ell_1 = (\Delta_{\rm B} - \Delta_{\rm A}) z_3 / L + \Delta_{\rm A},$$

где Δ_A — для радиального однорядного шарикового подшипника (таблица 2);

 Δ_{B} – для подшипника скольжения нижней опоры (таблица 3);

- в месте установки нижней мешалки

$$\Delta \ell_2 = (\Delta_B - \Delta_A)z_4/L + \Delta_A,$$

- в месте установки уплотнения вала

$$\Delta z_1 = (\Delta_B - \Delta_A)z_1/L + \Delta_A,$$

Радиальное биение вала:

- в месте установки верхней мешалки

$$\varepsilon_{\ell 1} = \varepsilon_{z3} = \varepsilon_{B} y_{z3}$$

где $\varepsilon_{\text{в}}$ — начальная изогнутость вала в точке приведения В (середина вала), принимаемая по данным таблицы 4;

- в месте установки нижней мешалки

$$\varepsilon_{\ell 2} = \varepsilon_{z4} = \varepsilon_{B} \overline{y}_{z4},$$

- в месте установки уплотнения вала

$$\varepsilon_{z1} = \varepsilon_{z4} = \varepsilon_{\scriptscriptstyle B} \overline{y}_{z1}$$
.

Таблица 2 — Радиальные зазоры (Δ A и Δ Б), мкм, по основному ряду в радиальных подшипниках [2]

Внутренний		Подшипники к	ачения	
диаметр под-	однорядный	однорядный	роликовый	двухрядный
шипников,	шариковый	взаимозаменяемый	невзаимозаменяемый	сферический
MM.				роликовый
30-40	12-26	20-55	30-45	25-40
40-50	12-29	20-55	30-45	30-45
50-65	13-33	25-65	35-55	30-50
65-80	14-34	30-70	40-60	40-60
80-100	16-40	35-80	45-65	45-70
100-120	20-46	40-90	50-75	50-80
120-140	23-53	45-100	60-90	60-90
140-160	23-58	50-115	70-105	65-100
160-180	24-65	60-125	75-115	70-110
180-200	29-75	65-135	80-120	80-120
200-225	33-83	75-150	90-135	90-140
225-250	35-90	90-165	100-150	100-150
250-280	40-100	100-180	110-165	110-170
280-315	45-105	110-195	120-180	120-180
315-355	50-115	125-215	135-205	140-210
355-400	55-125	140-235	150-225	150-230
400-450		160-260	165-245	170-260
450-500	_	180-290	185-275	190-290

Таблица 3 — Радиальные зазоры в подшипнике скольжения при посадке H7/c8 [1]

Номинальные диаметры	Зазоры ДА и ДБ, 1	мкм (предельные)
вала dA и dБ, мм.	max	min
Св. 30 до 50	114	50
> 50 > 80	136	60
> 80 > 120	161	72
> 120 > 180	188	85
> 180 > 250	218	100
> 250 > 315	243	110
> 315 > 400	271	125

Таблица 4 – Начальная изогнутость ε (z) вала [5]

Отношение длинны вала к его диамет-	Радиальное биение вала в точке при-
py L/d	ведения ξВ, мм.
До 20	0,04
Св. 20 до 50	0,05
Ю 50	0,06

Примечание. Радиальное биение шеек под ступицы перемешивающих устройств и нерабочих поверхностей вала не должно превышать данных значений, увеличенных в 1,5 раза.

Смещение оси вала от оси вращения в точке приведения В (середина вала)

$$\Delta_{\rm B} = (\Delta_{\rm A} + \Delta_{\rm B})/2.$$

Приведенный эксцентриситет массы вала с мешалками

$$\ell_{\rm np} = (m_{\rm 1np}\ell_{\rm 1np} + m_{\rm 2np}\ell_{\rm 2np})/(m_{\rm 3np} + m_{\rm B.np}) + \Delta_{\rm A} + \epsilon_{\rm B}.$$

Динамический прогиб оси вала в точке приведения В

$$y_B = \ell_{\pi p} / [(w_{Kp}/w)^2 - 1].$$

Динамическое смещение центров тяжести мешалок:

- верхней мешалки

$$A_{\ell 1} = y_{\scriptscriptstyle B} \overline{y}_{\ell 1} + \varepsilon_{\ell 1} + \Delta_{\ell 1} + \ell_1;$$

- нижней мешалки

$$A_{\ell 2} = y_{\scriptscriptstyle B} \overline{y}_{\ell \, 2} + \epsilon_{\ell 2} + \Delta_{\ell 2} + \ell_2. \label{eq:A_loss}$$

Динамическое смещение оси вала в опасном сечении в месте установки уплотнения вала

$$A_{z1} = y_{\scriptscriptstyle B} \overline{y}_{z1} + \varepsilon_{\scriptscriptstyle B} + \Delta_{z1}.$$

Динамическое смещение вала в точке приведения В

$$A_{B} = y_{B} + \varepsilon_{B} + \Delta_{B}$$
.

Условие жесткости вала A_{z1} ≤ $[A]_{z1}$,

где $[A]_{z1}$ – допускаемое смещение вала в зоне уплотнительного устройства.

Для сальникового уплотнения $[A]_{z1} = 0,1 \cdot 10^{-3}$ м.

Для торцового уплотнения $[A]_{z1} = 0.25 \cdot 10^{-3} \text{ м}.$

Сосредоточенная центробежная сила, действующая на мешалки:

- на верхнюю

$$F_1 = m_1 w^2 A_{\ell 1};$$

- на нижнюю

$$F_2 = m_2 w^2 A_{\ell 2}$$
.

Приведенная центробежная сила, действующая в точке приведения В равна:

$$F_{\scriptscriptstyle B.\Pi p} = m_{\scriptscriptstyle B.\Pi p} w^2 A_{\scriptscriptstyle B}.$$

Реакции опор равны:

- реакция опоры А (верхней)

$$R_A = B_1/L + F_{B.\pi p}/2,$$

где
$$B_1 = F_1(L_1 - \ell_1) + F_2(L - \ell_2);$$

- реакция опоры Б (нижней)

$$R_{\rm B}=B_3/L+F_{\rm B.\pi p}/2,$$

где
$$B_3 = F_1\ell_1 + F_2\ell_2;$$

Изгибающий момент в опасных по прочности сечениях равен:

- между А и В

$$Muz_2 = R_A \cdot z_2;$$

- между В и Б

$$Muz_3 = R_A \cdot z_3 - F_{B.\Pi p}(z_3 - L/2).$$

Момент сопротивления вала в опасных по прочности сечениях z_2 , z_3 равен:

$$W_{z2} = W_{z3} = \pi d^3/32$$
.

Эквивалентные напряжения в указанных сечениях равны:

$$\sigma_{_{9\text{KB.Z}_2}} = \frac{\sqrt{M_{uz_2}^2 + M_{\text{KZ}_2}^2}}{X_{z_2}};$$

$$\sigma_{_{9KB.Z_3}} = \frac{\sqrt{M_{uz_3}^2 + M_{\kappa z_2}^2}}{X_{z_3}}.$$

Допускаемые напряжения в сечениях z_i равны

$$[\sigma]_{z_i} = \varepsilon_m \sigma - 1/(k\sigma_{z_i} \cdot n_{min}),$$

где ε_m – определяется в соответствии с графиком [Михалев];

 $k_{\sigma z 3}$ определяется по формуле [Михалев].

Условия прочности вала:

$$\sigma_{_{9KB.\ Z2}} \leq [\sigma]_{z2};$$

$$\sigma_{_{9KB.\ Z}3} \leq [\sigma]_{z3}$$
.

Исходные данные для расчета на прочность вала постоянного поперечного сечения представлены в таблице 5.

Таблица 5 – Расчетные параметры

№ вари-	L	11	12	z1	n, об/мин	марка ста-
анта		N	М.			ли
1 (21)	6,2	4,0	5,2	0,80(0,75)	100(150)	12X18H10T
2 (22)	6,0	3,5	5,0	0,70(0,65)	120(160)	15XM
3 (23)	5,8	4,0	4,9	0,72(0,77)	150(170)	40XH
4 (24)	5,5	3,2	4,5	0,65(0,50)	100(150)	30ХГТ
5 (25)	5,0	3,0	4,0	0,56(0,52)	120(140)	25Х2ГНТ
6 (26)	4,6	2,8	3,8	0,45(0,42)	130(200)	20X
7 (27)	4,2	2,6	3,4	0,50(0,35)	100(160)	12XH3A
8 (28)	4,0	2,2	3,1	0,48(0,33)	120(170)	12X2H4A
9 (29)	3,7	2,1	2,9	0,35(0,45)	150(180)	18XΓT
10 (30)	3,5	2,0	2,8	0,42(0,37)	200(230)	Ст5
11 (31)	6,0	4,0	5,2	0,78(0,80)	100(140)	45
12 (32)	5,6	3,6	4,8	0,67(0,72)	120(160)	40X
13 (33)	5,4	3,8	4,7	0,56(0,44)	170(220)	12X18H10T
14 (34)	5,2	3,7	4,5	0,50(0,40)	140(180)	15XM
15 (35)	4,7	3,0	4,1	0,38(0,48)	150(250)	18XΓT
16 (36)	5,7	4,2	5,1	0,60(0,55)	100(200)	30ΧΓT
17 (37)	4,3	3,1	3,7	0,44(0,37)	250(300)	25Х2ГНТ
18 (38)	5,3	3,8	4,6	0,55(0,50)	200(230)	12X18H10T
19 (39)	4,2	2,6	3,5	0,38(0,42)	120(170)	40X
20 (40)	3,8	2,8	3,3	0,45(0,30)	280(250)	15XM
. ,					,	

D , м	Мешалка	m1=m2,	dм, м.	N, Bt.	t, Co	Внутренние
		кг.		,		устройства
3,5(4,0)	Пропеллерная	76,2	1,0	2000(3000)	20	Отражательные
						перегородки
3,8(3,0)	Пропеллерная	71,0	1,0	2500(3200)	80	Отражательные
						перегородки
3,6(3,3)	Пропеллерная	66,0	0,9	2000(2400)	100	Труба передав-
						ливания
3,5(3,8)	Открытая	96,5	1,0	3000(4000)	60	Труба передав-
	турбинная					ливания
4,0(3,0)	Открытая	70,7	1,0	2800(3600)	20	Гильза термо-
	турбинная					метра
3,2(2,6)	Открытая	48,34	0,8	1500(2200)	120	Гильза термо-
	турбинная					метра
2,5(3,0)	Открытая	35,52	0,8	1200(2000)	40	Отражательные
	турбинная					перегородки и
						Труба передав-
						ливания

3,6(2,7)	Закрытая	86,65	0,9	1500(2400)	60	Отражательные
	турбинная					перегородки и
						Труба передав-
						ливания
3,1(2,8)	Закрытая	67,18	0,8	1600(2700)	100	Отражательные
	турбинная	,	,			перегородки и
	J1					Труба передав-
						ливания
2,7(2,2)	Закрытая	38,6	0,7	1300(1800)	20	Отражательные
	турбинная	2 0 , 0				перегородки
3,2(2,4)	Открытая	48,34	0,8	2000(2500)	20	Отражательные
	турбинная	10,0	, , ,			перегородки
3,0(2,6)	Открытая	35,52	0,8	2400(3000)	100	Отражательные
-, (-, -)	турбинная	,				перегородки
2,8(2,1)	Открытая	34,14	0,7	1900(2700)	120	Труба передав-
)-())	турбинная	- ,				ливания
2,5(2,7)	Открытая	26,33	0,7	1600(2500)	20	Труба передав-
, (, ,	турбинная		,			ливания
2,4(1,8)	Закрытая	33,14	0,6	1500(2600)	60	Отражательные
	турбинная		,			перегородки
2,0(1,9)	Закрытая	29,68	0,6	1100(2000)	80	Отражательные
	турбинная		,			перегородки
2,2(2,0)	Пропеллерная	25,0	0,6	900(1400)	120	Отражательные
, , , ,			,			перегородки
2,6(2,1)	Пропеллерная	36,6	0,7	1200(1600)	20	Гильза термо-
			,			метра
2,2(2,5)	Пропеллерная	27,7	0,7	1000(1700)	100	Гильза термо-
. ,						метра
2,0(1,5)	Пропеллерная	14,0	0,5	900(700)	20	Гильза термо-
						метра
						_
	Примеч	пание. В с	кобках	дан близкий в	ариант	

ЗАНЯТИЕ 4

РАСЧЕТ БЫСТРОВРАЩАЮЩИХСЯ ДИСКОВ

Быстровращающиеся диски являются важными рабочими элементами роторов молотковых дробилок и дезинтеграторов, распылительных сушилок, коллоидных мельниц, барабанов центрифуг, центробежных насосов и компрессоров, а также ряда другого химического оборудования [1].

В зависимости от изменения толщины диска по его радиусу различают диски простого профиля (диски постоянной толщины, конические, гиперболические, рисунок 6, a - B) и сложного (рисунок 6, Γ).

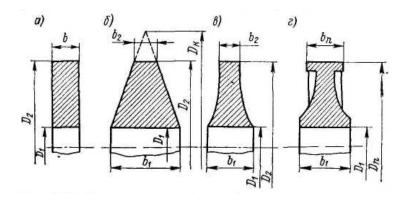


Рисунок 6 – Конструктивные формы быстровращающихся дисков.

Расчет на прочность конических дисков включает в себя следующие основные зависимости.

Диаметр полного конуса:

$$D_{\scriptscriptstyle K} = D_1 + (D_2 - D_1) \cdot b_1 / (b_1 - b_2).$$

Расчетная схема представлена на рисунке 7.

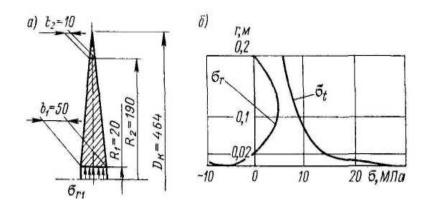


Рисунок 7 – Конический диск коллоидной мельницы:

Численные значения безразмерных параметров равны:

$$\chi = D/D_{\kappa}$$
$$\chi_1 = D_1/D_{\kappa}$$

Радиальное напряжение от посадки диска на вал определяется по формуле

$$\sigma_{r_2} = \alpha_{r(R_2)} \sigma_{r_1} + \alpha_{t(R_2)} \sigma_{t_1} + \alpha_{c(R_2)} T_{\kappa} = 0,$$

где T_{κ} = D_{κ}^2 (n - 1000)²; коэффициенты $\alpha_{r(R_2)}$, $\alpha_{t(R_2)}$, $\alpha_{c(R_2)}$ определяются по графикам [Михалев] в зависимости от χ и χ_1 .

Направления от σ_r и σ_t на любом радиусе диска равны:

$$\begin{split} \boldsymbol{\sigma}_{r} &= \boldsymbol{\alpha}_{r} \boldsymbol{\sigma}_{r_{l}} + \boldsymbol{\alpha}_{t} \boldsymbol{\sigma}_{t_{1}} + \boldsymbol{\alpha}_{c} \boldsymbol{T}_{\kappa}; \\ \boldsymbol{\sigma}_{t} &= \boldsymbol{\beta}_{r} \boldsymbol{\sigma}_{r_{l}} + \boldsymbol{\beta}_{i} \boldsymbol{\sigma}_{t_{1}} + \boldsymbol{\beta}_{c} \boldsymbol{T}_{\kappa}. \end{split}$$

Местный запас прочности диска определяется допускаемым коэффициентом запаса $[n_m]$.

$$n_m = \sigma_{\scriptscriptstyle T} \, / \, \sigma_{max}$$

По результатам расчета определяется наиболее нагруженная поверхность диска.

Исходные данные для расчета прочности диска представлены в таблице 6.

Таблица 6 – Расчетные параметры дисков

Номер	D_2	D_1	b_2	b_1	w,	σ_{r1}	σ_{r2}	Тип диска		
варианта		M	M		рад/с	M	Па			
1	800	260	30	30	300	-5 10		-5 10		Диск постоянной
										толщины
2								Конический		
3				100				Гиперболический		
4	1000	280	25	25	250	-4 12		Диск постоянной		
								толщины		
5				120				Конический		
6								Гиперболический		
7	1100	320	40	40	320	-7	18	Диск постоянной		

								толщины
8				110				Конический
9	-							Гиперболический
10	1200	300	35	35	220	-6	16	Диск постоянной
								толщины
11								Конический
12								Гиперболический
13	1400	340	38	38	400	-3	8	Диск постоянной
								толщины
14				128				Конический
15								Гиперболический
16	1600	360	40	40	240	-4	10	Диск постоянной
								толщины
17				120	-			Конический
18								Гиперболический
19	1800	400	45	45	200	-10	10	Диск постоянной
								толщины
20				130				Конический
21								Гиперболический

ЗАНЯТИЕ 5

РАСЧЕТ БЫСТРОВРАЩАЮЩИХСЯ ОБЕЧАЕК

Одним из основных элементов конструкции роторов центрифуг и сепараторов химического оборудования является цилиндрическая или коническая обечайка. В общем случае они находятся под совместным действием распределенных по поверхности инерционных нагрузок от собственной массы обечайки q_{μ} и массы обрабатываемой среды p_{c} ; краевых сил Q_{0} и момента M_{0} (рисунок 8).

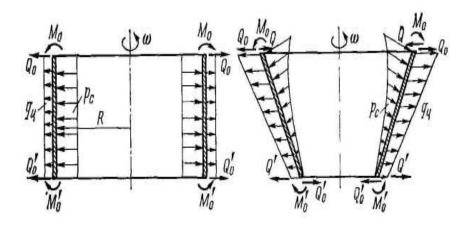


Рисунок 8 – Схема действия нагрузок на обечайки ротора

Основные уравнения для расчета быстровращающихся оболочек это уравнение совместности деформаций узла соединения цилиндрической и конической обечаек ротора (рисунок 9).

$$\begin{cases} \Delta_{pm}^{\text{II}} + \Delta_{pc}^{\text{II}} + \Delta_{m_0}^{\text{II}} + \Delta_{Q_0}^{\text{II}} = \Delta_{pm}^{\text{K}} + \Delta_{pc}^{\text{K}} + \Delta_{m_0}^{\text{K}} + \Delta_{(Q_0 - Q)}^{\text{K}} \\ \theta_{pm}^{\text{II}} - \theta_{pc}^{\text{II}} - \theta_{m_0}^{\text{II}} + \theta_{Q_0}^{\text{II}} - \theta_{pm}^{\text{K}} + \theta_{pc}^{\text{K}} + \theta_{m_0}^{\text{K}} + \theta_{(Q_0 - Q)}^{\text{K}} \end{cases}$$

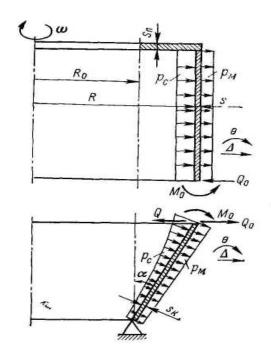


Рисунок 9 — Расчетная схема узла соединения цилиндрической и конической обечаек ротора.

Условие прочности узла соединения края цилиндрической обечайки

$$\sigma_{_{9KB.II}} < \phi[\sigma]_{p.Kp}$$

где
$$\sigma_{\text{экв.ц}} = \max \{ \sigma_{\text{mц}}; \sigma_{\text{tц}} \},$$

где $\sigma_{mц}$ – меридиональное напряжение;

 $\sigma_{tu}-$ тангенциональное напряжение.

Варианты задания представлены в таблице 7.

Таблица 7 – Параметры цилиндрического ротора

		,	110F	P	цилиндрическ	ror o Po	P	•					
						8		Толш	цина				
		l De				KT/M		стен	ІКИ				
	ра Г	стия		рад/с		I pc,]				O	ца а		
Номер варианта	Внутренний диаметр ротора D	Диаметр загрузочного отверстия D_{c}	Длина ротора L	Рабочая угловая скорость w		Длина ротора L Рабочая утловая скорость w, рад/с Марка стали		Плотность обрабатываемой среды $ ho_{ m c}$, кг/м 3	Рабочая температура t, °C	цилиндрической обечайки s	конического днища ^δ к	Прибавка к толщине с	Половина угла при вершине днища $lpha,\ldots$
		MM	T						MM	.			
1	350	245	200	315	12X18H10T	1500	40	6	10	2	30		
2	630	440	300	250	12X18H10T	1500	40	4	8	2	25		
3	900	630	400	158	12X18H10T	1650	20	14	26	2	70		
4	1250	850	800	207	20	1650	20	20	28	1	25		
5	1800	1200	600	75	20	1400	20	22	44	1	70		
6	1200	850	500	85	20	1400	50	8	16	1	60		
7	800	560	400	150	10Х18Н9ТЛ	1500	50	10	18	2	70		
8	1500	1000	500	75	10Х18Н9ТЛ	1560	50	14	26	2	25		
9	800	550	400	132	10Х18Н9ТЛ	1600	25	6	14	1	23		
10	1200	850	500	88	10Х18Н9ТЛ	1600	25	10	18	2	70		
11	1600	1000	600	75	12X18H10T	1500	40	20	42	1	70		
12	1000	760	400	150	12X18H10T	1500	50	12	20	2	25		
13	800	550	400	132	10Х18Н9ТЛ1	1400	25	4	10	2	25		
14	400	295	200	315	2X18H10T20	1650	40	8	12	2	25		
15	630	440	300	250	20	1500	20	6	10	2	25		
16	1250	850	800	207	12X18H10T	1600	50	18	28	2	70		
17	850	780	400	158	12X18H10T	1560	40	12	24	2	70		
18	1300	950	500	85	20	1650	50	10	18	1	70		
19	1500	1000	500	75	10Х18Н9ТЛ	1560	25	16	28	2	25		
20	1100	750	400	88	12X18H10T	1400	20	8	16	2	25		

21	1800	1200	600	75	12X18H10T	1650	20	20	40	1	75
22	900	630	400	158	20	1500	40	12	24	2	25
23	350	245	200	315	20	1400	50	8	10	2	75
24	1200	850	500	85	20	1600	25	6	14	1	75
25	1600	1100	600	207		1400	40	22	14	1	25

ЗАНЯТИЕ 6

РАСЧЕТ ЩЕКОВЫХ ДРОБИЛОК

Измельчение — процесс уменьшения размеров кусков твердого материала механическим воздействием — широко используют в различных технологических процессах химической промышленности [2].

Процесс измельчения характеризуется степенью измельчения — отношением средних диаметров кусков материала до и после измельчения (соответственно $d_{\scriptscriptstyle H}$ и $d_{\scriptscriptstyle K}$).

$$i = d_{\rm H} / d_{\kappa}$$
.

Щековые дробилки используют для крупного и среднего дробления материалов. Степень измельчения i = 3...5 (рисунок 10)

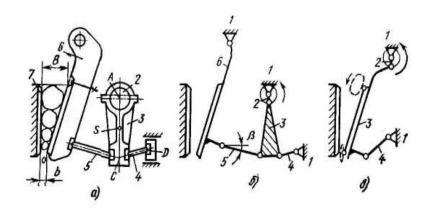


Рисунок 10 – Конструкции щековых дробилок

При расчете дробилок задаются максимальными размерами кусков дробимого материала $d_{\text{н max}}$ и продукта дробления $d_{\text{к max}}$, прочностью и плотностью материала, загружаемого в дробилку.

Ширину В загрузочного отверстия (щели) дробилки выбирают из условия размещения куска максимальных размеров в верхней части дробильной камеры:

$$B = (1,2 \div 1,25) d_{H \text{ max}}.$$

Ширина выходной щели b зависит от размеров кусков продукта дробления b $\approx 0.8~d_{\kappa\,max}.$

Угол α между неподвижной и подвижной щеками (угол захвата) определяют из условия невыталкивания материала из дробильной камеры под воздей-

ствием щек. Условием захвата куска является большее значение сил трения по сравнению с силами выталкивания.

Проекция выталкивающей силы на вертикальную ось (рисунок 11) равна $2P\sin(\alpha/2)$, проекция сил трения составляет $2P\cos(\alpha/2)$.

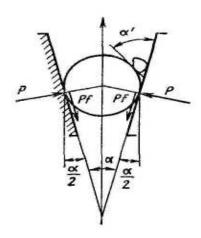


Рисунок 11 — Схема приложения сил к куску измельчаемого материала в щековой дробилке

Из условия захвата следует

$$2Pf\cos(\alpha/2) > 2P\sin(\alpha/2)$$

откуда

$$f = tg\phi \ge tg(\alpha/2)$$
 или $\alpha < 2\phi$,

где ф – угол трения.

В щековых дробилках $\alpha = 18 \div 22^{\circ}$.

Для измельчения материала необходимо выполнение условия дробления

$$S > \varepsilon d_H$$

где ε – относительная деформация сжатия, равная

$$\varepsilon = \sigma_{cw}/E$$
,

где σ_{cw} – предел прочности при сжатии;

Е – модуль продольной упругости материала.

Частота вращения эксцентрикового вала определяется по формуле

$$n \le 0.5\sqrt{(tg\alpha_1 + tg\alpha_2)g/(2S_H)}$$

Обычно принимают

$$n_p = (0.7 \div 0.9) \text{ n.}$$

Производительность щековой дробилки рассчитывают по объему призмы выпадающей за один двойной ход щеки

$$V = F \cdot L$$
,

где F площадь сечения призмы;

L – длина камеры дробления.

Тогда $Q = Vn\mu$,

где μ – коэффициент разрыхлении продукта (μ = 0,4 ÷ 0,6);

n – частота вращения эксцентрикового вала.

Варианты задания представлены в таблице 8.

Таблица 8 – Параметры дробилок

Показатель		ачения билки жеі		Значения показателя дробилки с простым движением щеки				
	ШДС – 1,6 * 2,5	ШДС – 2.5 * 4	ШДС - 2,5 * 9	ШДС – 4 * 9	ШДС-6 * 9	ШДС – 9 * 12	ШДС – 15 * 21	
Рзмеры примерного отвер-	160*	250*	250*	400*	600*	900*	1200*	1500*
стия (длина * ширина), мм	250	400	900	900	900	1200	1500	2100
Наибольший размер корпусов загружаемого материала, мм	130	210	210	310	500	750	1000	1300
Угол захвата, 0	15	16	16	18	19	20	20	20
Номинальная ширина выходной щели, мм	30	40	40	60	100	130	150	180

Диапазон изменения ширины выходной щели, %	<u>+</u> 15	+ 40 - 20	<u>+</u> 20	+30 - 20	+40 - 25	<u>+</u> 35	<u>+</u> 40	<u>+</u> 45
Ход щеки, мм			_	10	24	36	40	44
Эксцентритет главного ва-			_	12	19	35	40	42
ла, мм								
Частота вращения главно-		275	275	290	250	170	150	125
го вала, об/мин								
Производительность при								
нормальной ширине щели,	3,0	7,8	18	30	62	180	310	600
M^3/Ψ								
Мощность электродвига-	7,5	17	40	40	75	100	160	250
теля, кВт								
Масса дробилки без элек-	1,37	2,56	8	12	20	75	145	260
тродвигателя, т								

ЗАНЯТИЕ 7

РАСЧЕТ ОПОР ДЛЯ ВЕРТИКАЛЬНЫХ СОСУДОВ И АППА-РАТОВ

В соответствии с рекомендациями нормативных документов собственно опоры (опорные лапы) расчетом не проверяются, а выбираются типовые на требуемую нагрузку [3].

Расчету же подлежит обечайка цилиндрического аппарата, на которую действуют местные нагрузки, вызываемые опорными лапами (рисунок 12).

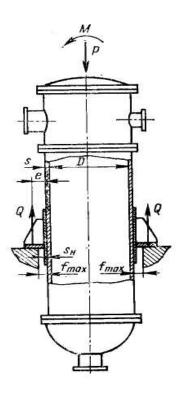


Рисунок 12 – Схема нагрузок, действующих на аппарат

При определении нагрузки на опору – лапу действующие на аппарат усилия приводят к осевой силе P и моменту M относительно опорной поверхности лапы.

Нагрузка на одну опору равна

$$Q = \lambda_1 P/z + \lambda_2 M/(D - 2e),$$

где $e=0,5(b+f_{max}+S_0+S_{\scriptscriptstyle H});\ f_{max}$ — вспомогательная величина (определяется по справочным таблицам); $S_0=S-c-c_0;\ S$ — исполнительная толщина стенки аппарата; λ_1,λ_2 — коэффициенты, зависящие от числа опор; z — число опор.

Проверка прочности стенки вертикального цилиндрического аппарата под опорной лапой с накладным листом проводится в следующем порядке.

Осевое напряжение от внутреннего давления р и изгибающего момента равно

$$\sigma_{\text{mox}} = pD/(4S_0) + 4M/(\pi D^2 S_0).$$

Окружное напряжение от внутреннего давления равно

$$\sigma_{mov} = pD/(2S_0)$$
.

Максимальное мембранное напряжение от основных нагрузок и реакция опоры определяется по формуле

$$\sigma_{\rm m} = \sigma_{\rm mo} \pm k_1 {\rm Qe}/({\rm DS_0}^2),$$

где k_1 определяется по

Максимальное напряжение изгиба от реакции опоры определяется по формуле

$$\sigma_{\rm u} = k_2 {\rm Qe}/(h{\rm S}_0^2),$$

где k₂ определяется по

Условие прочности имеет вид

$$(\sigma_{\rm m}/\sigma_{\rm T})^2 + \frac{0.8}{\rm A} \cdot \frac{\sigma_{\rm u}}{\sigma_{\rm T}} \le 1,$$

где А = 1 для эксплуатационных условий.

Если условие не выполняется требуется применить подкладной лист.

По теме данного занятия необходимо проверить условие прочности для обечайки аппарата по данным таблицы 9.

Таблица 9 – Параметры вертикального аппарата

No	Диаметр ап-	Толщина стенки	Высота ап-	Тип опор-	Марка
	парата, D	аппарата, S	парата, Н	ных лап	стали
1	800	4	8000	I	
2	800	5	9000	I	
3	1000	6	11000	II	
4	1200	8	10000	II	
5	1400	10	10000	II	
6	1400	10	12000	II	
7	1400	10	10000	II	
8	1800	12	12000	I	

9	1800	10	12000	II	
10	1800	12	12000	II	
11	2000	14	14000	Ι	
12	2000	14	14000	II	
13	2000	12	14000	I	
14	2200	12	16000	II	
15	2200	14	16000	II	
16	2200	16	18000	II	

3АНЯТИЕ 8

РАСЧЕТ РАЗВАЛЬЦОВОЧНОГО СОЕДИНЕНИЯ ТРУБ, ТРУБНЫХ РЕШЕТОК ТЕПЛООБМЕННЫХ АППАРАТОВ ЖЕСТКОГО ТИПА

В теплообменниках жесткого типа трубы размещают по вершинам равносторонних треугольников или шестиугольников с минимально возможным шагом [4].

Шаг труб t обычно принимают в зависимости от их наружного диаметра $d_{\scriptscriptstyle H}$:

при
$$d_{\rm H} = 20$$
 мм $t = 26$ мм; при $d_{\rm H} = 25$ мм $t = 32$ мм или $t = 1.2$ $d_{\rm H} + 2$ мм.

При разметке трубной решетки стараются занять всю площадь круга, располагая трубы по возможности ближе к стенке корпуса теплообменника.

Число труб, размещенных на решетке, определяется по формуле

$$n = k_1 \frac{\pi D^2}{4 \cdot 0.866 t^2},$$

где $k_1 = 0.7 \div 0.85$ – коэффициент заполнения решетки трубами;

D – диаметр круга, на котором размещаются трубы;

t – шаг расположения труб.

Обычно трубы соединяют с трубной решеткой на развальцовке (рисунок 13).

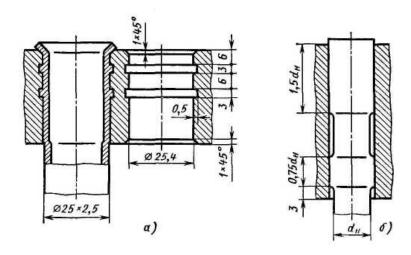


Рисунок 13 — Варианты развальцовочного соединения при небольшой (а) и большой (б) толщине решетки

При развальцовке конец трубы обычно выступает на $3-5\,$ мм из гнезда. Это повышает прочность и плотность соединения.

При развальцовке трубок в отверстиях с канавками значительно возрастают сопротивления труб вырыванию и герметичность соединения.

Размер канавки выбирают в зависимости от толщины стенки трубы.

Из высоколегированных коррозионностойких сталей используют трубы с толщиной стенки 1,6 мм, из углеродистых сталей обычно с толщиной стенки не менее 2 мм.

Глубина канавки обычно S/5, ширина S + 1 мм (S - толщина стенки трубы)

Для обеспечения качественной развальцовки и возможности смены труб при ремонте решетки изготовляют из материала большей твердости, чем трубы.

Воспринимаемая трубой нагрузка q от давления на площадь f трубной решетки, заключенную между четырьмя трубами (рисунок 14), определяется по формуле

$$q = p_{\kappa}f$$

при расположении труб по вершинам правильных треугольников

$$f = 0.866t^2 - \frac{\pi d_H^2}{4}$$

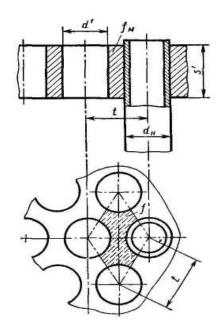


Рисунок 14 — Схема к расчету развальцовочного соединения Осевое усилие, растягивающее труб, равно

$$Q = p_{K} \frac{\pi}{4} (D_{K}^{2} - nd_{H}^{2}) + p_{T} \cdot n \frac{\pi}{4} d_{B}^{2}$$

где рк –

 D_{κ} -

 $p_{\scriptscriptstyle T}$ -

 $d_{\scriptscriptstyle \rm B}$ -

Усилие на одну трубу составляет

$$q_1 = \frac{Q}{n}$$

Удельная нагрузка от давления на единицу длины окружности развальцовки равна

$$\sigma_0 = \frac{q_1}{\pi d_H}.$$

Для обеспечения прочности развальцовки удельная нагрузка от давления σ_0 не должна превышать $[\sigma]_0 = 0.04$ МН/м при развальцовке труб в отверстиях без канавок и $[\sigma]_0 = 0.07$ МН/м при развальцовке труб в отверстиях с канавками.

Суммарное усилие на трубы равно

$$q_c = q_1 + q_T$$

где $q_T = \sigma_T f_T$;

$$f_{T} = \frac{\pi}{4}(d_{H}^{2} - d_{B}^{2});$$

 $q_{\scriptscriptstyle T}$ – принимают со знаком плюс, когда корпус нагрет больше, чем трубы и со знаком минус, если трубы нагреты больше, чем корпус.

При относительно толсты решетках проверку труб на вырывание из гнезда можно вести с учетом глубины развальцовки по удельной нагрузке

$$\sigma' = \frac{q_c}{d_H \cdot h}$$

При этом

 $\sigma' < 12 \ \text{M}\Pi \text{a} - \text{при развальцовке труб в отверстиях без канавок;}$

 $\sigma' < 20 \ M\Pi a$ — при развальцовке труб в отверстиях с канавками.

h – глубина развальцовки;

 $h = 1,5 \, d_{\scriptscriptstyle H}$ или полную глубину отверстия.

Толщина решетки S равна

$$S = \frac{f_m}{t - d^{\prime}} + c$$

где f_m – площадь сечения простенка решетки, равная

$$f_m = 4,35d_H + 15, MM;$$

 \mathbf{d}' - диаметр отверстия в трубной решетке

$$d' = d_H + 0.4$$
, MM.

В ряде случаев толщину трубной решетки назначают конструктивно.

Исходные данные для расчета представлены в таблице 10.

Таблица 10 – Параметры теплообменного

No	Внут- ренний диа- метр, D	Марка стали корпуса	Рабочее давление в корпусе	Рабочее давление в трубах	Температура корпуса	Темпера- тура тру- бок
1	400	ВСт3сп	2,0	1,6	100	50
2	600	ВСт3сп	2,0	1,6	100	50
3	800	ВСт3сп	2,5	1,0	100	60
4	800	09Г2С	2,5	1,6	100	70
5	1000	09Г2С	2,5	0,6	80	40
6	1000	09Г2С	2,0	0,6	70	30
7	1200	09Г2С	2,0	0,6	80	50
8	1200	09Г2С	2,5	0,6	90	40
9	600	16ГС	2,0	0,55	45	90

10	800	16ГС	1,6	0,6	45	90
11	800	16ГС	2,6	1,0	50	100
12	1000	12XM	2,0	0,6	60	100
13	1000	12XM	2,0	1,6	70	100
14	1000	12XM	2,5	1,0	80	120
15	1200	08X18H10T	2,5	1,6	70	110
16	1200	08X18H10T	2,0	0,6	80	110

ЛИТЕРАТУРА

- 1. Расчет и конструирование машин и аппаратов химических производств./ Под. ред. М.Ф. Михалева Л.: Машиностроение, 1984. 301 с.
- 2. Конструирование и расчет машин химических производств. / Под. ред. Э.Э. Кольмана - Иванова – М.: Машиностроение, 1985. – 405 с.
- 3. Конструирование сварных химических аппаратов. Справочник. Под. ред. А.Р. Толчинского Л.: Машиностроение, 1981. 381 с.
- 4. Вихман Г.Л., Круглов С.А. Основы конструирования аппаратов и машин нефтеперерабатывающих заводов. М.: Машиностроение, 1978. 328 с.

КОНСТРУИРОВАНИЕ И РАСЧЕТ ЭЛЕМЕНТОВ ОБОРУДОВАНИЯ ОТРАСЛИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к практическим занятиям для студентов направления 15.03.02 — Технологические машины и оборудование Часть 2

Составитель ст. препод. А.Л. Воробьева

Редактор доц. А.И. Свидченко

Редактор

Подписано в печать 20 г. Формат 60 х 84 1/16 Уч.- изд. л. Усл. печ. л. Тираж Заказ № Невинномысский технологический институт (филиал) ФГАОУ ВО «Северо-Кавказский федеральный университет»

Отпечатано в типографии НТИ (филиала) ФГАОУ ВО «СКФУ» 357108, г. Невинномысск, ул. Гагарина, 1

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Невинномысский технологический институт (филиал)

КОНСТРУИРОВАНИЕ И РАСЧЕТ ЭЛЕМЕНТОВ ОБОРУДОВАНИЯ ОТРАСЛИ

методические указания по выполнению курсовой работы по направлению подготовки — 15.03.02 Технологические машины и оборудование

Невинномысск 2020

Методические указания по выполнению курсовой работы по дисциплине «Конструирование и расчет элементов оборудования отрасли» (КРЭОО) разработаны в соответствии с требованиями Государственного образовательного стандарта в части содержания и уровня подготовки выпускников по направлению 15.03.02 Технологические машины и оборудование.

Методические указания предназначены для студентов очной и заочной форм обучения, выполняющих курсовые работы по КРЭОО. Указания включают требования к содержанию и оформлению курсовой работы, методические рекомендации по выполнению ее разделов, список основной литературы.

Рекомендации по конструированию и прочностному расчету аппаратов и машин могут быть использованы и при выполнении соответствующего раздела выпускной квалификационной работы.

Составители: доц. Свидченко А.И. Рецензент: доц. А.М. Новоселов

СОДЕРЖАНИЕ

1 ЦЕЛЬ КУРСОВОЙ РАБОТЫ	4
2 СОДЕРЖАНИЕ РАБОТЫ	4
2.1 Тематика курсового проектирования	5
2.2 Пояснительная записка	5
2.2.1 Введение	5
2.2.2 Разработка и описание конструкции оборудования	5
2.2.3 Обоснование выбора материала и режимных параметров	6
2.2.4 Расчёт на прочность	7
2.2.5 Заключение	8
2.2.6 Список использованных источников	8
2.2.7 Приложение	
3 ОФОРМЛЕНИЕ РАБОТЫ	9
4 РАСЧЁТ ОБОРУДОВАНИЯ НА ПРОЧНОСТЬ	10
4.1 Вертикальные сосуды и аппараты	10
4.2 Горизонтальные сосуды и аппараты	11
4.3 Сферические резервуары, газгольдеры, электродегидраторы	12
4.4 Трубчатые печи	12
4.5 Аппараты воздушного охлаждения	12
4.6 Аппараты и машины с вращающимися элементами	12
4.6.1 Центрифуги, сепараторы	12
4.6.2 Аппараты барабанного типа	13
4.6.3 Аппараты с мешалками	13
4.7 Насосы, компрессоры	
4.7.1 Центробежные насосы и компрессоры	13
4.7.2 Поршневые насосы и компрессоры	14
4.8 Транспортные устройства	
5 ЗАЩИТА КУРСОВОЙ РАБОТЫ	14
РЕКОМЕНЛУЕМАЯ ПИТЕРАТУРА	14

1 ЦЕЛЬ КУРСОВОЙ РАБОТЫ

Целью курсовой работы является закрепление и углубление теоретических знаний и приобретение практических умений путем применения их к решению конкретных расчетно-конструкторских задач при проектировании технологического оборудования общего и специального назначения, используемого в различных отраслях химической технологии, нефтехимии и биотехнологии.

2 СОДЕРЖАНИЕ РАБОТЫ

Курсовая работа состоит из пояснительной записки объемом 25-30 страниц формата A4, а также схем и эскизов, приведённых в пояснительной записке.

Пояснительная записка включает:

титульный лист на курсовую работу;

задание на проектирование;

содержание;

введение;

теоретическая часть:

разработку и описание конструкции оборудования и элементов; аналитическая часть:

обоснование выбора материала и расчетных параметров;

расчёт элементов на прочность (корпуса, днища, аппаратного фланца, расчёт укрепления одиночного отверстия, расчёт трубных решёток, расчёт развальцовочного соединения, расчёт опор и др.);

расчёт оборудования на ветровую и сейсмическую нагрузку;

заключение;

список использованных источников;

приложение.

В зависимости от вида разрабатываемого оборудования и его специфики содержание некоторых разделов может быть уточнено.

2.1 Тематика курсового проектирования

В состав проекта входит конструирование и прочностной расчёт основного оборудования химических производств.

В качестве оборудования для проектирования назначаются:

- 1. Вертикальные сосуды и аппараты.
- 2. Горизонтальные сосуды и аппараты.
- 3. Сферические сосуды и аппараты.
- 4. Печи трубчатые.
- 5. Аппараты воздушного охлаждения (АВО).
- 6. Аппараты и машины с вращающимися элементами.
- 7. Насосы и компрессоры центробежные.
- 8. Насосы и компрессоры поршневые.
- 9. Транспортные устройства.

Методическое сопровождение тематики курсового проектирования в основном обеспечивается рекомендованной литературой [1-14].

2.2 Пояснительная записка

2.2.1 Во введении обосновывается необходимость и актуальность выполнения работы по данной теме, исходя из перспектив развития химической технологии, нефтехимии, биотехнологии и химического машиностроения; создания новых эффективных и высокопроизводительных конструкций аппаратов и оборудования.

2.2.2 Разработка и описание конструкции оборудования

В данном разделе необходимо разработать и подробно описать конструкцию проектируемого оборудования.

При разработке конструкции необходимо учитывать следующее: конструкция аппарата или машины должна удовлетворять условиям технологического процесса, должна быть механически надежной. Предпочтение следует отдавать типовым техническим решениям по конструированию корпуса, днищ и крышек, люков, штуцеров, опорных и внутренних устройств, греющих рубашек, змеевиков, ком-

пенсаторов, уплотнений и т.д. Описание конструкции оборудования проводят с использованием общепринятой терминологии [2,3] и необходимых эскизов.

2.2.3 Обоснование выбора материала и режимных параметров

Выбор конструкционных материалов осуществляют с учетом параметров процесса (температура и давление) и химической агрессивности рабочих сред. При выборе конструкционных материалов учитывают также условия эксплуатации, требования надежности и долговечности, экономичности и руководствуются правилами Госгортехнадзора и других нормативных документов.

Далее определяют расчетные температуру и давление, что позволяет выбрать допускаемые напряжения для конкретной марки конструктивного материала и провести последующие расчеты прочности, устойчивости и т.д.

Рабочее давление P — максимальное избыточное внутреннее или наружное давление, возникающее при нормальном протекании процесса, без учёта гидростатического давления среды.

Расчётное давление P_p приравнивается к рабочему давлению, если гидростатическое давление среды P_r не превышает 5% от рабочего, т.е. (P_r/P) 100% < 5. Для сосудов, работающих под вакуумом или под наружным давлением (для сосудов с рубашками), расчётное давление P_p принимают после предварительного анализа наиболее тяжелых условий работы.

Определяется также пробное давление (испытания) P_{μ} – максимальное избыточное давление, создаваемое при гидравлических (пневматических) испытаниях.

Расчётная температура стенки t_p принимается равной рабочей, если в сосуде отсутствует футеровка. В противном случае - определяется на основании тепловых расчётов или результатов испытания. При отрицательных температурах принимают $t_p = 20^\circ$ С. Для условий испытания сосуда также принимают $t_p = 20^\circ$ С.

Допускаемое напряжение для материала в рабочем состоянии

оборудования определяют по формуле

$$[\sigma] = \eta \sigma^*$$

где σ^* - нормативное допускаемое напряжение при расчётной температуре [1]; η — поправочный коэффициент, учитывающий вид заготовки [1].

Допускаемое напряжение для материала оборудования в состоянии испытания определяют по методике [1].

2.2.4 Расчёт на прочность

Расчеты на прочность и устойчивость проводят для отдельных основных элементов оборудования с целью определения размеров деталей, толщин конструктивных элементов, выявления опасных сечений. Рассматривают типовые состояния оборудования: после изготовления или монтажа, при испытаниях, в рабочих условиях. Объем и глубину прочностных расчетов согласовывают с руководителем курсовой работы.

При необходимости выполняются кинематический (с учетом схемы взаимосвязи между рабочими элементами оборудования и приводом) и силовой (с целью нахождения нагрузок, действующих на его звенья и узлы) расчеты.

Фрагменты прочностных расчетов рекомендуется выполнять с применением ЭВМ на основе собственных разработок (программ). Повторяющиеся вычисления должны быть представлены в виде итоговых таблиц. Разрешается использование программного обеспечения инженерных расчетов методом конечно-элементного анализа (Nastran, APM WinMachine и др.).

Все прочностные расчеты выполняют в международной системе единиц СИ. Если из справочников или других источников значения величин взяты в какой-либо другой системе единиц, то их пересчитывают в систему СИ.

Расчеты сопровождаются, в обязательном порядке, схемами к расчету, с указанием действующих нагрузок и сил на рассчитываемый элемент, основными размерами (буквенные обозначения).

Расчёт на прочность обечаек и днищ вертикальных и горизонтальных аппаратов производится с учётом давления (внутреннее или наружное), под которым работает аппарат. Для найденной толщины элемента необходимо учитывать прибавки к расчётной толщине для компенсации коррозии и эрозии, для компенсации минусового допуска, технологические прибавки.

При расчёте фланцевых соединений производится выбор конструкции фланца в зависимости от заданного рабочего давления и диаметра аппарата, рассчитываются болты (шпильки) фланцевого соединения, температурные напряжения в болтах и шпильках.

Расчёт укрепления отверстий производится с учётом выбранного предварительно метода укрепления (накладное кольцо, торообразная вставка, утолщение стенки штуцера).

Кроме того, производят расчёт на прочность элементов люков, штуцеров, опор аппарата.

Для теплообменных аппаратов дополнительно производится расчёт прочности трубных решёток, труб, развальцовочных соединений.

Для вертикальных аппаратов необходим расчёт на ветровую и сейсмическую нагрузку.

Для аппаратов с приводом и машинного оборудования проводят специфические расчеты на прочность, устойчивость и т.д. (см. п. 4).

2.2.5 В заключении подводят итоги проделанной работы: констатируют, какое оборудование сконструировано, его основные размеры, соответствие сконструированного оборудования требованиям прочности и устойчивости.

2.2.6 Список использованных источников

Литературные источники (включая регламенты, нормативно – технические документы) располагают в порядке упоминания в тексте пояснительной записки. Описание источников должно соответствовать требованиям ГОСТ.

2.2.7 *В приложения* входят схемы и эскизы, не приведённые в основном тексте пояснительной записки.

3 ОФОРМЛЕНИЕ РАБОТЫ

Пояснительную записку курсовой работы оформляют в соответствии с требованиями стандартов ЕСКД и методических указаний (СевКавГТУ, кафедр ОИД и МАХП НТИ).

Пояснительную записку выполняют чернилами или пастой одного цвета (чёрного, фиолетового, синего), на писчей бумаге формата A4 (210х297 мм), с одной стороны листа с полями слева 20, справа 10, сверху и снизу не менее 10 мм, чётким и разборчивым почерком.

Допускается выполнение пояснительной записки с помощью печатающих устройств (шрифт 14, интервал полуторный, выравнивание по ширине).

Разделы начинают с нового листа. Заголовки разделов, подразделов, пунктов и подпунктов нельзя подчёркивать. Они должны быть краткими и соответствовать содержанию. Переносы слов в заголовках не допускаются, точку в конце заголовка не ставят. Расстояние между заголовком и последующим текстом равно 10 мм, между последней строчкой текста и последующим заголовком — 15 мм, между строчками текста — не менее 8 мм. Заголовок не может быть на листе без последующего текста. Абзацы начинают с красной строки 15 мм.

Терминология и определения в записке должны соответствовать стандартам, а при их отсутствии — общепринятым в научно - технической литературе. Сокращение слов в тексте и подписях, как правило, не допускается, за исключением установленных ГОСТ $2.316-68^*$.

Все рисунки в записке выполняют на стандартных листах однотипно: чернилами, тушью или карандашом. Все графики снабжают координатными сетками. Подписи под рисунками делают кратко, необходимые объяснения приводят в тексте. Рекомендуется оформление рисунков и эскизов при помощи графических редакторов ЭВМ.

Цифровой материал оформляют в виде таблиц, которые по построению и компоновке должны быть простыми и удобными. В таблицах не допускаются незаконченные графы с повторяющимися численными значениями приводимых в них величин.

Расчётные формулы записывают сначала в буквенном виде, затем подставляют их численные значения. Необходимо всегда указывать размерность величины, полученной в результате расчёта по формуле. Расшифровку буквенных обозначений производят в тексте один раз там, где эта буква встречается впервые.

4 РАСЧЁТ ОБОРУДОВАНИЯ НА ПРОЧНОСТЬ

В данном разделе изложена последовательность расчёта наиболее представительных конструкций сосудов, аппаратов и машин химической промышленности, выносимых на курсовое проектирование, и указана основная литература, содержащая методики их расчёта и справочные данные [1-14].

4.1 Вертикальные сосуды и аппараты

Расчёт вертикальных сосудов и аппаратов, нагруженных внутренним давлением, начинают с приведения основных габаритных размеров, расчётного давления, давления гидростатического столба жидкости, допускаемых напряжений для материала, как для рабочего состояния, так и при испытаниях, коэффициентов прочности сварных швов, прибавок к расчётной толщине конструктивных элементов и других данных, подлежащих обоснованию и выбору [1,2]. Приводят расчетную схему элемента.

Затем определяют расчётную и исполнительную толщину стенки цилиндрической обечайки, проверяют условие применимости формул.

Если условие выполняется, прочность стенки в рабочем состоянии и при испытании обеспечена.

Аналогично производится расчёт толщины стенки днища.

Подбирают внутренние устройства: тарелки, люки, штуцера согласно справочным данным [11,12].

Расчёт укрепления отверстий и фланцевых соединений производится по методике, изложенной [1-5,10-12].

Расчёты вертикальных сосудов и аппаратов на ветровую нагрузку, а также их опор проводятся по методикам [2,4,10,12].

Расчёт вертикальных сосудов и аппаратов, нагруженных *наружным давлением*, начинают аналогично. Приводят габаритные размеры, расчётное наружное давление, допускаемые напряжения, коэффициент запаса устойчивости, другие данные, схемы к расчету.

Затем определяется расчётная и исполнительная толщина стенки корпуса, днища.

На следующем этапе расчёта необходимо определить допускаемое давление из условия прочности и устойчивости, а также с учётом обоих условий.

Соблюдение условия устойчивости обечайки в рабочем состоянии и при испытаниях свидетельствует, что потери устойчивости данным аппаратом не произойдёт [1,2,10,12].

Методика расчёта *толстостенных* сосудов и аппаратов на прочность изложена в [1,2,10,12]. Вначале определяется, исходя из рабочих условий, толщина стенки корпуса, днищ (крышек) аппарата, определяется расчётный диаметр стержня шпильки, диаметр болтовой окружности, необходимой для размещения шпилек, расчёт фланцев, производится расчёт на герметичность затворов аппаратов.

Описанный выше порядок расчета необходимо соблюдать и для других аппаратов и машин.

4.2 Горизонтальные сосуды и аппараты

Расчет горизонтальных сосудов и аппаратов (ёмкостей, теплообменных аппаратов и др.) проводят в том же порядке, что и вертикальных. При их расчёте на прочность решают следующие задачи:

- определяют толщины стенок корпуса, днищ; крышек; штуцеров;
- определяют размер максимального одиночного отверстия, не подлежащего укреплению;

- рассчитывают укрепление всех отверстий большего диаметра;
- проверяют несущую способность обечайки в сечении между опорами;
- проверяют несущую способность обечайки в области опорных узлов;
 - рассчитывают опоры, фланцевые соединения и пр.

Методика расчёта на прочность горизонтальных сосудов и аппаратов изложена в [1,2,10,12].

4.3 Сферические резервуары, газгольдеры, электродегидраторы

Расчёт вышеуказанных сосудов (аппаратов) проводится по схеме, описанной в п. 4.1. Определению подлежат толщины стенки корпуса, днища, крышки [1,2,10,12].

Затем производится подбор люков и штуцеров [11,12], расчёт прочности их элементов, расчёт опор.

4.4 Трубчатые печи

При расчёте трубчатых печей прочностному расчету обычно подвергают: элементы металлического каркаса печи, змеевики (трубы и двойники), трубные решетки и подвески, дымовую трубу, дымосос (включая подбор типоразмера), металлоконструкции и др. [2,10,12]. Двойники рассчитывают с учётом возникающих в них крутящих моментов и кольцевых напряжений.

4.5 Аппараты воздушного охлаждения

Методика расчётов ABO изложена в [2,10,12]. Необходимо определить толщину трубной решётки, крышки, труб, расчётные нагрузки на шпильки, рассчитать на прочность элементы металлоконструкций трубной секции, каркас. В отдельных случаях в качестве объектов расчетов могут служить вентилятор и его привод.

4.6 Аппараты и машины с вращающимися элементами

4.6.1 Центрифуги, сепараторы

Данный вид оборудования относится к быстровращающимся обечайкам и дискам.

В процессе расчёта определяется толщина стенки обечайки ротора, допускаемая угловая скорость перфорированных обечаек, краевые силы, краевые моменты, действующие в узлах сопряжения обечайки с другими деталями ротора, нормальные напряжения на наружной и внутренней поверхностях обечаек, нормальные напряжения на верхней и нижней поверхностях края плоских элементов, толщина стенки на краю обечайки, размер краевой зоны [1,2,12], критическая угловая скорость вала центрифуги, мощность привода [1,12].

4.6.2 Аппараты барабанного типа

Расчёт тихоходных аппаратов данного типа (сушилок, кристаллизаторов, растворителей, грохотов и др.) предусматривает расчёт барабана на прочность, на жёсткость, определение нагрузок на бандаж, геометрических размеров бандажа и опорного ролика, определение напряжений в бандаже от температурных воздействий, расчёт бандажа на выносливость, расчёт мощности привода барабана. Методика расчёта оборудования барабанного типа изложена в [1,3,12].

4.6.3 Аппараты с мешалками

Для корпуса аппарата проводят те же расчеты, что и для других сосудов. Первоначально определяется — под каким давлением работает аппарат (внутреннее, наружное). Затем определяется толщина стенки корпуса, рубашки, днищ, крышки. Далее производится расчёт вала (включая определение критической скорости вращения), элементов мешалки на прочность [1,2,12]. Определяется мощность привода; проводят также расчет опорных элементов.

4.7 Насосы, компрессоры

4.7.1 Центробежные насосы и компрессоры

При расчёте центробежных насосов и компрессоров определяется толщина стенки корпуса, крышки. Ротор, вал, диски, рабочие колё-

са рассчитываются на прочность, производится расчёт опорных устройств, определяется мощность привода [1, 8, 9, 12].

4.7.2 Поршневые насосы и компрессоры

При расчёте данного вида оборудования определяются толщина стенки корпуса, крышек, цилиндра, прочность поршня, штока. При наличии элементов кривошипно-шатунного механизма они также рассчитываются на прочность [1, 8, 9, 12].

4.8 Транспортные устройства

К данному виду оборудования относятся машины непрерывного транспорта для перемещения сыпучих материалов. Расчёт, например, ленточных конвейеров состоит из следующих элементов: расчёт приводной станции, барабанов, роликов, тягового устройства, элементов конструкций стоек. Более подробные рекомендации приводятся в [6].

5 ЗАЩИТА КУРСОВОЙ РАБОТЫ

Законченная курсовая работа после проверки руководителем переплетается, подписывается автором работы, руководителем, утверждается заведующим кафедрой.

Работа направляется на защиту в комиссию кафедры.

Студент при защите в коротком докладе (3 - 5 минут) должен раскрыть задачи, решаемые в работе, их актуальность, принятые конструктивные решения и полученные результаты.

После доклада студенту могут быть задать вопросы по содержанию работы.

Комиссия даёт оценку качеству выполненной работы и её защите и выставляет студенту оценку.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Расчёт и конструирование машин и аппаратов химических производств. Примеры и задачи. / Под ред. М.Ф. Михалёва. – Л.: Ма-

- шиностроение, 1984. 301с.
- 2. Вихман Г.Л., Круглов С.А.. Основы конструирования аппаратов и машин нефтеперерабатывающих заводов. М.: Машиностроение, 1988.303с.
- 3. Конструирование и расчёт машин химических производств. / Под ред. Э.Э. Кольман Иванова. М.: Машиностроение, 1985. 408с.
- 4. Смирнов Г.Г., Толчинский А.Р., Кондратьева Т.Ф. Конструирование безопасных аппаратов для химических и нефтехимических производств. Л.: Машиностроение, 1988. 303с.
- 5. Соколов В.И. Основы расчёта и конструирования машин и аппаратов пищевых производств. М.: Машиностроение, 1983. 447с.
- 6. Зенков Р.Л., Ивашков И.И., Колобов Л.Н. Машины непрерывного транспорта. М.: Машиностроение, 1987. 432с.
- 7. Киселёв В.И. Насосы, вентиляторы, компрессоры. М.: Энергия, 1977. 424с.
- 8. Шерстюк А.И. Насосы, вентиляторы, компрессоры. М.: Высшая школа, 1972. 344с.
- 9. Черкасский В.М. Насосы, вентиляторы, компрессоры. М.: Энергия, 1977. 424с.
- 10. Судаков Е.Н. Конструирование и расчёт химических машин и аппаратов. Учебное пособие. Невинномысск: НТИ СевКавГТУ, 1998, 153с.
- 11. Альперт Л.3. Основы проектирования химических установок. М.: Высшая школа, 1989. 304с.
- 12. Тимонин А.С. Основы конструирования и расчёта химикотехнологического и природоохранного оборудования. Справочник. Калуга: изд. Н. Бочкарёвой, 2002. Т.1, 852с.; т.2, 1028с.; т.3, 968с.
- 13. Объёмные компрессоры. Атлас конструкций. / Под ред. Г.А. Поспелова. М.: Машиностроение, 1994. 120с.
- 14. Малюшенко В.В. Динамические насосы. Атлас. М: Машиностроение, 1984. 84с.
 - 15. Леонтьева, А. И. Оборудование химических производств /

- А.И. Леонтьева ; Министерство образования и науки Российской Федерации ; Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет», 2. Тамбов : Издательство ФГБОУ ВПО «ТГТУ», 2012. 281 с. : ил., табл., схем. http://biblioclub.ru
- 16. . Калекин, В. С. Конструирование и расчет элементов оборудования отрасли: Учебное пособие / В. С. Калекин, Б. Н. Барсуков. Омск: ОмГТУ, 2007. 152с. Библиогр.: с. 117. ISBN 5-8149-0391-0
- 17. Ким В.С. Конструирование и расчет механизмов и деталей машин химических и нефтеперерабатывающих производств. М.: КолосС, 2007.
- 18. Тимонин А.С. Основы конструирования и расчета химикотехнологического и природоохранного оборудования. Калуга: изд. Н. Бочкаревой, 2002. т.1, 852с.; т.2, 1028с.; т.3, 968с.
- 19. Курочкин А.А. Основы расчета и конструирования машин и аппаратов перерабатывающих производств: Учебное пособие. М.: КолосС, 2006.
- 20. Ким В.Б. Расчет и конструирование элементов оборудования отрасли: методические указания к лабораторному практикуму . / В.Б.Ким- Оренбург: ГОУ ОГУ,2009. 87 с.
- 21. Государственные стандарты, Отраслевые стандарты и др. нормативная литература.

КОНСТРУИРОВАНИЕ И РАСЧЕТ ЭЛЕМЕНТОВ ОБОРУДОВАНИЯ ОТРАСЛИ

методические указания к курсовому проектированию по направлению подготовки — 15.03.02 Технологические машины и оборудование

Составители: доц. Свидченко А.И. асс. Воробьева А.Л.

Рецензент: доц. А.М. Новоселов

Редактор

Подписано в печать 20 г. Формат 60 х 84 1/16 Уч.-изд. л. Усл. печ. л. Тираж Заказ № Невинномысский технологический институт (филиал) ФГАОУ ВО «Северо-Кавказский федеральный университет»

Отпечатано в типографии НТИ 357108, г. Невинномысск, ул. Гагарина, 1