министерство науки и высшего образования российской федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Невинномысский технологический институт (филиал) СКФУ

	УТВЕРЖДАЮ:
Зав. кафед	црой ХТМиАХП
	Д.В. Казаков
«»	2020
Γ.	
от потр	

И

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля успеваемости и промежуточной аттестации (ЭЛЕКТРОННЫЙ ДОКУМЕНТ)

Направление подготовки/специальн	13.03.02 электротехника	Электроэнергетика]	
Направленность (профиль)/специали	изация	Электропривод	и автоматика	
Квалификация выпускника		бакалавр		
Форма обучения		очная		
Год начала обучения		2020 года		
Изучается в 3 семестре				
	Астр. часов	3.e		
Объем занятий: Итого	81.00	3.00		
В том числе аудиторных	40.50			
Из них:				
Лекция	13.50			
Лабораторная работа	13.50			
Практических занятий	13.50			
Самостоятельная работа	40.50			
Зачет с оценкой 3 семестр				
Дата разработки:«»	20	20 г.		

Предисловие

1. Назначение – текущий контроль по дисциплине «Химия» – вид систематической проверки знаний, умений, навыков студентов. Задача текущего контроля – получить первичную информацию о ходе и качестве усвоения учебного материала, а также стимулировать регулярную целенаправленную работу студентов. Задача промежуточного контроля – получить достоверную информацию о степени освоения дисциплины.
2. Фонд оценочных средств текущего контроля и промежуточной аттестации на основе рабочей программы дисциплины Химия, в соответствии с образовательной программой по направлению подготовки 13.03.02 Электроэнергетика и электротехника, утвержденной на заседании Ученого совета НТИ (филиал) СКФУ протокол № от «»г.
3. Разработчик(и): Чередниченко Т.С., доцент кафедры ХТМиАХП Сыпко К.С., ассистент кафедры ХТМиАХП;
4. ФОС рассмотрен и утвержден на заседании кафедры Химической технологии машин и аппаратов химических производств, Протокол № от «»г.
 ФОС согласован с выпускающей кафедрой Информационных систем, электропривода и автоматики, Протокол № от «»
6. Проведена экспертиза ФОС. Члены экспертной группы, проводившие внутреннюю экспертизу:
Председатель Казаков Д.В., зав. кафедрой ХТМиАХП
Антипина Е.С., доцент кафедры ХТМиАХП
Москаленко Л.В., доцент кафедры ХТМиАХП
Экспертное заключение: <u>соответствует требованиям ФГОС ВО по направлению подготовки 13.03.02</u> Электроэнергетика и электротехника. Рекомендовать к использованию в учебном процессе.
«»
7. Срок действия ФОС

Паспорт фонда оценочных средств для проведения текущего контроля и промежуточной аттестации

По дисциплине Химия

Направление подготовки 13.03.02 Электроэнергетика и электротехника

Профиль Электропривод и автоматика

Квалификация выпускника бакалавр

Форма обучения очная

Год начала обучения **2020**

Изучается в 3 семестре

Код оцениваемо	Этап формировани	Средства и	контроля,	Наименование	Количество заданий для каждого уровня, шт.		
й компетенци и	я компетенции (№темы)	технологии оценки	аттестаци я	контрол я	оценочного средства	Базовы й	Повышенны й
ОК-7, ОПК-2	1 5678 9	собеседовани е	текущий	Устный	Вопросы для собеседовани я	49	38

Составитель	(подпись)	Т.С. Чередниченко
_	(подпись)	К.С. Сыпко
« »	2.020 г	

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

		УТВЕРЖДАЮ:
Зан	3.	кафедрой ХТМиАХП
		Д.В. Казаков
« <u>_</u> _	_>>	2020 г.

Вопросы для собеседования

по дисциплине Химия

Базовый уровень

Основные понятия и законы химии.

- 1. Что называется оксидами? Какую степень окисления проявляет кислород в оксидах?
- 2. Дайте краткую классификацию оксидам.
- 3. Что называется кислотами? Приведите их классификацию
- 4. Что называется основаниями? Приведите их классификацию

Общие закономерности протекания химических процессов.

- 1. Что изучает химическая кинетика и для чего она служит?
- 2. Какие факторы необходимы для вступления в химическую реакцию реагирующих частиц?
- 3. Дайте определение скорости химической реакции. Как выглядит график, отражающий зависимость скорости элементарной реакции вида $P+G\leftrightarrow Q$ от: 1) концентрации реагента G; 2) концентрации продукта реакции Q?
- 4. Как читается первая формулировка закона действия масс?
- 5. Какой смысл имеет константа скорости реакций? От чего зависит и от чего не зависит этот параметр?
- 6. Приложим ли закон действия масс к сложным (многостадийным) реакциям? Ответ поясните на примере.
- 7. Укажите, когда скорость химической реакции действительно пропорциональна произведению концентраций реагирующих веществ в степенях, равных их стехиометрическим коэффициентам.
- 8. Что называют молекулярностью и порядком химических реакций? Всегда ли они одинаковы?
- 9. Как определяют молекулярность и порядок сложных реакций? Поясните ответ на примере.
- 10. Какие частицы называют «активными»? Дайте определение понятию «энергия активации». *Растворы*.
- 1. Что такое электролитическая диссоциация?
- 2. Электролиты и не электролиты.
- 3. Кто из химических соединений является электролитом?
- 4. Что называется протолизом?
- 5. Какие соли подвергаются протолизу?
- 6. Сформулируйте понятие «произведение растворимости». Для какого типа соединений оно применимо? Приведите примеры.
- 7. Напишите уравнения процессов протолиза для следующих соединений: $CaCO_3$, Ag_2CrO_4 , $Al(OH)_3$. Как будут выглядеть соответствующие им выражения произведений растворимости? Найдите их значения в справочнике и запишите.
- 8. Что такое активность? Ионная сила раствора? Приведите формулы для их расчета.
- 9 Из каких компонентов состоят водные растворы следующих веществ: Na_3PO_4 , K_2SO_3 , $NaNO_3$? Ответ дать с учетом процессов протолиза ионов.
- 10 Для чего применяют ареометр? Какова последовательность операций при замере плотности жидкости?

Комплексные соединения

1. Какие соединения называют комплексными?

- 2 Чем объясняется их многообразие?
- 3 Почему трудно дать всеобъемлющее (очень полное, исчерпывающее) определение комплексным соединениям?
 - 4 Кто автор координационной теории КС? Когда она появилась?
 - 5 Из каких элементов состоят КС? Приведите примеры.
- 6 Какая связь называется донорно-акцепторной или координационной? Какой атом, молекула или ион является донором в комплексах $[Cr(CO)_6]$, $[Ag(NH_3)_2]^+$, $[AlH_4]^-$?
- 7 Как рассчитывается степень окисления комплексообразователя и заряд комплексного иона? Ответ поясните на примере комплексов вопроса 6.
- 8 На какие типы подразделяют комплексные соединения? Приведите по два примера таких соединений и дайте им названия.
- 9 Что такое координационное число комплексообразователя? Какие частицы называют лигандами? Ответ поясните на примерах.

Окислительно-восстановительные реакции

- 1 Что называют степенью окисления? Как её обозначают и какие значения может она принимать? Ответ поясните на примерах.
 - 2 Как определяется максимальная и минимальная степени окисления элементов?
 - 3 Какие реакции называют окислительно-восстановительными? Приведите примеры.
 - 4 Какие реагенты называют восстановителями, какие окислителями?
 - 5 В чем суть метода полуреакций? Для каких систем он применим?
 - 6 Как выражается константа равновесия реакции и что она выражает?
 - 7 Как можно рассчитать константу равновесия? Приведите соответствующие формулы.
 - 8 От каких факторов зависит протекание окислительно восстановительных реакций?
 - 9 Зависимость от каких параметров отражает уравнение Нернста?

Гальванические элементы

- 1 Какие процессы называют электрохимическими? Чем они отличаются от обычных OBP?
- 2 Каковы причины возникновения двойного электрического слоя на поверхности металлической пластины в воде?
- 3 Какое устройство называют гальваническим элементом? Приведите его схему на конкретном примере.
- 4 Какие электроды называют анодами, какие катодами? Укажите анод и катод в цинк-серебрянном гальваническом элементе.
- 5 Можно ли определить абсолютное значение электродного потенциала? Какой электрод выбран в качестве электрода сравнения?
- 6 Как устроен стандартный водородный электрод? Приведите его схему и объясните принцип работы.
 - 7 Что такое «ряд напряжений металлов»? Что он определяет?

Повышенный уровень

Основные понятия и законы химии.

- 1. Какие элементы образуют оксиды?
- 2. Как составляется химическая формула оксида?
- 3. Какие оксиды образует азот?
- 4. Какие оксиды взаимодействуют с водой. Привести пример.
- 5 Какие соединения называются солями? Приведите их классификацию

Общие закономерности протекания химических процессов.

- 1. Как изменяется энергия активации в присутствии катализатора?
- 2. Что происходит с реагирующими частицами при нагревании?
- 3. Приведите формулировку правила Вант-Гоффа. Какая формула отражает математическую зависимость возрастания скорости с увеличением температуры?
- 4. Какой смысл имеет температурный коэффициент? Что означает, например, если ү = 3?
- 5. Определите температурный коэффициент скорости реакции, если при понижении температуры на 45 0 C реакция замедлилась в 30 раз. Ответ: $\gamma = 2,13$.

- 6. При 393 К реакция заканчивается за 25 мин. Через сколько минут эта реакция закончится при 443 К ($\gamma = 2.5$)? Ответ: 0,255 мин.
- 7. Какие химические реакции называют обратимыми? необратимыми? Приведите примеры таких реакций.
- 8. При каких условиях наступает химическое равновесие в обратимых системах?
- 9. Какой параметр называют константой равновесия? Как отражается её зависимость от констант прямой и обратной реакций?
- 10. От каких факторов зависит константа равновесия? от каких не зависит?
- 11. Почему в выражении константы равновесия концентрации веществ указаны в степенях, соответствующих их стехиометрическим коэффициентам, а не экспериментально определяемым числам x, y и др.?
- 12. Каким соотношением связана константа равновесия с энергией Гиббса?
- 13. Приведите формулировку принципа Ле Шателье. Какое практическое значение имеет этот принцип? Приведите примеры.

Растворы.

- 1. Напишите молекулярные, полные и краткие ионные уравнения реакций взаимодействия:
 - а) карбоната калия с соляной кислотой;
 - б) азотистой кислоты с гидроксидом натрия;
 - в) карбоната магния с азотной кислотой;
 - г) гидрокарбоната натрия с едким натром;
 - д) гидроксида алюминия с едким натром;
 - е) соляной кислоты с силикатом натрия.
- 2. Приведите примеры четырёх типов солей, образованных сильными или слабыми кислотами и основаниями.
- 3. Как связаны ΠP и растворимость малорастворимых сильных электролитов? Отобразите эту связь на примере Ag_3AsO_4 .
- 4. Перечислите условия растворения осадков малорастворимых веществ. Как можно, например, растворить осадок $Zn(OH)_2$?
- 5. Какое явление называют «солевым эффектом»? Приведите примеры.
- 6. Плотность и титр растворов имеют одинаковую размерность (Γ/cm^3). В чем различие этих параметров?
- 7. Приведите алгоритм взвешивания твёрдых веществ

Комплексные соединения

- 1 Чем оценивают прочность комплексов? Напишите выражения для констант нестойкости и констант устойчивости для комплексных ионов: $[Ag(NH_3)_2]^+$, $[Ag(CN)_2]^-$, $[Ag(NO_2)_2]^-$.
 - 2 В чем отличие двойных солей от «типичных» комплексов?
- 3 Какие комплексные соединения относят к ацидокомплексам? Какие к аутокомплесам? Приведите примеры.
 - 4 Как ТВС объясняет образование химической связи в комплексах?
- 5 Какие комплексы называют карбонилами? Объясните образование таких комплексов с позиции теории валентных связей.

Окислительно-восстановительные реакции

- 1 Как оценивают эквиваленты окислителя и восстановителя? В каких единицах они выражаются?
- 2 Что называют мольной массой окислителя и восстановителя? Какова их размерность? Приведите примеры.
- 3 Какова структура алгоритма метода электронного баланса? Ответ иллюстрируйте примерами.

Гальванические элементы

- 1 Какой «химический смысл» имеют знаки «+» и «-» для стандартных электродных потенциалов окислительно-восстановительных систем?
- 2 Как оценивают ЭДС гальванического элемента? Ответ поясните на примере кадмий-медного гальванического элемента.

- 3 Для чего применяют уравнение Нернста? Напишите формулу приведенного вида этого уравнения.
 - 4 Какие приборы называют аккумуляторами? Каковы их типы?
- 5 Как устроен свинцовый аккумулятор? Приведите уравнения, описывающие процессы его заряда-разряда.

1. Критерии оценивания компетенций

Оценка «отлично» выставляется студенту, полностью освоившему все компетенции показавшему всесторонние, систематизированные, глубокие знания учебной программы дисциплины и умение уверенно применять их на практике при решении конкретных задач, свободное и правильное обоснование принятых решений;

Оценка «хорошо» выставляется студенту, если он допускает незначительные ошибки и знает материал, грамотно и по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе или в решении задач некоторые неточности:

Оценка «удовлетворительно» выставляется студенту частично и поверхностно освоившему компетенции показавшему фрагментарный, разрозненный характер знаний, недостаточно правильные формулировки базовых понятий, нарушения логической последовательности в изложении программного материала, но при этом он владеет основными разделами учебной программы, необходимыми для дальнейшего обучения и может применять полученные знания по образцу в стандартной ситуации;

Оценка «неудовлетворительно» выставляется студенту, который не освоил компетенции и не знает большей части основного содержания учебной программы дисциплины, допускает грубые ошибки в формулировках основных понятий дисциплины и не умеет использовать полученные знания при решении типовых практических задач.

2. Описание шкалы оценивания

Максимально возможный балл за весь текущий контроль устанавливается равным **55.** Текущее контрольное мероприятие считается сданным, если студент получил за него не менее 60% от установленного для этого контроля максимального балла. Рейтинговый балл, выставляемый студенту за текущее контрольное мероприятие, сданное студентом в установленные графиком контрольных мероприятий сроки, определяется следующим образом:

Уровень выполнения контрольного	Рейтинговый балл (в % от максимального
задания	балла за контрольное задание)
Отличный	100
Хороший	80
Удовлетворительный	60
Неудовлетворительный	0

3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедура проведения данного оценочного мероприятия включает в себя: собеседование по тематике лабораторных занятий.

Предлагаемые студенту задания позволяют проверить компетенции: ОПК-2. Принципиальные отличия заданий базового уровня от повышенного заключатся в том, что они раскрывают творческий потенциал студента более ярко.

Для подготовки необходимо изучить литературу, составить конспект и план ответа.

При подготовке к ответу студенту предоставляется право пользования планом ответа. При проверке задания, оцениваются

- последовательность и рациональность изложения материала;
- полнота и достаточный объем ответа;
- научность в оперировании основными понятиями;
- использование и изучение дополнительных литературных источников.

Оценочный лист

Наименован	Индикаторы	2 балла	3 балла	4 балла	5 балла	Примечание
ие						
компетенци						
И						
ОПК-2	Знать: основы применения					
	соответствующего физико-					
	математического аппарата;					
	методы анализа и					
	моделирования,					
	теоретического и					
	экспериментального					
	исследования при решении					
	профессиональных задач					
	Уметь: применять					
	соответствующий физико-					
	математический аппарат,					
	методы анализа и					
	моделирования,					
	теоретического и					
	экспериментального					
	исследования при решении					
	профессиональных задач					
	Владеть: способностью					
	применять соответствующий					
	физико-математический					
	аппарат, методы анализа и					
	моделирования,					
	теоретического и					
	экспериментального					
	исследования при решении					
	профессиональных задач					

Составитель		Т.С. Чередниченко
	(подпись)	<u> </u>
		К.С. Сыпко
	(подпись)	
« »	20 20 г.	
<u>"</u> "	20 20 1.	