МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению практических работ по дисциплине ТЕХНОЛОГИЯ ОТРАСЛЕВОГО МАШИНОСТРОЕНИЯ

Направление подготовки — 15.04.02 Технологические машины и оборудование Профиль подготовки: Проектирование технологического оборудования

УДК: 66 (филиал) ББК 35 С24

Печатается по решению УМС НТИ

Северо-Кавказского федерального университета

Рецензенты: доцент кафедры химической технологии, машин и аппаратов химических производств, канд. хим. наук A.Л. Проскурнин; начальник отдела технического развития АО «Невинномысский Азот» канд. техн. наук, доц. A.M. Новоселов

Составитель: А.И. Свидченко

С24 Технология отраслевого машиностроения. Методические указания для практических занятий. /— Невинномысск: Изд-во НТИ (филиал) СКФУ, 2022. — 85с.

Методические указания подготовлены в соответствии с программой дисциплины «Технология отраслевого машиностроения», разработанной в соответствии с требованиями ФГОС ВО направления подготовки магистров. Последовательно изложены отдельные теоретические вопросы, примеры расчетов и задачи для решения по разделам изучаемого теоретического материала, вынесенным на практические занятия, а также список рекомендуемой литературы [1-6]. Предназначено для получения знаний по дисциплине «Технология отраслевого машиностроения» студентами направления подготовки: 15.04.02 Технологические машины и оборудование.

ПРЕДИСЛОВИЕ

Методические указания составлены на современном научном уровне и рассчитаны на студентов, обладающих достаточной подготовкой по разделам предшествующих изученных дисциплин.

Методические указания составлены для проведения практических занятий курса «Технология отраслевого машиностроения» с учетом требований стандарта ФГОС ВО для подготовки магистров направления 15.04.02 Технологические машины и оборудование.

При подготовке издания учтены основные изменения в проектирования методах организации технологического оборудования И тенденции его совершенствования. Последовательность разделов соответствует логической Предлагаемые структуре курса. методические включают материал, который используется при подготовке и проведении практических занятий. В конце каждого занятия представлены вопросы для контроля знаний студента.

В результате освоения материала методических указаний по дисциплине «Технология отраслевого машиностроения» ОП студент приобретает следующие компетенции:

профессиональные: ПК-3 Способен осуществлять подготовку элементов документации, проектов планов и программ проведения отдельных этапов работ; ПК-4 Способен осуществлять контроль процессов и ведение документации по

пусконаладке, переналадке и эксплуатации ГПС в машиностроении.

Содержание методических указаний соответствует требованиям Федерального государственного образовательного стандарта высшего профессионального образования к содержанию дисциплины «Технология отраслевого машиностроения» для студентов-магистров направления 15.04.02 Технологические машины и оборудование.

ВВЕДЕНИЕ

Приобретаемые компетенции ОП при освоении материала методических указаний – ПК-3, ПК-4.

Целью освоения дисциплины " Технология отраслевого машиностроения" является формирование обучающихся y способностей оценивать технико-экономическую эффективность проектирования, исследования, изготовления машин, оборудования, систем, технологических процессов, принимать участие со-здании системы менеджмента качества на предприятии; разрабатывать технические задания на проектирование и изготовление машин, приводов, систем и нестандартного оборудования и средств технологического оснащения, выбирать оборудование технологическую оснастку; составлять описания принципов действия и устройства проектируемых изделий и объектов с обоснованием принятых технических решений.

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесённых с планируемыми результатами освоения образовательной программы

Код,	Код,	Планируемые результаты				
формулировка	формулировка	обучения по дисциплине				
компетенции	индикатора	(модулю), характеризующие				
	_	этапы формирования				
		компетенций, индикаторов				
ПК-3	ИД-1	Пороговый уровень				
Способен	подготавливает	понимает методы оценки				
осуществлять	информационные	технико-экономической				
подготовку	обзоры, рецензии,	эффективности				
элементов	отзывы,	проектирования,				
документации,	заключения на	исследования, изготовления				
проектов	техническую	машин, приводов,				
планов и	документацию	оборудования, систем,				
программ		технологических процессов,				

проведения		участия в создании системы
отдельных		менеджмента качества на
этапов работ		предприятии
-		Повышенный уровень
		понимает методы
		составления описания
		принципов действия и
		устройства проектируемых
		изделий и объектов с
		обоснованием принятых
		технических решений
	ИД-2	Пороговый уровень
	осуществляет	оценивает технико-
	оформление	экономическую
	элементов	эффективность
	технической	проектирования,
	документации на	исследования, изготовления
	основе внедрения	машин, приводов,
	результатов	оборудования, систем,
	научно-	технологических процессов
	исследовательских	Повышенный уровень
	работ	разрабатывает технические
		задания на проектирование и
		изготовление машин,
		приводов, систем и
		нестандартного
		оборудования, и средств
		технологического оснащения,
		выбирать оборудование и
		технологическую оснастку
	ИД-3	Пороговый уровень
	осуществляет	применяет методику оценки
	подготовку	технико-экономической
	элементов	эффективности
	документации,	проектирования,
	проектов планов и	исследования, изготовления
	_	машин, приводов,
	HDOLDAMM	
	программ проведения	_
	проведения	оборудования, систем,
	проведения	_

	I	
		разработки технических
		заданий на проектирование и
		изготовление машин,
		приводов, систем и
		нестандартного
		оборудования, и средств
		технологического оснащения,
		выбора оборудования и
		технологической оснастки
ПК-4	ИД-1 анализирует	Пороговый уровень
Способен	принципы работы,	понимает методы разработки
осуществлять	технические	технических заданий на
контроль	характеристики,	проектирование и
_	конструктивные	изготовление машин,
процессов и	особенности	приводов, систем и
ведение	модулей ГПС	нестандартного
документации		оборудования, и средств
ПО		технологического оснащения,
пусконаладке,		выбора оборудования и
переналадке и		технологической оснастки
эксплуатации		Повышенный уровень
ГПС в		понимает методы
машиностроен		составления описания
ии		принципов действия и
		устройства проектируемых
		изделий и объектов с
		обоснованием принятых
		технических решений в
		процессе пусконаладочных
	ИЛ-2	работ ГПС
	ИД-2	работ ГПС Пороговый уровень
	осуществляет	работ ГПС Пороговый уровень оценивает участие в
	осуществляет контроль	работ ГПС Пороговый уровень оценивает участие в создании системы
	осуществляет контроль выполнения	работ ГПС Пороговый уровень оценивает участие в создании системы менеджмента качества на
	осуществляет контроль выполнения пусконаладочных	работ ГПС Пороговый уровень оценивает участие в создании системы менеджмента качества на предприятии
	осуществляет контроль выполнения	работ ГПС Пороговый уровень оценивает участие в создании системы менеджмента качества на предприятии Повышенный уровень
	осуществляет контроль выполнения пусконаладочных	работ ГПС Пороговый уровень оценивает участие в создании системы менеджмента качества на предприятии Повышенный уровень разрабатывает составлять
	осуществляет контроль выполнения пусконаладочных	работ ГПС Пороговый уровень оценивает участие в создании системы менеджмента качества на предприятии Повышенный уровень разрабатывает составлять описания принципов действия
	осуществляет контроль выполнения пусконаладочных	работ ГПС Пороговый уровень оценивает участие в создании системы менеджмента качества на предприятии Повышенный уровень разрабатывает составлять описания принципов действия и устройства проектируемых
	осуществляет контроль выполнения пусконаладочных	работ ГПС Пороговый уровень оценивает участие в создании системы менеджмента качества на предприятии Повышенный уровень разрабатывает составлять описания принципов действия

	технических решений
ИД-3	Пороговый уровень
осуществляет	применяет методику участия
контроль	в создании системы
процессов и	менеджмента качества на
ведение	предприятии
документации по	Повышенный уровень
пусконаладке,	применяет методику
переналадке и	составления описания
эксплуатации ГПС	принципов действия и
в машиностроении	устройства проектируемых
	изделий и объектов с
	обоснованием принятых
	технических решений

Ниже приведены теоретические сведения и задачи, рассматриваемые по основным темам дисциплины, согласно $\Phi \Gamma O C$ ВО и рабочей учебной программы.

Практическая работа № 1

ОПРЕДЕЛЕНИЕ ТИПА ПРОИЗВОДСТВА ПО ЕГО ХАРАКТЕРИСТИКЕ – КОЭФФИЦИЕНТУ ЗАКРЕПЛЕНИЯ ОПЕРАЦИЙ

Цель работы — приобретение практических навыков определения типа производства по его характеристике — коэффициенту за крепления операций — и изучение влияния величины $K_{3.0}$ на элементы себестоимости выпускаемой продукции.

Работа рассчитана на два академических часа.

Основные положения

Комплектность технологических документов на единичные технологические процессы (ЕТП) согласно ГОСТ 3.1119–83 [1] зависит:

- от типа производства, ГОСТ 14.004–83 [2];
- стадии разработки документов, ГОСТ 3.1102–81;
- степени детализации описания технологических процессов, установленных ГОСТ 3.1109–83;
- применяемых технологических методов изготовления и ремонта изделий.

Тип производства характеризуется коэффициентом закрепления операций $K_{3.0}$, который определяется как отношение числа всех различных технологических операций, выполненных или подлежащих выполнению в течение месяца, года или другого периода времени, к числу рабочих мест, на которых эти операции выполняются (ГОСТ 14.004-83):

$$K_{3,0} = O/P$$
, (1.1)

где О – число различных операций;

 ${\rm P}-{\rm число}$ рабочих мест, на которых выполняются различные операции.

Тип производства по ГОСТ 14.004–83 определяется в зависимости от значений $K_{3,0}$:

 $1 = K_{3,0} < 10$ – при массовом и крупносерийном производстве;

 $10 < K_{3,0} < 20$ – при среднесерийном производстве;

 $20 < K_{3,0} < 40$ — при мелкосерийном производстве.

При единичном производстве $K_{3,0}$ не регламентируется.

Методические указания

Число операций, которое может быть выполнено на данном i-м рабочем месте в течение года, можно определить по формуле

$$O_i = \eta_H / \eta_{3i}, \qquad (1.2)$$

где $\eta_{\rm H}$ — нормативный (допустимый) коэффициент загрузки станка всеми закрепленными за ним однотипными операциями, принимаемый для крупно-, средне- и мелкосерийного производства соответственно равным 0,75; 0,8; 0,9;

 $\eta_{\scriptscriptstyle 3.} -$ коэффициент загрузки станка проектируемой данной опе- $_i$

рацией в течение года:

$$\eta_{3.i} = m_{p.i} \mid m_{\Pi p.i} .$$
(1.3)

Здесь $m_{\text{р.i.}}$, $m_{\text{пр.i.}}$ — расчетное и принятое число рабочих мест, необходимое для выполнения i-й операции:

$$m_{\rm p.i} = T_{\rm IIIT.K.i} / T_{\rm B} = T_{\rm IIIT.K.i} \cdot N_{\rm \Gamma} / 60 F_{\rm g}.$$
 (1.4)

Здесь $T_{\text{шт.к.}i}$ — штучно-калькуляционное время выполнения i-й опе- рации, мин. Оно принимается, если предполагается серийное или единичное производство.

Для массового производства принимается норма штучного времени – $T_{\rm mr}$, мин;

 $T_{\rm B}$ — такт выпуска деталей, мин;

 $N_{\rm r}$ – годовая программа выпуска деталей, шт.;

 $F_{\rm д}$ – действительный годовой фонда времени работы оборудования при заданном режиме работы, ч.

Такт выпуска (производства), как видно из формулы (1.4), может быть определен по выражению

$$T = \frac{60F_{\pi}}{N_{\Gamma}}.$$
 (1.5)

В качестве $m_{\text{пр.}}$ принимается ближайшее большее по отноше-

нию к $m_{\mathrm{p},i}$ целое число. Например, если $m_{\mathrm{p},i}=0.01$, то $m_{\mathrm{np},i}=1.$

Для указанных условий номинальный годовой фонд времени работы оборудования составит

$$\boldsymbol{F}_{\mathrm{H}} = (\,N_{\mathrm{p.д.полн}} \cdot \boldsymbol{F}_{\mathrm{cм.полн}} + N_{\mathrm{p.д.сокp}} \, \boldsymbol{F}_{\mathrm{cм.сопp}}) N_{\mathrm{cm}} \,,\, \mathbf{q} \,,$$

стью рабочей смены;

 $F_{\rm см. полн}$ – продолжительность рабочей смены, ч;

 $N_{
m p.д.coкр}$ — количество праздничных дней, сокращенных на 1 ч;

 $N_{\rm cm}$ – количество рабочих смен в сутки.

В данном случае $F_{\rm H} = (243 \cdot 8 + 9 \cdot 7) \ 2 = 4014 \ {\rm ч}.$

Приняв для оборудования 1–30-й категорий ремонтной сложности потери на ремонт и техническое обслуживание 3 % от номинального фонда времени, а для оборудования свыше 30-й категории ремонтной сложности — 6 %, учитывая также потери времени на настройку и пе- реналадку оборудования во время рабочих смен 2–5 %, получим зна- чение действительного фонда времени работы оборудования:

 для металлорежущих станков 1–30-й категории ремонтной сложности (токарные, сверлильные, фрезерные и т. п.)

$$F_{\pi} = 4014 - 4014 (0.03 + 0.02) = 4014 - 201 = 3813 \text{ y};$$

– для металлорежущих станков свыше 30-й категории ремонтной сложности (многошпиндельные, агрегатные, обрабатывающие цент- ры и др.)

$$F_{\pi} = 4014 - 4014 (0,06 + 0,05) = 4014 - 442 = 3572$$
 ч.

Номинальный годовой фонд времени работы рабочего для указанных условий

$$\Phi_{\rm H} = 243 \cdot 8 + 9 \cdot 7 = 1944 + 63 = 2007$$
 ч.

Действительный годовой фонд времени рабочего

$$\Phi_{\rm д} = \Phi_{\rm H} - \frac{N_{\rm oth}}{N_{\rm pa6, дH}} \cdot \Phi_{\rm H} = 2007 - (21 \, / \, 252)2007 = 1846 \, \, {\rm ч},$$

В качестве P_i для расчета $K_{3,0}$ по формуле (1.1) для данной операции может быть принято значение $m_{\text{пр},i}$, разделенное на коэффициент многостаночности $K_{\text{мн}}$:

$$P_i = m_{\text{ii},i} / K_{\text{MH}}. \tag{1.6}$$

Коэффициент многостаночности учитывает, что рабочий может об- служивать несколько станков. Чем выше степень автоматизации стан- ка, тем меньше доля ручного вспомогательного времени в $T_{\text{шт.}}$ и тем выше значение $K_{\text{мн}}$. Практически $K_{\text{мн}}=1,1-4$. В данных рас- четах можно принимать $K_{\text{мн}}=1,5$. Если в технологическом процессе применяются в основном станки с ЧПУ или станкиполуавтоматы, то $K_{\text{мн}}=2$.

Для расчета $K_{3.0}$ для многооперационного технологического процесса может быть использована формула

$$K_{3.0} = \sum_{i=1}^{N} O_{i}, \qquad (1.7)$$

где N – число операций техпроцесса.

В данной методике не учитывается коэффициент выполнения норм, так как предполагается, что применяются технически и экономически обоснованные режимы резания и нормы времени. Любое их нарушение может ухудшить качество продукции и эффективность производства.

Оплата затрат подготовительно-заключительного времени может быть подсчитана по формуле

$$3_{\text{II}.3_r} = 12T_{\text{II}.3} \cdot \sum_{i} P_i \cdot C_{\text{II}} \cdot K_{3.0}, \text{py6.},$$
 (1.8)

где $T_{\text{п.з}}$ – среднее подготовительно-заключительное время операции, ч; $\sum P_i$ – число рабочих мест на данном участке, чел.;

 $C_{\text{п}}$ – оплата 1 н-ч на работах с нормальными условиями труда, руб. В данной работе $T_{\text{п.з}}$ следует принимать равным 0,25 ч, а оплату 1 н-ч $C_{\text{п}} = 2834$ руб. (часовая тарифная ставка станочника 3-го разряда в ценах 2008 г.).

Оборотные средства в незавершенном производстве рассчитываются по формуле

$$H_{o} = \frac{E_{H} \cdot 3 \cdot \left(C_{3} + \frac{E_{F}}{r} \cdot 0.5\right)}{K_{3.0}}, \text{ py6.}, \tag{1.9}$$

где $E_{\scriptscriptstyle H}$ — нормативный коэффициент эффективности капитальных вложений ($E_{\scriptscriptstyle H}$ = 0,15);

3 — число партий деталей, приходящееся в среднем на одно рабочее место, равное трем (одна партия — в ожидании обработки, вторая — на станке в работе, третья — на транспортировке либо на контроле);

n — размер партий деталей, обрабатываемых при одной наладке при 12 запусках партий в год:

$$n = \frac{N_{\Gamma}}{12}, \text{ IIIT.}, \tag{1.10}$$

 C_3 – стоимость заготовки, руб.;

С – себестоимость механической обработки годового выпуска деталей одного наименования, руб.;

0,5 – коэффициент нарастания затрат.

Оплата затрат по планированию и учету движения продукции определяется по формуле

$$3_{\Gamma} = 12 \cdot \sum_{K} P_{i} \cdot {}_{3.0} \left(\frac{C_{H}}{\sum_{O} i} \right), \text{ py6.},$$
 (1.11)

где $C_{\scriptscriptstyle H}$ — оплата планирования и учета одной операции, руб.; $C_{\scriptscriptstyle P}$ — оплата планирования и учета одной детали, руб.; $\sum O$ — суммарное число операций по данной детали.

В данной работе можно принять $C_{\scriptscriptstyle H}=2000$ руб., а $C_{\scriptscriptstyle p}=8000$ руб. (в ценах 2008 г.).

Исходные данные для выполнения работы представлены в табл. 1.1.

Таблица 1.1

Исходные данные для определения типа производства, оплаты затрат подготовительно-заключительного времени, затрат по планированию и учету движения продукции и стоимости запасов незавершенного производства

Номер	Номер	К-во	$T_{\text{шт-к}}$ на операцию №,						С3,	C,	
_	_				MI	ИН			N_{r}	тыс.	МЛН
варианта	деталей	операций	1	2	3	4	5	6		руб.	руб.
1	2	3	4	5	6	7	8	9	10	11	12
1	1	5	6	5	8	7	9	-	3000	11	7,875
1	2	5	4	7	10	11	5	-	10000	11,5	25,0
2	3	4	3	7	8	5	-	-	2000	11	5,5
2	4	4	5	8	9	6	-	-	8000	11,5	23,0
2	5	5	7	15	12	10	8	-	1000	12	3,0
3	6	5	6	7	8	5	6	-	9000	12,5	28,125
4	7	6	3	4	3	5	2	4	12000	12,5	37,5
4	8	6	6	7	7	5	6	4	2000	12	6,0
_	9	5	5	6	7	6	7	-	5000	5,5	6,875
5	10	5	6	8	9	6	7	-	15000	5	18,75
(11	4	3	4	6	5	-	-	7000	4,5	7,0
6	12	4	5	6	7	8	-	-	1500	4	1,5
7	13	5	3	4	5	4	6	-	3500	6,2	5,425
7	14	5	7	6	8	5	7	-	8000	6,1	12,2
0	15	6	6	7	5	8	5	4	1500	7	2,625
8	16	6	8	9	10	7	6	9	5000	7,1	8,875
0	17	6	8	6	5	7	7	-	15000	8,1	30,4
9	18	5	9	8	6	5	7	-	6000	8	12,0

1	2	3	4	5	6	7	8	9	10	11	12
10	19	4	4	5	5	6	-	-	2000	9,5	4,8
10	20	4	8	10	9	7	-	-	5000	9,4	11,7
1.1	21	5	3	4	3	5	6	-	2500	9,1	5,7
11	22	5	6	7	5	6	4	-	7500	9,2	17,3
10	23	6	8	7	6	7	8	9	8000	13	26,0
12	24	6	4	5	4	6	5	7	3000	13,1	9,8
12	25	5	6	8	7	5	4	-	11000	11,5	31,6
13	26	5	9	8	7	8	10	-	1000	12	3,0
1.4	27	5	5	4	6	7	3	-	9000	7,5	16,9
14	28	5	3	4	3	5	4	-	400	7,6	7,6

Порядок выполнения работы

- 1. Определить число операций $\sum O_i$, выполняемых на участке.
- 2. Определить суммарное число рабочих мест на данном участке $\sum P_i$.
- 3. Рассчитать величину коэффициента $K_{3.0}$ и по его значению определить тип производства.
- 4. Определить оплату затрат подготовительно-заключительного времени $\mathbf{3}_{\text{п.зг}}.$
 - 5. Определить стоимость запасов незавершенного производства H_{\circ} .
- 6. Определить оплату затрат по планированию и учету движения продукции 3_r . В указанной выше последовательности выполнить рас- четы для двух наименований деталей, указанных в варианте задания.
- 7. Проанализировать полученные результаты и сделать выводы о влиянии величины $K_{3,0}$ на изучаемые в работе элементы себестоимости выпускаемой продукции.
 - 8. Составить отчет.

Содержание отчета

- 1. Название работы.
- 2. Содержание варианта задания.
- 3. Сводная таблица результатов расчета.

- 4. Анализ результатов.
- 5. Выводы.

Общие требования к отчету – по ГОСТ 2.105–95 [3].

Пример выполнения работы

Определить $K_{3,0}$ и тип производства для участка, на котором выпол- няется трехоперационный процесс механической обработки детали. Режим работы двухсменный, 40-часовая рабочая неделя. Годовая программа выпуска детали — 3000 шт. Предполагаемый тип произ- водства — мелкосерийное, $\eta_{\rm H}=0,9$. Нормы $T_{\rm urr,\kappa,i}$ по операциям соот- ветственно 6,2; 5,3; 8,1 мин. Оборудование 10–30-й категории ре- монтной сложности. Действительный фонд рабочего времени работы оборудования 3813 ч; $\eta_{\rm H}=0,9$; $K_{\rm MH}=1,5$.

1. Определяется такт выпуска по формуле (1.5):

$$T_{\rm B} = 60 \cdot 3813 / 3000 = 76, 26$$
 мин.

2. Определяется расчетное число станков для каждой операции по формуле (1.4):

1-я операция

$$m_{\rm p1} = 6, 2 / 76, 26 = 0.08$$
;

2-я операция

$$m_{\rm p2} = 5.3 / 76, 26 = 0.07$$
;

3-я операция

$$m_{p3} = 8.1 / 76, 26 = 0.11$$
.

3. Определяется принятое число станков для каждой операции: 1-я операция

$$m_{\rm p1} = 1$$
;

2-я операция

$$m_{\rm p2} = 1$$
;

3-я операция

$$m_{\rm p3} = 1$$
.

4. Рассчитываются коэффициенты загрузки станков при обработке данной детали для каждой операции по формуле (1.3):

1-я

$$\eta_{31} = 0.08$$
;

операция 2-

$$\eta_{22} = 0.07$$
;

я операция

$$\eta_{23} = 0.11$$
.

3-я

операция

5. Рассчитывается число операций, которое может быть выполнено на каждом рабочем месте в течение года, по формуле (1.2):

1-я операция

$$O_1 = 0.9 / 0.08 = 11, 25$$
;

2-я операция

$$O_2 = 0.9 / 0.07 = 12.86$$
;

3-я операция

$$O_3 = 0.9 / 0.11 = 8.18$$
.

6. Определяется суммарное число операций, которое может быть выполнено на данном участке:

$$\sum_{i=1}^{3} O_i = 11, 25 + 12,86 + 8,18 = 32,29.$$

7. Определяется суммарное число рабочих мест на данном участке по формуле (1.6):

$$\sum_{1}^{3} P_{i} = \sum_{1}^{3} m_{\Pi p.i} \cdot K_{MH} = (1 + 1 + 1) / 1,5 = 3 / 1,5 = 2,0.$$

8. Рассчитывается коэффициент закрепления операций по формуле (1.7):

$$K_{3,0} = 32, 29 / 2, 0 = 16, 2$$
.

При выполнении данных расчетов промежуточные результаты целесообразно свести в таблицу (табл. 1.2).

Таблица 1.2

Номер операции	$T_{\text{шт-к}}$ ($T_{\text{шт}}$), мин	$m_{\mathrm{p}i}$	$m_{{ m np}.i}$	$\eta_{_{3.i}}$	$\mathbf{P}_i = m_{\mathrm{np}.i} / \mathbf{K}_{\mathrm{MH}}$	O_i
1	6,2	0,08	1	0,08	0,67	11,25
2	5,3	0,07	1	0,07	0,67	12,86
3	8,1	0,11	1	0,11	0,67	8,18
					$\sum P_i = 2.0$	$\sum O_i = 32, 29$

Определение типа производства

$$K_{3.0} = \sum O_i / \sum P_i = 32, 29 / 2, 0 = 16, 2$$
.

Тип производства – среднесерийное.

Если за рабочими местами рассматриваемого участка механической обработки закреплены только постоянные операции и догрузка их по причинам организационного характера невозможна (как, например, поточная однопредметная линия из специальных станков, однопредметная автоматическая линия), независимо от коэффициента загрузки данного оборудования и полученного расчетным путем коэффициента закрепления операций $K_{3.0}$ производство следует считать массовым [4].

Догрузка участка возможна в том случае, если он состоит из специальных универсальных станков или агрегатных многопредметных станков, при условии их загрузки обработкой основной детали ниже 50 % (в этом случае условно принято догружать станок равноцен- ной по трудоемкостью деталью).

Выбор типа производства в зависимости от величины $K_{3.0}$ приведен в табл. 1.3.

Таблица 1.3

№ п/п	Величина К _{з.о}	Тип производства
1	До 1,0 (включительно)	Массовое
2	Свыше 1,0 до 10,0//	Крупносерийное
3	Свыше 10,0 до 20,0//	Среднесерийное
4	Свыше 2,0 до 40,0//	Мелкосерийное
5	Свыше 40,0	Единичное

9. Определяем годовую оплату затрат подготовительно-заключительного времени $3_{п 3 r}$ по формуле (1.8):

$$\mathbf{3}_{\text{n.s.r}} = 12 \cdot T_{\text{n.s}} \cdot \sum_{i} \mathbf{P}_{i} \cdot \mathbf{C}_{i} \cdot \mathbf{K}_{\text{s.o}} =$$

$$= 12 \cdot 0, 25 \cdot 2, 0 \cdot 2834 \cdot 16, 2 = 275 \cdot 465 \text{ py6}.$$

10. Определяем годовую стоимость запасов незавершенного производства H_0 по формуле (1.9):

$$E_{\Pi} \cdot 3 \cdot n \left(\frac{C}{3} + \frac{C}{N_{\Gamma}} \cdot 0,5 \right)$$

$$H_{0} = \frac{0,15 \cdot 3 \cdot 250 \left(11,0 + \frac{7875}{3} \cdot 0,5 \right)}{16,2} = 9190,97 \text{ тыс. руб.}$$

$$n = \frac{N_{\Gamma}}{12} = \frac{3000}{12} = 250 \text{ шт., (формула (1.10))}.$$

 C_3 принято равным 11 тыс. руб.; C = 7 875 тыс. руб.

11. Определяем годовую оплату затрат по планированию и учету движения продукции 3_r по формуле (1.11):

Выводы

- 1. Между величиной $K_{3.0}$ и затратами подготовительно-заключительного времени, а также затратами по планированию и учету движения продукции существует прямо пропорциональная зависимость.
- 2. Стоимость запасов незавершенного производства и величина $K_{3,0}$ связаны обратно пропорциональной зависимостью.

Контрольные вопросы

- 1. Какой период времени принимается в расчет при определении $K_{3,0}$?
- 2. Для каких условий работы (в одну или две смены) рассчитывается K_{xo} ?
 - 3. Как рассчитывается коэффициент загрузки станка η_3 ?
- 4. Что понимается под термином «нормативный коэффициент загрузки станка» и какова его величина в данной работе?
- 5. Каким образом в работе определяется количество операций Q_i , выполняемых на станке в течение года?
- 6. По каким формулам определяется число рабочих мест $\sum P_i$ по участку?
 - 7. По какой формуле рассчитывается $K_{3.0}$?
- 8. Как влияет величина $K_{3,0}$ на затраты подготовительно-заключительного времени?
- 9. Каким образом влияет величина $K_{3,0}$ на стоимость запасов незавершенного производства?
- 10. Как влияет величина $K_{3,o}$ на затраты по планированию и учету движения продукции?
- 11. При каких значениях $K_{3.0}$ производство считается крупносерийным, среднесерийным и мелкосерийным?

Литература

- 1. Общие требования к комплектности и оформлению документации на единичные технологические процессы : ГОСТ 3.1119–83 ЕСТД.
- 2. Технологическая подготовка производства. Термины и определения. Основные понятия : ГОСТ 14. 004—83 ЕСТД.
- 3. Общие требования к текстовым документам : ГОСТ 2. 105–95. ЕСТД.
- 4. Маталин, А. А. Технология машиностроения / А. А. Маталин. СПб. ; М. ; Краснодар : Лань, 2010. 510 с.

Практическая работа № 2

ОЦЕНКА НАДЕЖНОСТИ ТЕХНОЛОГИЧЕСКИХ СИСТЕМ ПО ПАРАМЕТРАМ ТОЧНОСТИ

Цель работы

- 1. Определение возможности применения рассматриваемого технологического процесса для изготовления продукции с определенными параметрами качества.
- 2. Оценка изменения точностных характеристик технологических систем во времени и определение их соответствия требованиям, установленным в научно-технической документации.
- 3. Получение информации для регулирования технологического процесса (операции).

Работа рассчитана на два академических часа.

Основные положения [4]

Контроль точности технологических систем следует проводить по альтернативному или количественному признакам. При контроле по альтернативному признаку проверяют соответствие параметров технологического процесса и средств технологического оснащения требованиям, установленным в научно-технической документации.

Этот контроль в соответствии с ГОСТ 27.203–83 следует производить в следующих случаях:

при разработке технологических процессов на этапе технологической подготовки производства;

управлении технологическими процессами.

Для данного вида контроля в этой работе изложена суть и области практического применения метода квалитетов.

Данный метод основан на сравнении требуемых значений парамет- ров технологической системы с их предельно возможными значения- ми, установленными в справочной и нормативнотехнической доку- ментации в зависимости от квалитетов точности применяемых средств технологического оснащения и предметов производства. В этом случае

рассчитывается суммарная погрешность обработки и сравнивается δ_{Σ}

с величиной допуска T на контролируемый размер или параметр.

Для обеспечения надежности технологических операций по точности необходимо, чтобы коэффициент (показатель) точности

$$K = \frac{\omega = \delta_{\Sigma}}{T} = 0.75 - 0.85$$
,

где T – допуск на контролируемый параметр.

Контроль точности технологических систем по количественному признаку производится в случаях, когда выполняется:

разработка технологических процессов на этапе технологической подготовки производства;

выбор методов и планов статистического регулирования технологических процессов (операций);

замена, модернизация или ремонт средств технологического оснащения;

совершенствование технологических систем в части повышения их надежности и качества изготовления продукции. Из этого вида контроля в данной работе изложена сущность расчетных и опытностатистических методов.

Из расчетных методов практически применяются:

- 1. Метод случайных функций, заключающийся в расчете характеристик изменения математического ожидания и дисперсии (в данной работе он не излагается).
- 2. Метод элементарных погрешностей, основанный на расчете сум- марной погрешности контролируемого параметра исходя из извест- ных значений элементарных погрешностей (установки детали в при- способлении, геометрической неточности узлов станка, тепловых деформаций и т. д.) [2].

Суммарная погрешность в этом случае

$$\omega = \delta_{\Sigma} = t \sqrt{\lambda_1 \Delta_1^2 + \lambda_2 \Delta_2^2 + \dots + \lambda_n \Delta_n^2} , \qquad (2.1)$$

где t – коэффициент риска;

 $\lambda_1, \lambda_2, ..., \lambda_n$ – коэффициенты, учитывающие законы распределения отдельных (элементарных) погрешностей;

 $\Delta_{1}, \Delta_{2}, ..., \Delta_{n}$ – предельные значения отдельных погрешностей.

При нормальном законе распределения отдельных погрешностей и равномерном их выходе за обе границы поля допуска принимаемый риск

$$P = 100 \lceil \lfloor 1 - 2 \Phi(t) \rceil \rfloor, \%$$

где $\Phi(t)$ – значение функции Лапласа.

Значения коэффициента t определяются по табл. 2.1.

Таблица 2.1

Значения коэффициента t

P,%	32,0	10,0	4,5	1,0	0,27	0,1	0,01
t	1,0	1,65	2,0	2,57	3,0	3,29	3,89

В технологических расчетах чаще всего принимается P=0, 27 %

и
$$t = 3.0$$
.
Коэффициенты

$$\lambda_1, \lambda_2, ...,$$
 рассчитывают при наличии λ_n

фактических данных о законе распределения элементарных погрешностей. При нормальном законе распределения коэффициенты $\lambda_1,\lambda_2,...,\lambda_n$ равны 0,111 | .

3. Опытно-статистические методы основаны на использовании данных измерений параметров качества изделий, полученных в результате специального выборочного обследования и испытаний техно- логической системы и ее элементов. Они основаны на расчете X (среднего арифметического), S (среднего квадратического), их дове- рительных интервалов с последующим определением критерия согла-

сия Пирсона χ^2 , определяющим достоверность выбранного закона распределения.

При этом определяют следующие показатели точности технологических систем:

а) коэффициент точности

$$K = \frac{\omega}{2}, \qquad (2.2)$$

где ω — поле рассеяния или разность максимального и минимального значений контролируемого параметра за установленную наработку технологической системы, определяемое с доверительной вероятностью γ по выражению

$$\omega = t \cdot S$$
,

где t – коэффициент, зависящий от закона распределения контролируемого параметра (коэффициент риска).

При t = 3.0; $2\Phi(t) = 0.9973$ (нормальный закон)

$$\omega = 6S$$
.

Для нормальной по точности технологической операции необходимо выдержать условие, соответствующее формуле (2.2):

б) коэффициент мгновенного рассеяния:

$$K_{p}(t) = \frac{\underline{\omega}(t)}{T},$$

где $\omega(t)$ — поле рассеяния контролируемого параметра в момент времени t (относится к мгновенной выборке);

в) коэффициент смещения контролируемого размера (параметра)

$$K_{c}(t) = \frac{\underline{\Delta(t)}}{T},$$

где $\overline{\Delta}(t)$ — среднее значение отклонения контролируемого параметра относительно середины поля допуска в момент времени t :

$$\overline{\Delta}(t) = |\overline{x}(t) - x_0|,$$

где $\overline{x}(t-$ среднее значение контролируемого параметра;

 x_0 — значение параметра, соответствующее середине поля допуска (при симметричном поле допуска x_0 совпадает с номиналь-

ным
$$x_{\text{ном}}$$
);

г) коэффициент запаса точности

$$K_3(t) = 0.5 - Kc(t) - 0.5Kp(t)$$
.

Если имеется запас точности на операции, то величина Кз $\left(t\right) > 0$;

если такой запас отсутствует, то, соответственно, Кз (t) < (t)

Методические указания и порядок выполнения работы

Для выполнения работы студентам выдается задание по одному из вариантов, приведенных в табл. 2.2–2.4.

- 1. Варианты заданий для расчета точности обработки по методу квалитетов, приведены в табл. 2.2 (варианты 1-15).
- а. На основании исходных данных определить величину суммарной погрешности обработки по формуле

$$\omega = \delta_{\Sigma} = \Delta_{\text{moct}} + 2\Delta_{\mu},$$

^{где} $\Delta_{\text{пост}}$ – постоянство диаметра для определенного вида оборудования, определяется по табл. 2.3 [1];

 $\Delta_{_{\rm \! I\! I}}$ – максимально возможное смещение (износ) инструмента, мкм.

- б. По найденной величине $\omega(\delta\Sigma)$ и заданному допуску T на контролируемый размер рассчитать коэффициент точности K_{τ} .
- в. Проанализировать полученные результаты по величине коэффициента $K_{\scriptscriptstyle T}$, сделать заключение о точности выполняемой операции.
- 2. Варианты заданий для расчета точности обработки по методу отдельных (элементарных) погрешностей приведены в табл. 2.3 (варианты 1–15).
- а. На основании исходных данных по формуле (2.1) определить суммарную погрешность обработки $\delta \Sigma \left(\omega \right)$.
 - б. По найденной величине $\delta \Sigma$ и заданному допуску на кон- (ω)

тролируемый размер T рассчитать коэффициент (показатель) точности $\mathbf{K}_{\scriptscriptstyle \mathrm{T}}$.

- в. Проанализировать полученные результаты и на основании значения коэффициента $K_{_{\rm T}}$ сделать заключение о точности выполняемой операции.
- 3. Варианты заданий для опытно-статистического метода расчета точности обработки приведены в табл. 2.4 (варианты 1–15).
 - а. На основании значений x(t) и x0 определить величину $\overline{\Delta}(t)$.
- б. По величинам $\overset{-}{\Delta}(t)$ и T рассчитать значение коэффициента смещения Кс (t) .
- в. На основании значений $\omega(t)$ и T определить коэффициент мгновенного рассеяния Кр (t)
 - г. По величинам Кс $(t ext{ и Kp} (t))$ определить значение коэффици-

ента запаса точности Кз (t) .

д. Проанализировать полученный результат и по $K_3(t)$, величине сделать заключение о точности данной операции.

Варианты заданий

Наименование и норма точности станка	Диаметр заготовки \mathcal{A}_{3ar} , мм	Постоянство диаметра $\Delta_{\text{пост}}$, мкм	Максимально возможное смещение (износ) резца $\Delta_{_{\rm H}}$, мкм	Размер детали, допуск на обработку, мкм и квали- тет точности
1	2	3	4	5
1. Автомат токар- но-револьверный одношпиндель- ный прутковый (ГОСТ 18100–80), класс точности H	Ø35,0	25,0	15,0	$\emptyset 32h10$ $T = 100,0$
2. Станок той же модели, класс точ-ности H	Ø15,0	20,0	10,0	013h8 $T = 27,0$

Продолжение табл. 2.2

1	2	3	4	5
3. Станок той же модели, класс точности П	Ø50,0	20,0	25,0	
4. Автомат токарный продольный, класс точности П ГОСТ 8831–79	Ø20,0	16,0	10,0	Ø18 <i>h</i> 9 $T = 52,0$
5. Станок той же модели, класс точности П	Ø15,0	12,0	8,0	$ \begin{array}{c} $
6. Станок той же модели, класс точности B	Ø25,0	10,0	12,0	$ \emptyset 23h8 T = 33,0 $
7. Автомат токарный многошпиндельный прутковый, горизонтальный, класс точности H , ГОСТ 43—	Ø50,0	80,0	12,0	Ø47 <i>h</i> 11 $T = 160,0$

85				
8. Станок той же модели, класс точности П	Ø30,0	40,0	10,0	$ 028h10 \\ T = 84,0 $
9. Станок той же модели, класс точности H	Ø110,0	100,0	25,0	Ø108 h 11 $T = 220,0$
10. Полуавтомат токарный много- шпиндельный патронный гори- зонтальный, класс точности П , ГОСТ 6819–84	Ø100,0	40,0	15,0	Ø96 <i>h</i> 9 T = 87,0
11. Станок той же модели, класс точности H	Ø150,0	80,0	25,0	Ø146 h 11 $T = 250,0$

Окончание табл. 2.2

1	2	3	4	5
12. Полуавтомат токарный много- шпиндельный вертикальный патронный, класс точности Н ГОСТ 6820–75	Ø300,0	100,0	20,0	$\emptyset 296h10$ T = 210,0
13. Станок той же модели, класс точности П	Ø230,0	50,0	25,0	$\emptyset 228,0h9$ T = 115,0
14. Полуавтомат токарный многорезцовый и многорезцовокопировальный, класс точности H	Ø140,0	40,0	15,0	Ø138 <i>h</i> 9 $T = 100,0$
15. Станок той же модели, класс точности П	Ø200,0	30,0	20,0	Ø196,0 <i>h</i> 9 $T = 115,0$

Таблица 2.3 Варианты заданий

Исходные данные	Номера вариантов														
погрешностей, мкм	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1. Геометрические станка	40	30	35	45	50	55	60	70	80	85	90	95	100	105	110
2. Базирования	60	50	40	55	65	45	35	40	50	60	65	70	75	80	85
3. Закрепления	30	20	35	15	40	25	30	35	40	45	50	55	60	65	70
4. Изготовления при- способления	30	25	15	25	10	20	35	40	45	50	35	30	55	60	65
5. Изготовления инструмента	10	15	10	20	15	5	25	30	35	40	45	50	45	40	55
6. Настройки инстру- мента на размер	50	40	20	15	30	25	45	50	55	60	65	70	50	40	45
7. Размерного износа инструмента	15	10	5	20	10	25	30	40	45	50	55	60	65	50	55
8. Измерений	100	90	60	40	50	45	35	40	50	60	70	80	90	100	110
9. Вызванная упругими деформациями под действием сил резания	40	30	25	35	20	45	15	50	60	65	60	70	75	80	90
10. Допуск на контролируемый параметр	300	200	150	250	350	400	250	250	100	150	100	250	300	350	400
11. Принимаемый риск Р, %	1,0	0,27	0,1	1,0	0,27	4,5	0,27	0,01	32,0	10,0	4,5	1,0	0,27	0,1	0,01

Таблица 2.4 Варианты заданий

Исходные	Номера вариантов														
данные, мм	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1. Контролируемый размер		50+0,39	75 _{-0,46}	100+0,22	150+0,4	25 ^{+0,21}	60-0,3	90+0,14	130-0,25	160+0,4	170-0,25	190+0,29	210-0,185	260 ^{+0,21}	300-0,32
2. Величина допуска <i>T</i>	0,16	0,39	0,46	0,22	0,4	0,21	0,3	0,14	0,25	0,4	0,25	0,29	0,185	0,21	0,32
3. Среднее значение контролируемого размера <i>x</i> (<i>t</i>)	40,05	50,3	74,7	100,1	150,3	25,15	59,8	90,1	129,8	160,3	169,85	190,2	209,8	260,15	299,7
4. Поле рассеяния контролируемого размера в момент времени $t - \omega(t)$	0,12	0,1	0,1	0,08	0,06	0,04	0,03	0,02	0,05	0,04	0,05	0,03	0,05	0,02	0,06

Содержание отчета

- 1. Название и цели работы.
- 2. Исходные данные, необходимые для расчета:

$$ω(δΣ)$$
, Kτ, Kp (t), Kc (t), K3 (t).

- 3. Расчет указанных величин согласно заданным вариантам.
- 4. Выводы по каждому варианту работы.

Примеры выполнения некоторых вариантов работы

Пример 2.1

Определить величину Кз (t) при следующих исходных данных: контролируемый размер $65_{-0.3}$ мм (h12):

Так как величина Кз (t) > 0, то в данном случае имеется запас точности по контролируемому параметру.

Пример 2.2

Оценить точность токарной операции методом квалитетов. Исходные данные: операция выполняется на токарно-револьверном одношпиндельном прутковом автомате класса точности Π (ГОСТ18100–80).

Операция – чистовая токарная обработка. Квалитет точности h9.

Заготовка — пруток из автоматной стали диаметром 55 мм. Максимально возможное смещение режущей кромки резца $\Delta_{\rm H}=15~{\rm MKM}$ (износ, тепловые деформации и т. д.).

Допуск на обработку Ø53h9 равен 74 мкм.

По табл. 2.3 [1] находим, что допуск на диаметр образца-изделия (постоянство диаметра $\Delta_{\rm noct}$) в поперечном сечении равен 20 мкм.

$$\omega \! = \delta_{\Sigma} = \! \Delta_{\text{пост}} + 2 \Delta_{\text{\tiny M}} = \! 20 + 30 = \! 50$$
 мкм .

Величина $\Delta_{\rm H}$ удваивается, так как изменение точности считается по диаметральному размеру.

Сравниваем величину δ_Σ с допуском на обработку и определяем величину $K_{\!\scriptscriptstyle T}$:

$$K = \frac{\omega(\delta_{\Sigma})}{T} = \frac{50}{74} = 0.67.$$

По значению $K_{_{\rm T}}$ можно сделать вывод, что точность рассматриваемой операции следует считать вполне достаточной, так как требуемые нормативные значения $K_{_{\rm T}}$ лежат в пределах 0.75-0.85.

Контрольные вопросы

- 1. Каковы цели расчета надежности технологических систем по параметрам точности?
- 2. В каких случаях производится контроль точности технологических систем (TC) по альтернативному признаку?
- 3. Когда выполняется контроль точности TC по количественному признаку?
- 4. Какие методы используются для оценки надежности ТС по параметрам точности?
 - 5. В чем сущность расчетных методов?
- 6. Особенности методов квалитетов и опытно-статистических методов.
 - 7. Как определяется коэффициент точности $K_{_{\rm T}}$?
- 8. Основные составляющие коэффициента K_3 (t и методы их определения.

Литература

- 1. Справочник технолога-машиностроителя : в 2 т. / под ред. А. Г. Косиловой и Р. К. Мещерякова. М. : Машиностроение, 1985. Т. 1.-651 с.
- 2. Лабораторный практикум по технологии машиностроения / под ред. В. В. Бабука. Минск : Вышэйшая школа, 1983. 216 с.
- 3. Сборник практических работ по технологии машиностроения / под ред. И. П. Филонова. Минск : БНТУ, УП «Технопринт», 2003. 483 с.
- 4. Технологические системы. Методы оценки надежности по параметрам качества изготовляемой продукции : ГОСТ 27.202–83. М. : Госкомитет по стандартам, 1984 50 с.

Практическая работа № 3

РАСЧЕТ ПРОИЗВОДСТВЕННЫХ ПОГРЕШНОСТЕЙ АНАЛИТИЧЕСКИМ МЕТОДОМ

Цель работы: рассчитать точность выполнения определенной операции технологического процесса, которую сопоставить с заданной точностью обработки и сделать вывод о возможности ее обеспечения в заданных условиях.

Работа рассчитана на два академических часа.

Основные положения

Величина суммарной погрешности обработки по диаметральным и продольным размерам в общем виде в массовом производстве определяется по формуле

$$\Delta_{\Sigma} = \Delta_{_{\rm H}} + \sqrt{\Delta_{_{\rm CJHY}}^2 + \Delta^2 + \epsilon^2} \ , \label{eq:delta_sigma}$$

а в серийном:

$$\Delta_{\scriptscriptstyle \Sigma} = \Delta_{\scriptscriptstyle \rm H} + \Delta_{\scriptscriptstyle \rm H} + \sqrt{\Delta_{\scriptscriptstyle {\sf CJJ}}^2 \!\!\!\! + \epsilon^2} \ , \label{eq:delta_sigma}$$

где $\Delta_{\text{и}}$ — погрешность, обусловленная износом режущего инструмента;

 $\Delta_{\rm cn}$ — поле рассеяния погрешностей обработки, обусловленных такими технологическими факторами случайного характера, как неравномерность припуска, неодинаковая твердость материала заготовки, недостаточная жесткость системы СПИЗ, а также погрешностью формы детали. Эту величину также называют мгновенным полем рассеяния погрешностей обработки;

 $\Delta_{_{\rm H}}$ – погрешность настройки станка, мкм;

 $\epsilon_{\rm y}$ – погрешность установки заготовки, мкм.

Погрешность, обусловленная износом режущего инструмента, рассчитывается по следующим формулам:

при односторонней обработке

$$\Delta_{\text{\tiny M}} = \frac{U_{\text{\tiny O}} \cdot l}{1000}, \text{ MKM},$$

при двухсторонней обработке

$$\Delta = \frac{2U_{o} \cdot l}{1000}, \text{ MKM},$$

где $U_{\rm o}$ – относительный износ инструмента, мкм/км;

l — путь резания, м.

Величина относительного размерного износа инструмента для при- нятых видов обработки выбирается по табл. ПЗ.1 и ПЗ.2 приложения.

С помощью табл. ПЗ.1 рекомендуется определять величину относительного износа инструмента при фрезеровании по формуле

$$V_{U_{o_{\phi p}}} = \begin{pmatrix} 1 & 100 \\ 1 & + \\ & B \end{pmatrix}, \text{ MKM},$$

где B — ширина фрезерования, мм.

Относительный износ разверток составляет 0,005–0,008 мм/км.

Путь резания рассчитывается по формулам: при точении

$$l = \frac{\pi DLn}{1000S_{\text{IID}}, \text{M}};$$

при торцовом фрезеровании

$$l = \frac{L \cdot B \cdot n}{1000 S_{\text{nip}}}$$

при круглом и бесцентровом шлифовании с поперечной подачей

$$l = \frac{\pi D_{\text{III.K}} \cdot n_{\text{III.K}} \cdot t \cdot n \cdot k}{\text{M}_{\bullet}^{\bullet} 1000 n_{q} \cdot S_{\text{IIOII}}} k,$$

при сверлении, зенкеровании и развертывании

$$l = \frac{\pi DL \cdot n}{1000S_{\text{пp}}}, \, M,$$

где D – диаметр обрабатываемой поверхности, мм;

L — расчетная длина обработки с учетом пути врезания и перебега режущего инструмента, мм;

n — количество деталей в настроечной партии, обрабатываемой в период между подналадками станка;

 $S_{\rm np}$ — продольная подача инструмента или детали, мм/об;

В – ширина фрезерования или шлифования, мм;

 $D_{\text{ш.к}}$ – диаметр шлифовального круга, мм;

 $n_{_{
m III.}}$ — число оборотов шлифовального круга в минуту;

t — припуск на сторону, мм;

k – коэффициент на вывод искры: k = 1,1-1,3;

 n_q — число оборотов детали в минуту;

 $S_{\rm non}-$ поперечная подача на один двойной ход, мм.

Погрешность динамической настройки определяется по формуле

$$\Delta_{\mathrm{H.Д}} = \sqrt{\frac{\Delta_2}{\mathrm{cmperu3m}} + \Delta^2} + \Delta^2$$
 ,

 $^{\Gamma \text{Дe}} \ \Delta_{_{\text{CM}}} -$ смещение центра группирования размеров пробных деталей относительно середины поля рассеяния размеров, мкм:

$$\Delta_{\rm cm} = \frac{\Delta_{\rm c.i.}}{m},$$

где m — количество пробных деталей.

 $\Delta_{\rm cn}$ — мгновенная погрешность обработки, значение которой рекомендуется определять по табл. П3.3—П3.6 приложения;

 $\Delta_{\rm per}$ — погрешность регулирования положения режущего инструмента, зависящая от применяемого способа регулирования и определяемая по табл. ПЗ.8 приложения;

 $\Delta_{\text{изм}}$ — погрешность измерения, равная предельной погрешности используемого измерительного инструмента и определяемая по табл. П3.9 приложения.

При обработке деталей в специальных приспособлениях на фрезерных станках фреза устанавливается с помощью щупа по эталону.

В этом случае погрешность настройки

$$\Delta_{\rm H} = \sqrt{\Delta_{\rm 9 MYCT.NH}^2 + \Delta^2} \quad , \label{eq:deltaH}$$

 Δ $_{\text{уст.ин}}$ — точность установки фрезы по щупу.

Значения Δ при установке его с помощью металлического уст.ин

щупа составляют 7-10 мкм.

Фрезерные установы принимаются высотой H = 8-12 с точ-

ностью изготовления по H $\Delta_{_{9}}=18$ мкм, щупы принимаются пло- 7

ские, $\mathit{l}=1,\,3,\,5$ мм с точностью изготовления по H $\Delta_{_{\rm III}}=10$ мкм . 7

При использовании мерного режущего инструмента (сверл, зенкеров, разверток и т. д.)

$$\Delta_{_{\mathrm{H}}} = \sqrt{\stackrel{\Delta 2}{\underset{\mathsf{NHY.H}}{\wedge}}} \Delta^{2}$$
 ,

 $^{\Gamma \text{Де}} \ \Delta_{\text{ин}} -$ погрешность изготовления инструмента, равная допуску на его изготовление по исполнительному размеру и определяемая по табл. ПЗ.7 приложения.

Погрешность базирования в центрах $\, \epsilon_6^{} = 0 \, . \,$ Такая же она и при плавающем закреплении развертки, т. е. $\, \Delta_{_{Y,H}}^{} = 0 \, . \,$

При фрезеровании плоскостей

$$\epsilon_y = \sqrt{\epsilon_\text{6}^2 + \epsilon_\text{3np}^2 + \epsilon^2}$$
 .

В случае совмещения установочной и измерительной баз по-

грешность базирования $\,\epsilon_{6}=0\,$.

Погрешность закрепления $\epsilon_{_3}$ определяется по табл. ПЗ.10 приложения.

Погрешность приспособления $\, \epsilon_{\rm np} \,$ определяется после его изготовления и установки на стол станка. Поэтому в данном случае $\, \epsilon_{\rm np} \,$ не учитывается.

Методические указания

Для выполнения работы студентам выдается задание по одному из вариантов, приведенных в табл. 3.1–3.4. На основании исходных данных требуется рассчитать суммарную погрешность обработки, сравнить ее с требуемой точностью и сделать заключение о возможности ее обеспечения.

Таблица 3.1 Варианты заданий

Исходные							H	Іомера ва							
данные	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1. Диаметр обработки, мм; квалитет точности и величина допуска, мкм	Ø45 <i>h</i> 10 (100)	Ø70h9 (74)	Ø90 <i>h</i> 11 (220)	Ø15h10 (70)	Ø25h11 (130)	Ø50h11 (190)	Ø60h12 (300)	Ø110h11 (220)	Ø130 <i>h</i> 10 (160)	Ø160h11 (250)	Ø190 <i>h</i> 12 (460)	Ø240h10 (185)	Ø260h11 (320)	Ø350h10 (230)	Ø450h12 (630)
2. Расчетная длина обра- ботки <i>L</i> , мм	150	200	250	50	100	160	180	210	280	300	350	400	420	450	500
3. Величина настроечной партии, шт.	50	60	80	40	45	55	60	50	50	45	50	40	40	35	30
4. Материал детали	Сталь 45	Сталь 25ХГТ	Сталь 35	Сталь 50	Сталь 65	Сталь 40X	Сталь 18ХГТ	Сталь 12ХНЗА				Чугун ВЧ70-3	Чугун ВЧ100-4	Чугун ВЧ120-4	Чугун ЖЧС-5Ш
5. Жесткость станка, кГс/мм, 10 Н/мм	500	800	1200	1000	1500	700	1400	2000	1800	2500	1300	2600	3000	2800	2100
6. Материал режущей части резца	T15K6	Т30К4	Т60К6	T5K10	T15K6	Т30К4	Т60К6	T5K10	ВК2	ВК3	ВК4	ВК6	ВК8	ВК9	ЦМ332
7. Подача <i>S</i> _{прод} , мм/об	0,15	0,2	0,3	0,35	0,4	0,1	0,45	0,3	0,25	0,3	0,35	0,4	0,3	0,35	0,4

Окончание табл. 3.1

Исходные		Номера вариантов													
данные	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
8. Величина <i>P</i> _y , кгс, 10 Н	8,0	12,0	15,0	20,0	25,0	10,0	30,0	25,0	10,0	15,0	20,0	25,0	30,0	20,0	35,0
9. Класс точ- ности микро- метра	0	0	1	0	1	1	2	1	1	1	2	1	1	0	2
10. Цена деления лимба станка, мм	0,02	0,05	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,02	0,02	0,01	0,01	0,01	0,02

Таблица 3.2

Варианты заданий

Исходные		Номера вариантов													
данные	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1. Размер обработки, мм; квалитет точности и величина допуска, мкм	9 (74)	70h10 (120)	90 <i>h</i> 10 (140)	110h11 (220)	130h12 (400)	150h11 (250)	180h10 (160)	200/12 (460)	220h11 (290)	250h10 (185)	270h11 (320)	300/10 (210)	320h11 (360)	350h10 (230)	450h11 (400)
2. Расчетная длина обра- ботки <i>L</i> , мм	200	250	300	320	350	220	370	400	420	450	470	500	520	550	600

Окончание табл. 3.2

Исходные							F	Іомера ва	рианто	В					
данные	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3. Ширина фрезерования	60	70	90	110	130	150	180	200	220	250	270	300	320	350	450
4. Величина партии дета- лей, шт.	50	80	100	60	70	90	110	95	85	35	65	40	45	40	30
5. Материал детали	Сталь 45	Сталь 25ХГТ	Сталь 35	Сталь 50	Сталь 65	Сталь 40X	Сталь 18ХГТ					Чугун ВЧ70-3	Чугун ВЧ100-4	Чугун ВЧ120- 4	Чугун ЖЧС-5Ш
6. Жесткость станка, кГс/мм, 10 Н/мм	900	600	1400	1200	1000	1500	700	1400	200	1800	2500	1300	2600	3000	2800
7. Подача S, мм/об	0,15	0,25	0,3	0,35	0,4	0,1	0,45	0,3	0,25	0,3	0,35	0,4	0,3	0,35	0,4
8. Материал режущей части	T15K6	Т30К4	T60K6	T5K10	T15K6	T30K4	Т60К6	T5K10	ВК2	ВК3	ВК4	ВК6	BK8	ВК9	ЦМ332
9. Величина <i>P</i> _y , кГс, 10 Н	14,5	16,5	20,5	25,0	30,0	22,0	15,0	20,0	30,0	27,0	20,0	18,0	15,0	25,0	30,0

Таблица 3.3

Варианты заданий

Исходные							Нс	мера вар	иантов						
данные	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1. Диаметр обработки, мм; квалитет точности и величина допуска, мкм	Ø45h6 (16)	Ø55h7 (30)	Ø70 <i>h</i> 6 (19)	085h7 (35)	Ø100h8(57)	Ø130h7(40)	Ø150h8 (63)	Ø170 <i>h</i> 9(100)	Ø190h8(72)	Ø210h9 (115)	Ø240h8 (72)	Ø260h7 (52)	Ø290h9 (130)	Ø320h8 (89)	Ø350h9 (140)
2. Величина настроечной партии	60	50	100	110	120	130	140	100	150	90	130	140	80	110	100
3. Материал детали	Сталь 45	Сталь 25ХГТ	Сталь 35	Сталь 50	Сталь 65	Сталь 40X	Сталь 18ХГТ	Сталь 12 XH3A	Чугун СЧ15	Чугун СЧ21	Чугун СЧ-36		Чугун ВЧ100-4	Цв. сплав	Цв. сплав
4. Жесткость станка, кГс/мм, 10 Н/мм	900	1000	1200	1350	1500	1700	2000	2500	2200	2500	3000	3200	3400	3500	3000
5. Поперечная подача $S_{\text{поп}}$, мм/об	0,005	0,008	0,05	0,008	0,01	0,08	0,01	0,015	0,01	0,015	0,01	0,08	0,015	0,01	0,015
6. Число оборотов круга <i>п</i> _{ш.к} , об/мм	2600	2300	2600	2300	2000	1700	2000	1800	2000	1700	1500	1800	1700	1500	2000

Окончание табл. 3.3

Исходные							Но	мера вар	иантов						
данные	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
7. Диаметр круга $D_{\text{ш.к}}$, мм	250	300	250	300	350	400	350	450	500	400	550	450	400	550	500
8. Число оборотов детали <i>п</i> _д , об/мин	150	250	200	150	100	80	70	60	50	40	35	50	45	40	30
9. Цена деления миниметра, мкм	1,0	2,0	1,0	2,0	2,0	2,0	2,0	5,0	2,0	5,0	2,0	2,0	5,0	2,0	5,0
10. Цена деления лимба станка, мм	0,01	0,02	0,01	0,02	0,02	0.02	0,02	0,05	0,02	0,05	0,02	0,02	0,05	0,02	0,05
11. Припуск на сторону <i>t</i> , мм	0,1	0,15	0,12	0,1	0,15	0,12	0,15	0,15	0,18	0,18	0,2	0,15	0,12	0,18	0,2

Таблица 3.4 Варианты заданий

Номера вариантов Исходные данные 3 10 11 12 13 14 15 4 6 1. Диаметр Ø18H11 (110) 5H10 (84))H11 (160) 0H10(120)65H8 (46) 70H6 (19) Ø12H9 (43) Ø15H6 (11) 22H5 (9) 30H7(21) 5H6 (16) 15H9 (62) 50H5 (11) Ø20H8(33) отверстия, мм; квалитет точности и величина допуска, мкм 2. Длина об-30 35 25 20 40 работки L, MM 3. Величина 70 60 80 150 60 настроечной партии, шт.

4. Продоль-

ная подача $S_{\text{прод}}$, мм/об

5. Вид раз-

вертывания

0,9

Точ-

ное

1,0

Нор-

маль-

ное

0,7

Тон-

кое

1,0

Hop-

маль-

ное

0,9

Точ-

ное

Ø	02:	<u> </u>	εØ	040	04	\$0	09Ø	90	07
45	50	30	35	25	20	40	45	30	25
70	80	90	100	150	90	70	120	90	70
0,7	1,0	0,9	0,7	1,0	0,9	0,7	1,0	0,9	0,7
Тон-кое	Нор- маль- ное	Точ-	Тон-	Нор- маль- ное	Точ- ное	Тон-кое	Нор- маль- ное	Точ-	Тон-

Варианты заданий для выполнения практической работы «Расчет производственных погрешностей аналитическим методом»

1. Определить точность чистового обтачивания цилиндрической ступени вала на токарном станке. Способ установки — в центрах. На- стройка — динамическая по пробным деталям. Измерение деталей — с помощью микрометра, регулирование размеров — по лимбу станка.

Количество пробных деталей m=5 . Исходные данные — в табл. 3.1.

- 2. Определить точность чистового фрезерования плоскости торцевой фрезой. Настройка на размер по установам приспособления. Деталь установлена на пластины по чисто обработанной поверхности в приспособлении с пневматическим зажимом; установочная плоскость также является измерительной базой. Исходные данные в табл. 3.2.
- 3. Определить точность шлифования ступени вала на круглошлифовальном станке. Настройка динамическая по пробным деталям; измерение настроечных деталей с помощью миниметра; регулирование размера при настройке по лимбу станка; деталь установлена в центрах; круг шлифовальный 24А. Исходные данные в табл. 3.3.

Количество пробных деталей m = 5.

4. Определить точность развертывания отверстий разверткой с плавающим креплением. Настройка — динамическая по пробным деталям. Исходные данные — в табл. 3.4.

Порядок выполнения работы

- 1. На основании исходных данных, приведенных в табл. 3.1–3.4, определить суммарную погрешность обработки.
 - 2. Сравнить эту погрешность с заданной точностью размера.
- 3. Сделать заключение о возможности обеспечения заданной точности.

Содержание отчета

- 1. Название работы.
- 2. Исходные данные, необходимые для расчета Δ_{Σ} .

- 3. Расчет величин Δ_{u} , $\Delta_{\text{сл}}$, Δ_{H} , ϵ_{y} .
- 4. Расчет величин Δ_{Σ} .
- 5. Сравнение величин Δ_{Σ} и δ (требуемая точность размера).
- 6. Выводы.

Контрольные вопросы

- 1. Как рассчитывается величина суммарной погрешности в массовом производстве?
- 2. Как определяется величина, обусловленная износом режущего инструмента?
- 3. Чему равна величина динамической настройки станка и как определяются ее элементы?
- 4. Как определяется погрешность настройки при обработке деталей на фрезерных станках?
- 5. Чему равна погрешность настройки при использовании мерного режущего инструмента?

Литература

Дипломное проектирование по технологии машиностроения / под ред. В. В. Бабука. – Минск : Вышэйшая школа, 1979. – 464 с.

ПРИЛОЖЕНИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ № 3

Моторион		Обрабатывае	мый ма	гериал
Материал режущего инструмента	Углеродистая сталь	Легированная сталь	Серый чугун	Чугун высокопрочный и жаростойкий HB 375-400
Т60К6	2–4	2–4	_	-
Т30К4	3–4	4–6	_	_
Т15К6	5–7	9–10	_	-
T5K10	8	12–13	_	_
ВК9	_	_	15	_
ВК8	_	17–25	13–14	_
ВК6	_	_	14	_
ВК4	_	9–10	6	16
ВК3	_	_	5	_
ВК2	_	_	4–6	12
ЦМ-332	0,5-1,0	1–6	_	9

Мате	риал	II
Детали	Круга керамического	$U_{\rm o}$
Углеродистые стали	14A, 24A	0,03
Легированные стали	33A, 37A	0,05
Серый чугун	14A, 24A	0,02
Чугун закаленный	14A, 24A	0,04
Сплавы цветных металлов	14A, 24A	0,01

Размеры,	Жесткость системы, кГс/мм, 10 Н/мм									
MM	700–1200	1200-2000	2000–3000	3000-4000						
30–50	16	13	10	7						
50-80	18	15	12	9						
80–120	20	17	14	11						
120–150	22	19	16	13						
150-200	24	21	18	15						
200–250	26	23	20	17						
250-300	28	25	22	19						
300–350	30	27	24	21						

D	Сила P_{y} , кгс,	Жесткость	системы, кгс/м	м, 10 Н/мм
Размеры, мм	10 H	400–600	600–1000	1000-1500
10.10	5–10	37	23	16
10–18	10–15	38	24	17
10.20	5–10	40	26	17
18–30	10–15	41	27	18
30–50	5–10	43	29	18
30–30	10–15	44	30	19
50.00	5–10	46	32	19
50–80	10–15	47	33	20
90 100	5–10	48	35	20
80–100	10–15	50	36	21
100 150	5–10	52	38	21
100–150	10–15	53	39	22
150 250	5–10	55	41	22
150–250	10–15	56	42	23
250, 250	5–10	58	44	23
250–350	10–15	59	45	24
250 450	5–10	61	47	24
350–450	10–15	62	48	25

Размеры,	Сила $P_{\rm y}$, кгс,	Жесткость	системы, кгс/м	им, 10 Н/мм
MM	10 H	400–700	700–1000	1000-1500
6–10	5–15	64	46	24
0-10	Свыше 15	66	48	26
10–18	5–15	70	52	30
10-16	Свыше 15	72	54	32
18–30	5–15	76	58	36
10-30	Свыше 15	78	60	38
30–50	5–15	82	64	42
30–30	Свыше 15	84	66	44
50-80	5–15	88	70	48
30-80	Свыше 15	90	72	50
80–120	5–15	94	76	54
80-120	Свыше 15	96	78	56
120–150	5–15	100	82	60
120-130	Свыше 15	102	84	62
150-200	5–15	106	88	66
130-200	Свыше 15	108	90	68
200–250	5–15	112	94	72
200-230	Свыше 15	114	96	74
250–300	5–15	118	100	78
230-300	Свыше 15	120	102	80
300–350	5–15	124	106	84
300-330	Свыше 15	126	108	86
Свыше 350	5–15	130	112	90
Свыше 330	Свыше 15	132	114	92

Значения $\Delta_{\rm cn}$ при развертывании, мкм

Вид		Диаметр отверстия, мм										
развертывания	До 10	10–15	15–20	20–25	25–30	30–35	35–40	40–50	50–60	60–80		
Нормальное	30	32	35	40	42	45	50	52	55	60		
Точное	26	28	30	35	38	40	42	45	48	50		
Тонкое	12	13	14	15	16	17	18	19	20	21		

Таблица П3.7

Вид Разверты- вания	Ква-		Номинальные диаметры инструмента, мм										
	литет точ- ности	До 10	10–15	15–20	20–25	25–30	30–35	35–40	40–50	50–60	60–80		
Тонкое	5	3	4	6	7	8	9	10	11	12	13		
	6	4	5	7	8	9	10	11	12	13	14		
	7	5	6	8	9	10	11	12	13	14	15		
Точное	8	6	8	9	10	12	13	14	15	16	17		
	9	9	11	13	14	15	16	17	18	19	20		
Нормальное	10	12	13	15	16	18	19	20	21	22	23		
	11	14	15	18	20	22	23	24	25	26	28		

Таблица ПЗ.8

Погрешности регулирования $\Delta_{\mathrm{per}}^{}$ инструмента по лимбу станка, мкм

Цена деления лимба, мм	На сторону	На диаметр
0,01	5–10	10–20
0,02	10–15	20–30
0,05	15–30	30–60
0,1-0,5	30–70	60–140

Предельные погрешности методов измерения длин и диаметров

		Пр	еделы		скаем				мкм (±)
Наименование инструмента	Класс точно- сти	15, 25	50	75; 100	125; 150		225 250 275 300	400	500	600
	0	2	2	2	2,5	2,5	3	4	4	5
Микрометр	1	4	4	4	5	5	6	8	8	10
	2	8	8	8	10	10	12	16	16	20
Миниметр (микрокатор) с ценой деле- ния 1 мкм		0,6	0,6	1,0	1,0	2,0	3,0	3,0	4,0	5,0
Миниметр (микрокатор) с ценой деления 2 мкм		1,2	1,2	1,5	1,5	1,8	2,0	3,0	4,0	5,0
Миниметр (микрокатор) с ценой деления 5 мкм		2.0	3,0	3,0	4,0	4,0	5,0	6,0	7,0	8,5

Таблица ПЗ.10

Таблица ПЗ.9

Погрешности закрепления заготовок ε_3 при установке на опорные пластинки приспособлений по чисто обработанной поверхности в приспособлении с пневмозажимом

Поперечные размеры заготовки, мм		10–18	18–30	30–50	50–80	80–120	120–180	180–220	260–360	360–500
$\mathcal{E}_{_{3}}$, MKM	25	30	35	40	50	60	70	80	90	100

Практическая работа № 4

АНАЛИЗ ОБЪЕКТА ПРОИЗВОДСТВА

Цель работы — приобретение практических навыков анализа кон- струкции, назначения и условий работы детали, заданной для раз- работки технологического процесса механической обработки.

Работа рассчитана на четыре академических часа.

Основные положения

Процесс создания машины складывается в основном из двух взаи- мосвязанных частей: конструирования и изготовления. Эксплуата- ционные показатели качества машины зависят не только от ее кон- струкции, но в большей степени — от технологии изготовления дета- лей и сборки их в изделие. Четкое уяснение служебного назначения машины, конкретизация ее функций, выяснение области и условий эксплуатации, причин нарушения ее работоспособности и т. п. со- вершенно необходимо для обоснованной постановки задач на раз- работку технологических процессов изготовления и сборки всех ее составных частей.

После рассмотрения служебного назначения сборочных единиц следует проанализировать заданную для проектирования технологии деталь с точки зрения ее роли в машине. При этом нужно установить, в какую простейшую сборочную единицу она входит и какие функции в ней выполняет.

При анализе заданной для разработки технологии детали сначала следует охарактеризовать ее общую конструкцию, затем форму всех ее элементов и поверхностей, отметить наличие шлицев, шпоночных пазов, резьб, зубьев, канавок, профильных выступов или впадин и прочее. Нужно установить функциональную роль каждого элемента и поверхности детали. При этом следует иметь в виду, что с конструкторской точки зрения различают исполнительные и свободные поверхности, основные и вспомогательные базы.

Исполнительные (функциональные) поверхности позволяют дета- ли, сборочной единице или машине выполнять свои рабочие функ- ции. К исполнительным поверхностям, как правило, предъявляются наиболее жесткие требования, причем они вытекают из функцио-

нального назначения и условий работы машины, сборочной единицы, детали и обычно подвергаются упрочнению при обработке (беговые дорожки в подшипниках качения, поверхности шариков и роликов; зубья зубчатых колес; поверхность резьбы в винтовых механизмах).

Свободные поверхности не выполняют никаких рабочих функций, предусмотренных служебным назначением детали, и не сопрягаются с поверхностями других деталей машины. Они лишь придают детали нужную конструктивную форму и, как правило, не обрабатываются.

Согласно ГОСТ 21495–76 по своему назначению базы делятся на конструкторские, технологические и измерительные. Основные и вспомогательные базы являются конструкторскими и принадлежат данной детали или сборочной единице. Первые из них (основные) определяют положение детали в изделии, вторые (вспомогательные) – положение присоединяемых деталей или сборочных единиц. При сборке соединений основные базы одной детали опираются на вспомогательные базы другой. Между основными и вспомогательными базами всегда существуют размерные связи, определяющие их взаимное расположение в пространстве и реализуемые в виде линейных и угловых размеров.

Режимы и условия работы детали в машине и возможные причины ее выхода из строя должны быть рассмотрены наиболее подробно. При этом следует дать общую характеристику среды, в которой работает деталь (в изолированном или открытом внешним воздействиям пространстве, при какой температуре и давлении, при наличии или отсутствии смазочного материала, абразивных частиц, агрессивных веществ и т. д.); выявить лимитирующие с точки зрения долговечности поверхности и дать описание условий их работы и механизма разрушения (усталость, изнашивание, коррозия) в процессе эксплуатации; проанализировать материал детали (химический состав, механические и технологические свойства).

Методические указания

В качестве задания для выполнения работы на группу студентов из четырех-пяти человек выдается чертеж сборочной единицы с ука- занием входящих в ее конструкцию деталей. Затем преподаватель ука- зывает деталь, которая подлежит анализу. Студентам также выдаются данные о химическом составе и механических свойствах материала, из

которого изготовлена деталь. Для анализа, например, может быть вы- дано колесо зубчатое, вал, втулка, червячный вал, барабан и др.

Для наглядности необходимо вычертить эскиз детали, утолщенными линиями выделив поверхности или элементы, лимитирующие ее долговечность. На эскизе должны быть приведены размеры, параметры шероховатости и технические требования, относящиеся только к рассматриваемым лимитирующим поверхностям или элементам, а также габаритные размеры детали.

На основании проведенного анализа объекта производства следует сформулировать основные задачи, которые необходимо решить при разработке технологического процесса, наметить схемы базирования, методы обработки детали, в особенности финишные [1]. Примени- тельно к рассмотренным поверхностям и элементам детали нужно установить, какие параметры качества и в каких пределах необходи- мо обеспечить в результате выполнения технологического процесса для достижения требуемого ресурса работы детали. Такими парамет- рами могут быть характеристики размерной и геометрической точ- ности, а также качества поверхностей (шероховатость, твердость), физико-механические свойства материала детали и др. В результате рассмотрения материала детали должно быть сделано заключение о том, в какой мере он удовлетворяет ее служебному назначению, це- лесообразна ли его замена, общее или локальное упрочнение, какие методы предпочтительно использовать для упрочнения детали [2].

Пример выполнения работы

Изучить и проанализировать условия эксплуатации внутреннего кольца радиального, двухрядного роликового сферического подшипника 53614 [1]. Требования к точности размеров и шероховатости поверхностей приведены на рис. 4.2.

Двухрядный роликовый сферический подшипник 53614, в который входит рассматриваемая деталь (внутреннее кольцо), изготавли- вается в основном для обезличенного потребителя, имеет расчетную грузоподъемность до 25 кН при максимальной частоте вращения 2500 мин⁻¹ и допускает перекос оси внутреннего кольца относитель- но оси наружного до 2–3°. Подшипник может работать в диапазоне температур от –60 до +100 °С. При наличии смазочного материала в виде масляного тумана это не оказывает существенного влияния

на его грузоподъемность. Расчетная долговечность подшипника зависит от воспринимаемой радиальной и осевой нагрузок и числа оборотов вала. Рекомендуемая долговечность подшипников для общего машиностроения составляет 2500–10000 часов.

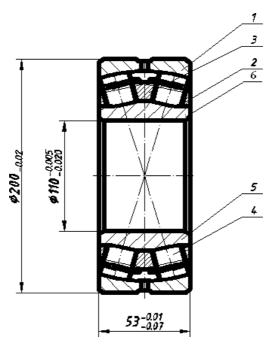


Рис. 4.1. Радиальный двухрядный роликовый сферический подшипник 53614: I — кольцо наружное; 2 — заглушка; 3 — отделитель; 4 — ролики; 5 — кольцо внутреннее

Подшипники этого типа предназначены для работы в основном с радиальными нагрузками, но могут воспринимать и осевые усилия, действующие в обоих направлениях и не превышающие 25 % неис- пользованной допустимой нагрузки. Подшипники могут работать также при чисто осевом нагружении. Они имеют два ряда бочкооб- разных роликов, благодаря чему обладают значительно большей гру- зоподъемностью, чем аналогичные сферические шарикоподшипники. Рассматриваемые подшипники допускают значительный перекос осей внутреннего и наружного колец (2–3°), так как дорожка качения роликов на наружном кольце у них имеет сферическую форму.

Предельный угол охвата ограничивается условием сохранения контакта всех роликов обоих рядов со сферической поверхностью дорожки качения наружного кольца подшипника. Это позволяет компенсировать погрешности обработки деталей и сборки различных сборочных единиц и механизмов, где применяются данные подшипники. Возможность поворота осей наружного и внутреннего кольца подшипника используется также в тех случаях, когда имеет место прогиб вала под действием больших усилий.

Внутреннее кольцо подшипника (рис. 4.2) в качестве исполнительных поверхностей имеет сферические дорожки качения 1. Эти же поверхности являются вспомогательными конструкторскими базами, так как к ним присоединяются, или точнее, на них опираются ролики подшипника. Основной конструкторской базой кольца является внутренняя цилиндрическая поверхность 2, так как она служит для посадки подшипника на сопрягаемый вал. Торцовые поверхности 3 при работе подшипника выполняют вспомогательные функции. Они могут использоваться для ориентирования подшипника на валу в осевом направлении, а также являются основными конструкторскими базами.

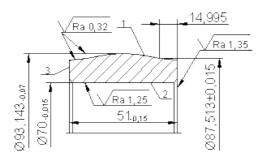


Рис. 4.2. Внутреннее кольцо подшипника 53614

К исполнительным поверхностям и базам предъявляются следую- щие требования по взаимному расположению: радиальное и взаим- ное биение дорожек качения — не более 0,013 мм, разность диаметров обеих дорожек — не более 0,015 мм, отклонения по наклону дорожек качения от номинального расположения — не более 0,010 мм на базо- вом расстоянии 10 мм от торца детали, что оказывает существенное влияние на величину линейного контакта кольца с роликами.

Внутреннее кольцо подшипника изготавливается из стали ШХ15, табл. 4.1, 4.2.

Таблица 4.1 Химический состав стали ШХ15, % (ГОСТ 801–78) [2]

C	М.,	c:	C.	NI:	Не более			
	Mn	51	Si Cr Ni	IN1	P	S	Cu	
0,95–1,05	0,2-0,4	0,17–0,34	1,3–1,65	0,3	0,02	0,02	0,025	

Механические свойства стали ШX15 после закалки и отпуска ГОСТ 801–78 [2]

Таблица 4.2

HRC	$\sigma_{_i}^*$, M Π a	$σ_{-1}$, ΜΠ a	a , Дж/см 2	
58,5-59,0	3200–3300	640	35–40	

Технологические свойства. В горячем состоянии (1150–800 °C) шарикоподшипниковая сталь легко куется, поддается деформации прокаткой и высадкой. Обрабатываемость резанием в отожженном состоянии хорошая. Наиболее благоприятной структурой для обработки точением является однородный мелкозернистый перлит с твер- достью 187–207 НВ.

Дорожки качения колец подшипника работают при значительных контактных напряжениях, достигающих 6000 МПа, и являются лимитирующими с точки зрения их долговечности.

При работе подшипника каждый элемент поверхности дорожек качения испытывает циклические переменные напряжения, в резуль- тате чего на рабочих поверхностях возникают усталостные трещины, приводящие к хрупкому разрушению материала в зоне контакта. Преобладающим видом разрушения, вызываемого контактной уста- лостью рабочих поверхностей, является выкрашивание материала в виде мелких раковин (питтингов) или отслаивание частиц материала. На основании изложенного можно констатировать, что внутрен- нее кольцо подшипника является ответственной, тяжело нагружен-

ной деталью. Основные задачи по его изготовлению состоят в обеспечении размерно-геометрической точности, высокой твердости и стойкости к усталостному изнашиванию дорожек качения. При этом должна быть обеспечена высокая производительность и экономич- ность технологического процесса. Заданные показатели качества внут- реннего кольца подшипника при использовании заготовки в виде трубы в технологическом процессе обычно достигаются следующей последовательностью операций: токарная обработка дорожек каче- ния фасонным резцом, термическая обработка (закалка при темпе- ратуре 850–860 °C и отпуск при температуре 150–160 °C) [3], шли- фование и полирование дорожек качения [4].

Для повышения долговечности внутреннего кольца подшипника можно рекомендовать следующие способы:

- 1. Получение заготовки методом горячей раскатки. При этом про- исходит ориентация волокон в продольном направлении. Контактная выносливость материала при продольном расположении волокон в 1,5–2,0 раза больше, чем при их поперечном расположении.
- 2. При окончательном шлифовании беговых дорожек следует при- менять выхаживание в течение 6 с, что улучшает физикомеханиче- ские свойства поверхностного слоя.

Однако экономически более целесообразно применять шлифование для обработки поверхности с шероховатостью Ra=1,25-0,32 мкм с последующим полированием для снижения шероховатости до Ra=0,32-0,04 мкм. При полировании также улучшаются физико- механические свойства поверхностного слоя.

Перечисленные мероприятия повышают долговечность изделия, но увеличивают трудоемкость его изготовления. Поэтому для решения вопроса о целесообразности их применения требуется экономическое обоснование.

Порядок выполнения работы

- 1. Изучить служебное назначение изделия и дать его описание.
- 2. Изучить назначение детали как составной части сборочной единицы.
- 3. Проанализировать служебное назначение отдельных элементов детали и поверхностей.

- 4. Собрать сведения о материале детали: химический состав, физико-механические свойства. Оценить его соответствие целевому назначению детали.
- 5. Изучить режимы и условия работы лимитирующих поверхностей или элементов детали и выявить возможные причины выхода ее из строя.
- 6. Дать предложения по отделочной и упрочняющей обработке ли- митирующих поверхностей с целью обеспечения долговечности дета- ли или по замене материала детали и технологии её изготовления.
 - 7. Составить отчет.

Задание и набор справочного материала, необходимого для выполнения практической работы, выдаются преподавателем.

Содержание отчета

- 1. Название работы и содержание задания.
- 2. Эскизы анализируемых узла и детали с обозначением рабочих поверхностей детали и технических требований к ним. Химический состав и физико-механические свойства материала детали.
- 3. Результаты анализа служебного назначения узла, детали, отдельных элементов и поверхностей детали.
- 4. Результаты анализа условий работы и причин возможного выхода детали из строя.
- 5. Выводы о соответствии материала детали заданной долговечности.
- 6. Предложения по отделочной и упрочняющей обработке рабочих поверхностей детали.

Контрольные вопросы

- 1. Каковы основные причины выхода из строя деталей машин?
- 2. В зависимости от чего выбирается материал для изготовления детали?
- 3. Как влияет шероховатость на основные причины выхода из строя деталей машин?
 - 4. Методы упрочнения поверхности деталей машин.
 - 5. Виды и назначение поверхностей деталей машин.
 - 6. Вилы баз по назначению.

Литература

- 1. Проектирование технологических процессов механической обработки в машиностроении : учебное пособие / В. В. Бабук [и др.]; под ред. В. В. Бабука. Минск : Вышэйшая школа, 1987. 235 с.
- 2. Анурьев, В. И. Справочник конструктора-машиностроителя: в 3 т. / В. И. Анурьев. М.: Машиностроение, 1980. Т. 1. 28 с.
- 3. Анурьев, В. И. Справочник конструктора-машиностроителя : в 3 т. / В. И. Анурьев. М. : Машиностроение, 1980. Т. 2. 559 с.
- 4. Беляев, Γ . Я. Технология машиностроения : учебно-методическое пособие / Γ . Я. Беляев, М. М. Кане, А. И. Медведев. Минск : БНТУ, 2006. 88 с.

Практическая работа № 5

АНАЛИЗ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА МЕХАНИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ МАШИН

Цель работы — приобретение практических навыков анализа рабочих и технологических процессов механической обработки деталей машин и разработки рекомендаций по их совершенствованию.

Работа рассчитана на четыре академических часа.

Основные положения

Для оценки соответствия рабочего технологического процесса механической обработки детали уровню научно-технического прогресса в машиностроении необходимо подвергнуть данный процесс подробному разбору, результаты которого будут предпосылкой для разработки рекомендаций по его совершенствованию.

Анализ производится с точки зрения обеспечения заданного качества изделия и производительности обработки. Он базируется на оценке количественных и качественных показателей как отдельных технологических операций, так и процесса в целом. Оценка качественных показателей производится путем логических рассуждений. Значения количественных показателей определяются в результате технико-экономических расчетов (например, производительность, себестоимость) или по данным технологической документации (точ- ность, шероховатость поверхностей). Содержание и степень углуб- ленности анализа зависят от конструкции изделия и служебного назначения детали [1].

В общем случае при анализе технологического процесса рассматриваются следующие вопросы:

- обоснованность принятой последовательности обработки детали;
- метод получения заготовки;
- станочное оборудование и рациональность его использования;
- автоматизация технологических операций и процесса в целом;
- базирование заготовок при обработке и определение погрешностей базирования;
- оснащение технологического процесса (установочно-зажимные приспособления, режущие и вспомогательные инструменты, средства технологического контроля).

В результате анализа должны быть сформулированы конкретные мероприятия по устранению имеющихся недостатков при разработке нового варианта технологического процесса.

Методические указания

В связи с тем что сведения об элементах технологического процесса рассредоточены по отдельным маршрутным и операционным картам, для удобства рассмотрения их необходимо свести в соответствующие таблицы по объектам анализа.

При рассмотрении технологического процесса, заполнении таблиц и оценке их содержания применительно к данному типу и условиям производства можно руководствоваться следующим.

Общая последовательность обработки оценивается на основании изучения технологического процесса по маршрутным и операционным картам. При этом заполняется табл. 5.1. Сведения, содержащие- ся в табл. 5.1, позволяют проследить динамику изменения размеров и других показателей качества заготовки по мере ее прохождения по операциям технологического процесса. При большом количестве выдерживаемых параметров в таблицу следует заносить лишь ос- новные из них, в первую очередь те, от которых зависит нормальная работа детали в механизме. Целесообразно вычертить отдельный эскиз детали с указанием только этих параметров.

Таблица 5.1 Основные пооперационные и окончательные размеры детали

Наименование операции	(Номинальные размеры и предельные отклонения детали на соответствующих переходах (операциях), мм								
опорадии	D_1	D_2	D_3		L_1	L_2	L_3			
Заготовка, токарная операция и т. д.										
Окончательные размеры и отклонения								·		

Оценку метода получения заготовки рекомендуется выполнять по методике, изложенной в учебном пособии [2]. Результаты оценки следует занести в табл. 5.2. Особое внимание нужно обратить на экономное использование материала заготовки. Метод получения заготовки должен обеспечивать построение безотходного или малоотходного технологического процесса при его минимальной себестоимости.

 Таблица 5.2

 Оценка метода получения заготовки

					Объем
Метод получения	Q_{3ar} ,	$q_{\scriptscriptstyle exttt{ iny det}},$	IV.	Стоимость 1 кг	дополнительной
заготовки	ΚΓ	ΚΓ	К _{и.м}	заготовки, руб.	механической
					обработки, %
1. По технологиче-					
скому процессу					
2. Предлагаемый					
метод					

При анализе сведений о станочном оборудовании прежде всего необходимо оценить технологические возможности этих станков по обработке деталей заданной формы и размеров и обеспечение требуемой точности и шероховатости обрабатываемых поверхностей (табл. 5.3). Эти сведения берутся из технических характеристик станков и справочных таблиц экономической точности и шероховатости обработки на металлорежущих станках и затем сопоставляются с соответствующими параметрами объекта производства. Если на рассматриваемых операциях используются станки слишком больших размеров и мощности по сравнению с требуемыми, то их следует заменить на меньшие. Соответствующие выводы должны быть сделаны при сопоставлении требуемой точности и шероховатости обрабатываемых поверхностей с технологическими возможностями используемых станков.

T			~
Технологические	характеристики	применяемого	ооорулования
1 0.111.011.0111.1001.111	p	TIP TITLE TO TO TO	o o o p j A o B o i i i i i

Но-	Модель	шие разм	іеры обр	рабаты-	Экономиче- ская точ- ность	Экономическая шероховатость обработанной
опе- раций	станка	Диаметр (ширина)	Длина	Высота	обработки (квалитет)	поверхности <i>Ra</i> , мкм
		·	·			

Далее оцениваются возраст, стоимость и сложность применяемого оборудования (табл. 5.4). При этом нужно установить, не устарел ли тот или иной станок физически или морально и продолжается ли его выпуск промышленностью. Если станок снят с производства, то следует дать предложение по его замене на станок более совершенный. При физическом износе оборудования его нужно заменить новым той же модели. О степени сложности оборудования можно судить по категориям его ремонтной сложности, значения которых приводятся в технических характеристиках.

Таблина 5.4

Характеристики возраста, стоимости, сложности и производительности оборудования

Модель станка	Год выпуска	Цена станка, руб.	Категория ремонтной сложности	К-во станков на операции	Т _ш , Т _{ш.к} , мин	Коэффициент загрузки

Производительность обработки и загрузка оборудования оцениваются по трудоемкости, количеству станков, занятых на каждой операции, и коэффициенту их загрузки (см. табл. 5.4). Штучное время, необходимое для выполнения операции на данном станке, берется из технологической карты, а при ее отсутствии определяется по укрупненным нормативам. Наличие нескольких станков на олной

операции свидетельствует об их недостаточной производительности. В этом случае необходимо рассмотреть вопрос о мерах по увеличению производительности обработки. Коэффициент загрузки станка определяется делением штучного времени на такт выпуска детали с учетом количества занятых на операции станков. При его существенном отличии от нормативного, установленного для данного типа производства, нужно предложить мероприятия по улучшению загрузки станка или замене его на другой.

О степени концентрации или дифференциации обработки можно судить по количеству рабочих позиций на станке, количеству деталей, обрабатываемых в каждой позиции параллельно, последовательно или параллельно-последовательно, количеству режущих инструмен- тов, установленных на станке, применению комбинированных, про- фильных и других сложных режущих инструментов, количеству многошпиндельных головок, производящих обработку детали од- новременно с нескольких сторон.

При анализе этих данных (табл. 5.5) следует рассмотреть возмож- ность повышения степени концентрации обработки или, наоборот, расчленения ее по позициям и станкам с целью увеличения производи- тельности, а также увеличения точности обработки. Сведения, необхо- димые для заполнения табл. 5.5, берутся из технологических карт.

Таблица 5.5 Характеристика концентрации обработки

Мо- дель станка	К-во позиций, раб./загр.	К-во	К-во инстру-	К-во	Схема обработки		
		деталей на одной позиции	мен- тальных головок на станке	инстру- ментов на станке	после- дова- тельная	парал- лель- ная	парал- лельно- после- дова-
							тельная

Автоматизация технологических операций и процесса осуществля- ется с целью повышения производительности труда, сокращения числа рабочих, снижения себестоимости и повышения качества изделий.

Категории автоматизации технологических процессов характеризуют его по степени замены ручного труда машинным. Категория автоматизации определяется по значению основного показателя уровня автоматизации [3]

$$d = \frac{T_{\rm M}}{T_{\rm HIT}},$$

где $T_{\rm M}$ и $T_{\rm int}$ — машинное и штучное время на операцию соответственно. При этом по данным технологического процесса заполняется табл. 5.6.

Таблица 5.6 Категория автоматизации [3]

Кате	гория	Показатель		
Номер	Наименование	Свыше	До	
0	Нулевая	0,0		
1	Низшая	Низшая 0,01 0		
2	Малая	0,25	0,45	
3	Средняя	0,45	0,6	
4	Большая	0,6	0,75	
5	Повышенная	пенная 0,75		
6	Высокая	0,9	0,99	
7	Полная	0,99	1,00	

В табл. 5.7 дается характеристика управления станком (вручную, автоматически, по программе ЧПУ, от ЭВМ и др.), способы загрузки заготовок на станок и снятия их со станка после обработки или с транспортного устройства (вручную, электротельфером, краном, автоматически из бункера или накопителя, при помощи автоматической руки, работающей по жесткой программе, при помощи робота-манипулятора, работающего по программе или управляемого от ЭВМ). Загрузка заготовок может осуществляться периодически или непрерывно.

Характеристика механизации и автоматизации технологического процесса

Номер операции	Модель станка	Управление рабочим циклом	Способ загрузки заготовок	Вид межопера- ционного транспорта	d	Категория автомати- зации

В качестве межоперационного транспорта могут использоваться склизы, скаты, рольганги, напольные или подвесные конвейеры, в грузов. числе c автоматическим адресованием категории определения автоматизации ПО операциям рассчитывается средняя категория автоматизации технологического процесса в целом.

Для анализа схем базирования заготовок при обработке и возникающих при этом погрешностей базирования составляется табл. 5.8, для чего необходимо выявить поверхности, являющиеся технологическими базами, установить их виды по лишаемым степеням свободы в соответствии с ГОСТ 21495–76. Следует рассмотреть, соблюдаются ли основные принципы базирования — постоянство и совмещение баз. Если технологическая установочная база не совмещена с измерительной, то необходимо определить погрешность базирования и сравнить ее с допуском на выдержанный размер.

Таблица 5.8 Базирование заготовок при обработке

Погрешность базирования не должна превышать допустимых зна- чений, т. е. своей доли в суммарной погрешности обработки. Если последнее условие не выполняется, то необходимо изменить схему установки детали или путем решения размерной цепи установить приемлемые допуски на звенья технологической размерной цепи.

Для оценки технологического оснащения процесса составляют табл. 5.9–5.12.

Таблица 5.9 Установочно-зажимные приспособления

Номер операций	Название приспо- соблений	Вид приспо- собления	Вид привода приспо- собления	К-во приспо- соблений на станке	Время на установку и закрепление заготовки, мин

Таблица 5.10

Режущие инструменты

Номер	Назва- ние	Вид инструмента (стандарт-	Материал				ЖИ		Метод наст- ройки
опе-	инстру- мента	ный) спе- циальный	части	мин	СОЖ	V	S	t	на размер
		,							

Таблица 5.11

Вспомогательные инструменты

Номер	Иорромио	Вид		щего инструмента огательный	
опе- рации	Название инструмента	инструмента (стандартный) специальный	Способ крепления режущего инструмента	Время на смену одного режущего инструмента, мин	

Номер опе- рации	Название инструмента, прибора	Вид инструмента (универсаль- ный) специ- альный	Точность измере- ния, мм	Допуск на измеряе- мый размер, мм	Время на одно измерение, мин

Средства технического контроля

При заполнении таблиц нужно руководствоваться следующим.

Все приспособления разделяются на неразборные специальные (НСП), универсально-наладочные (УНП), универсально-сборные (УСП), сборно-разборные (СРП), универсально-безналадочные (УБП) и специализированные наладочные (СНП).

Целесообразность применения того или иного приспособления при обработке данной детали может быть установлена по его загруз- ке и продолжительности периода производства изделия. Следует также оценить, оправдано ли применение данного вида привода (руч- ного, пневматического, гидравлического и др.) в рассматриваемых приспособлениях. Затраты времени на установку и снятие детали, ее закрепление и открепление позволяют судить о совершенстве приспособлений и их соответствии данному типу производства. За- траты времени определяются по нормативам [1].

При анализе режущих инструментов, применяемых в технологическом процессе, рассматривается вид инструмента по степени его специализации (стандартный, унифицированный, специальный), материал режущей части и другие данные по табл. 5.10.

Стойкость инструмента оценивается:

при одноинструментной обработке — по таблицам экономической стойкости инструментов;

при многоинструментной обработке - по формуле

$$T_{\scriptscriptstyle \rm M} = {\rm K} \sum T_i \ ,$$

где $T_{\scriptscriptstyle \rm M}$ — стойкость лимитирующего инструмента машинного времени, мин;

K- коэффициент, зависящий от количества инструментов на станке, табл. 5.13;

 T_i – экономическая стойкость отдельного инструмента, мин.

Таблица 5.13

Значения коэффициента К

Количество инструментов, <i>n</i>	2	3	4	5	6	7	Более 7
К	0,7	0,64	0,55	0,52	0,48	0,44	3,1/n

Значения параметров режима резания берутся из операционных карт. Следует также предложить метод настройки инструмента на размер (партионный, по эталону, вне станка и др.).

Данные табл. 5.10 нужно сравнить с новейшими достижениями научно-технического прогресса в этой области и предложить целесообразные изменения.

При анализе вспомогательной оснастки (см. табл. 5.11) время на установку в ней режущих инструментов или смену инструмента можно определить по нормативам [1]. Вспомогательный инструмент должен обеспечить быструю и точную установку в нем режущего инструмента.

При анализе средств технического контроля — измерительных инструментов и приспособлений по табл. 5.12 — следует иметь в виду, что инструменты, у которых отсчет результатов измерений производится по нониусу, шкале и др., неприемлемы для массового и крупносерийного производства, так как требуют специального оснащения и относительно больших затрат времени.

Погрешность измерения определяется по таблицам ГОСТ 8.051–81 или методическим указаниям по внедрению этого стандарта.

Следует сопоставить погрешность измерения с допуском на выполняемый размер. Погрешность измерения не должна превышать 20–35 % значений допусков на размер. Время на одно измерение, характеризующее производительность контроля, принимается по нормативам [1].

Шероховатость поверхностей деталей на участке проверяется в основном по образцам ГОСТ 9378–93, которые имеют стандарти-

зированные значения, Ra 100; 50; 25; 12,5; 6,3; 3,2 и т. д. Эти значения Ra нужно проставлять на технологических эскизах.

Порядок выполнения работы

- 1. Получить комплект технологических документов для анализа (рабочий вариант техпроцесса).
- 2. Установить перечень подлежащих анализу характеристик технологического процесса.
- 3. Вычертить таблицы для записи характеристик технологического процесса.
 - 4. По данным технологического процесса заполнить таблицы.
- 5. Провести анализ отдельных элементов технологического процесса.
 - 6. Дать предложение по совершенствованию процессов.
 - 7. Составить отчет.

Содержание отчета

- 1. Название работы.
- 2. Содержание задания.
- 3. Эскиз детали с основными размерами и пронумерованными поверхностями.
 - 4. Таблицы, характеризующие процесс.
- 5. Предложение по совершенствованию технологического процес- са (по каждой таблице).

Контрольные вопросы

- 1. Как определяется коэффициент использования материала?
- 2. Объяснить сущность понятия «объем дополнительной механической обработки заготовки».
- 3. Что понимается под экономической точностью обработки и эко- номической шероховатостью?
- 4. Как определяется коэффициент загрузки станка и количество станков на выполняемой операции?
- 5. Чем отличаются последовательная, параллельная и параллельно-последовательная схемы обработки?

- 6. Как определяется основной показатель автоматизации операции?
- 7. Дать характеристику технологическим базам: установочной, направляющей и опорной.
 - 8. Как в данном случае определяется погрешность базирования?
 - 9. Какие классификационные виды приспособлений вы знаете?
 - 10. Каким образом выбирается вид приспособления?
- 11. Какие виды приводов для приспособлений вы знаете и какие значения давлений в МПа характерны для цилиндров гидравлических и пневматических приспособлений?
- 12. Назовите марки современных материалов для режущих инструментов и методы их упрочнения.
 - 13. Как выбирается тип СОЖ для различных видов обработки?
 - 14. Какие вы знаете методы настройки инструментов на размер?
- 15. Перечислить способы крепления инструментов на станке с использованием вспомогательных инструментов.
 - 16. В каких условиях применяются предельные калибры?

Литература

- 1. Горбацевич, А. Ф. Курсовое проектирование по технологии машиностроения / А. Ф. Горбацевич, В. А. Шкред. Минск : Вышэйшая школа, 1983.-256 с.
- 2. Технология машиностроения / М. Е. Егоров [и др.]. М. : Высшая школа, 1976. 536 с.
- 3. Проектирование техпроцессов механической обработки в машиностроении / под ред. В. В. Бабука. Минск : Вышэйшая школа, 1987. 256 с.

Практическая работа № 6

ПРОЕКТИРОВАНИЕ МАРШРУТНОГО ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

Цель работы — ознакомление с принципами проектирования маршрутных технологических процессов и практическое освоение правил оформления маршрутных карт, используемых при разработке технологических процессов механической обработки изделий.

Работа рассчитана на два академических часа.

Основные положения

Проектирование маршрута обработки изделия является сложной и ответственной задачей с большим количеством вариантов решений. При установлении общей последовательности обработки учитывается то, что в первую очередь обрабатываются поверхности, принятые за технологические базы и по которым во время дальнейшей обработки базируется деталь. Затем всю остальную обработку детали можно условно разделить на три стадии: черновую, чистовую и отделочную. В процессе черновой обработки удаляется основная часть припуска, при этом происходит нагрев детали, погрешности, различные происходит возникают пряжений. Чередование перераспределение внутренних начерновой и чистовой обработки в таких ус- ловиях не обеспечит заданной точности изделия.

Вынесение чистовых и отделочных операций в конец маршрута обработки уменьшает риск случайного повреждения обработанных поверхностей в процессе обработки и транспортировки. Осуществление предварительной обработки поверхностей позволяет уже на ранних стадиях обработки выявить возможные дефекты поверхностей детали из-за дефектов заготовки [1, 2].

После определения общего плана обработки следует наметить со- держание операций и выбрать тип оборудования. проектировании содержания операций необходимо стремиться к уменьшению их тру- доемкости и максимально возможной концентрации выполняемых переходов на одном рабочем месте. оборудования определяют условия Выбор производства, технологические возможности станков. точность. производительность, возможность обработки данного вида де- тали и др. В зависимости от типа производства используются и различные модели станков. Для массового производства следует исполь- зовать автоматы, полуавтоматы, автоматические линии, агрегатные станки, а для серийного производства предпочтительны станки с ЧПУ, переналаживаемые линии и т. д. Разрабатывая технологический про- цесс в условиях конкретного производства, следует в наибольшей сте- пени использовать имеющееся в цехе или на участке оборудование.

Окончательный выбор маршрута технологического процесса осу- ществляется на стадии сравнения вариантов обработки по технико- экономическим показателям. Для окончательной разработки при- нимается тот технологический процесс, который при обязательном условии обеспечения требуемого качества изделия обеспечивает на- именьшую себестоимость его обработки. В маршрутном технологи- ческом процессе в случае необходимости также следует предусмат- ривать контрольные, моечные, слесарные и другие операции [3].

Итоги работы по рассмотренным этапам проектирования заносят в технологическую маршрутную карту.

Маршрутная карта (МК) является составной и неотъемлемой частью комплекта технологической документации, разрабатываемой на технологические процессы изготовления или ремонта изделий и их составных частей. Формы МК устанавливаются ГОСТ 3.1118—82, являются унифицированными и их следует применять независимо от типа и характера производства, а также степени детализации опи- сания технологических процессов.

При маршрутном и маршрутно-операционном описании технологического процесса маршрутная карта является одним из основных документов, на котором описывается весь технологический про- цесс в заданной последовательности выполнения операций. При опе- рационном описании технологического процесса маршрутная карта выполняет роль сводного документа, в котором указывается адрес информации (номер цеха, участка, рабочего места), наименование операции, перечень документов при выполнении операций, техно- логическое оборудование и трудозатраты.

Методические указания

В соответствии с ГОСТ 3.1118-82 при заполнении маршрутной карты информацию о технологическом процессе в нее заносят построчно, причем каждой строке присваивается определенный слу-

жебный символ, зависящий от содержания информации. Служебные символы условно выражают состав информации в строке и предна- значены для ее обработки средствами автоматизации. В качестве обозначения служебных символов приняты буквы русского алфави- та, проставляемые перед номером соответствующих строк [4].

Для форм маршрутной карты с горизонтальным полем подшивки в зависимости от информации, содержащейся в строке, используются следующие символы:

 ${\bf A}-{\bf B}$ строке указываются номер цеха, участка, рабочего места, где выполняется операция, номер операции, обозначение документов, применяемых при выполнении операции, номер инструкции по охране труда;

 ${f B}-{f B}$ строке указываются код, наименование оборудования и информация по трудозатратам;

 ${f M}-{f B}$ строке указываются информация о применяемом основном материале и исходной заготовке, информация о применяемых вспомогательных и комплектующих материалах с указанием наименования и кода материала, обозначение подразделения, откуда поступают материалы, коды, единицы величины, единицы нормирования, количество на изделие и нормы расхода;

О – содержание операции;

T – информация о технологической оснастке, применяемой при выполнении операции.

Для форм маршрутной карты с вертикальным полем подшивки следует использовать дополнительные служебные символы в соответствии с ГОСТ 3.1118–82.

При заполнении информации на строках, имеющих служебный символ О, следует руководствоваться требованиям и соответствующих стандартов, устанавливающих правила записи операций и Запись информации выполнять ходов. следует технологической последовательности по всей длине строки возможностью, при не- обходимости, переноса информации на строки. операционного последующие Для случая технологического процесса на мар- шрутной карте номер перехода следует проставлять в начале строки.

При заполнении информации на строках, имеющих служебный символ **T**, используются классификаторы, отраслевые и государственные стандарты на кодирование, обозначение и наименование применяемой на операции технологической оснастки. Информацию

о технологической оснастке записывают в следующей последовательности: приспособления, вспомогательный, режущий, слесарномонтажный инструмент и специальный инструмент для выполнения специфических технологических процессов, средства измерения. Запись следует выполнять по всей длине строки с возможностью, при необходимости, переноса информации на последующие строки. Разделение информации по каждому средству технологической оснастки следует выполнять через знак «; ». Количество одновременно применяемых единиц оснастки следует указывать после кода технологической оснастки, заключая в скобки [4].

Для единичных технологических процессов, выполняемых с применением методов механической обработки, в зависимости от вида описания технологических процессов для маршрутной карты формы 1 используется следующая очередность заполнения строк по слу- жебным символам:

- при маршрутном описании М01, М02, А, Б, О, Т;
- при операционном описании M01, M02, A, Б.

Графы маршрутной карты формы рис. 6.1 следует заполнять в со- ответствии с табл. 6.1.

Для проектирования технологического процесса исходными данными являются рабочий чертеж детали, технические условия на ее изготовление и годовая программа выпуска деталей. После анализа технологичности детали, выбора типа производства и метода получения заготовки следует приступать непосредственно к разработке технологического процесса. Разработка маршрута технологического процесса начинается с выбора технологических баз. При выборе баз необходимо четко представлять общую последовательность обработки детали, а также стремиться к более полному выдерживанию принципа совмещения баз.

Выдерживание принципа постоянства баз способствует повышению точности взаимного положения поверхностей деталей. Соблюдение принципа постоянства баз повышает однотипность приспособлений и схем установки, что особенно важно при автоматизации процессов обработки. При вынужденной смене баз надо переходить от менее точной к более точной базе. При выборе технологических баз также следует учитывать некоторые дополнительные соображения: удобство установки и снятия заготовки, надежность и удобство

ее закрепления, возможность подвода режущих инструментов с разных сторон заготовки.

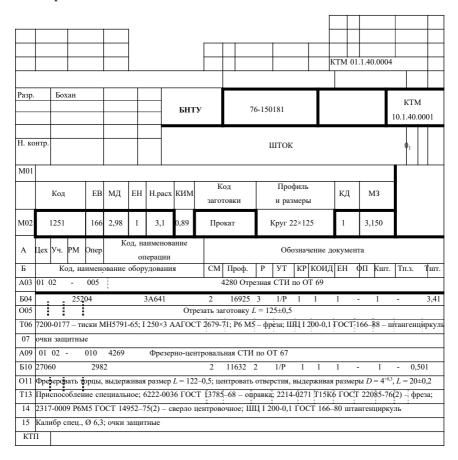


Рис. 6.1. Маршрутная карта механической обработки

После окончательного выбора технологических баз переходят к установлению маршрутов обработки отдельных поверхностей, к ко- торым предъявляются повышенные требования по точности и шеро- ховатости. Такой маршрут обработки устанавливают, исходя из требо- ваний рабочего чертежа и вида принятой заготовки. По заданным точ-

ности и шероховатости данной поверхности и с учетом размеров, мас- сы и формы заготовки выбирают метод окончательной обработки. Ба- зируясь на завершающем и начальном методах обработки, устанавли- вают промежуточные методы обработки. При построении маршрута исходят из того, что каждый последующий метод обработки должен быть точнее предыдущего. Закончив анализ маршрутов обработки от- дельных поверхностей, определяют маршрут обработки всей детали с учетом приведенных выше соображений. Разработанный технологи- ческий процесс записывают в маршрутную карту.

Пример оформления маршрутной карты на единичный технологический процесс обработки резанием маршрутного описания приведен на рис. 6.1.

Таблица 6.1 Содержание информации в графах маршрутной карты формы 1

Наименование графы	Служебный символ строки	Содержание информации
1	2	3
	M01	Наименование, сортамент, размер и марка материала, обозначение стандарта, технических
		условий. Запись выполняется на уровне одной
		строки с применением разделительного знака
		дроби «/». Например:
		Круг В22 ГОСТ 2590–71/45
		Сталь 45 ГОСТ 1050-71
Код	M02	Код материала по классификатору
EB	M02, M	Код единицы величины детали, заготовки, материала по классификатору СОЕИ
МД	M02	Масса детали по конструкторскому документу
EH	М02, Б	Единица нормирования, по которой установ-
		лена норма расхода материала или нормы времени, например, 1, 10, 100
H. pacx.	M02, M	Норма расхода материала
КИМ	M02	Коэффициент использования материала
Код заготовки	M02, M03	Код заготовки по классификатору. Допуска-
		ется указывать вид заготовки – отливка и т.
		д.

Продолжение табл. 6.1

1	2	3
Профиль	M02, M03	Профиль и размеры исходной заготовки. До-
и размеры КД		пускается профиль не указывать.
	M02, M03	Количество деталей, изготавливаемых из од-
		ной заготовки
M3	M02, M03	Масса заготовки
Цех	A	Номер цеха, в котором выполняется операция
Уч	A	Номер участка
PM	A	Номер рабочего места
Опер.	A	Номер операции в технологической последовательности
Код, наимено-	A	Обозначение документа на операцию, инст-
вание опера-		рукций по охране труда, применяемых на дан-
ции.		ной операции. Состав документов следует
Обозначение		указывать через разделительный знак «;».
документа		При необходимости возможен перенос ин-
		формации на последующие строки
Код, наимено-	Б	Код оборудования по классификатору, краткое
вание обору-		наименование оборудования, его инвентарный
дования		номер. Информацию следует указывать через
		разделительный знак «;». Допускается вместо
		краткого наименования оборудования указы-
		вать его модель и не указывать инвентарный
		номер
CM	Б	Степень механизации (по ОКРБ 006–96)
Профессия	Б	Код профессии по классификатору ОКРБ 006–96
P	Б	Разряд работы, необходимый для выполнения операций ОКРБ 006-96
УТ	Б	Код условий труда по классификатору
		ОКПДТР и код вида нормы
КР	Б	Количество исполнителей, занятых при вы-
		полнении операций
КОИД	Б	Количество одновременно обрабатываемых
		деталей при выполнении одной операции
ОП	Б	Объем производственных партий, шт.
К	Б	Коэффициент штучного времени при много-
		станочном обслуживании

1	2	3
$T_{\text{II-3}}$	Б	Норма подготовительно-заключительного
		времени на операцию
T_{iiit}	Б	Норма штучного времени на операцию
Наименование	M	Наименование деталей, сборочных единиц
детали, сбо-		по конструкторскому документу или мате-
рочной еди-		риалов по классификатору
ницы или		
материала		
ОПП		Обозначение подразделения, откуда поступа-
		ют комплектующие детали (для МК сборки)
КИ	M	Количество деталей, применяемых при сбор-
		ке (для МК сборки)

Порядок выполнения работы

- 1. Получить задание у преподавателя.
- 2. Изучить конструкцию детали, определить технологические базы, наметить маршрут обработки детали.
- 3. Выполнить чертеж детали, получить у преподавателя или вычертить бланк маршрутной карты по форме 1.
- 4. Заполнить маршрутную карту в соответствии с разработанным технологическим процессом, приняв маршрутный способ описания [4].
 - 5. Составить отчет.

Содержание отчета

- 1. Название и цель работы.
- 2. Задание и чертеж детали для разработки маршрутного технологического процесса.
- 3. Перечень операций маршрутного технологического процесса с указанием схем базирования.
 - 4. Маршрутная карта разработанного технологического процесса.

Контрольные вопросы

- 1. Какие поверхности заготовки обрабатываются в первую очередь?
- 2. Можно ли использовать необработанные поверхности в качестве технологических баз в середине и конце обработки?
 - 3. Какие условные стадии техпроцесса обработки можно выделить?
 - 4. Что определяет выбор оборудования?
- 5. Что является критерием окончательного выбора типа оборудования?
- 6. Что записывается в маршрутную карту при маршрутно-операционном описании техпроцесса?
 - 7. Что отражают служебные символы в МК?
 - 8. Как записывается информация в МК?
- 9. В какой строке указываются требования по технике безопасности или охране труда?

Литература

- 1. Технология машиностроения : учебник : в 2 т. / под ред. А. М. Дальского. М. : Изд-во МГТУ им. Баумана, 1999. Т. 1. 559 с.
- 2. Технологии машиностроения : учебник : в 2 т. / под ред. Г. Н. Мельникова. М. : Изд-во МГТУ им. Баумана, 1999. Т. 2. 663 с.
- 3. Системы автоматизированного проектирования техпроцессов, приспособлений и режущих инстументов / под. ред. С. Н. Корчака. M. : Машиностроение, 1988. 345 с.
- 4. Оформление технологической документации в курсовых и дип- ломных проектах : методические указания / сост. В. И. Романенко. Минск : БНТУ, 2009.-80 с.

Содержание

Практическая работа № 1.
ОПРЕДЕЛЕНИЕ ТИПА ПРОИЗВОДСТВА
ПО ЕГО ХАРАКТЕРИСТИКЕ – КОЭФФИЦИЕНТУ
ЗАКРЕПЛЕНИЯ ОПЕРАЦИЙ
3
~
Практическая работа № 2.
ОЦЕНКА НАДЕЖНОСТИ ТЕХНОЛОГИЧЕСКИХ СИСТЕМ
ПО ПАРАМЕТРАМ ТОЧНОСТИ
Практическая работа № 3.
РАСЧЕТ ПРОИЗВОДСТВЕННЫХ ПОГРЕШНОСТЕЙ
АНАЛИТИЧЕСКИМ МЕТОДОМ
28
Практическая работа № 4.
АНАЛИЗ ОБЪЕКТА ПРОИЗВОДСТВА46
Практическая работа № 5.
АНАЛИЗ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА
МЕХАНИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ МАШИН
55
Практическая работа № 6.
ПРОЕКТИРОВАНИЕ МАРШРУТНОГО
ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА67