МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕЛЕРАЛЬНОЕ ГОСУЛАРСТВЕННОЕ АРТОНОМНОЕ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению практических работ по дисциплине «Теория вероятностей и математическая статистика»

Электронное издание

Содержание

Введение	3
Практические занятия по теме Теория вероятностей	5
Компетентностно-ориентированные задания и задачи по разделу Те	еория
вероятностей	21
_Список литератур	25
Практические занятия по теме «Математич	еская
статистика»266	
Компетентностно-ориентированные задания и задачи по разделу	
Математическая статистика	35
Список литературы.	<u></u> 42
ПРИЛОЖЕНИЯ	<u></u> 43

Введение

РЕКОМЕНДАЦИИ ПО РАБОТЕ С МЕТОДИЧЕСКИМ УКАЗАНИЕМ

Цель преподавания дисциплины «Теория вероятностей и математическая статистика» в вузе — ознакомить студентов с основами математического аппарата, необходимого для решения теоретических и практических задач, привить студентам умение самостоятельно изучать учебную литературу по математике и ее специаьным приложениям, развить логическое мышление и повысить общий уровень математической культуры, выработать навыки математического исследования прикладных вопросов и умение перевести задачу на математический язык.

Предлагаемые методические указания содержат краткую теорию, задания и список литературы по курсу «Теория вероятностей и математическая статистика».

Целью освоения дисциплины «Теория вероятностей и математическая статистика» является формирование набора общепрофессиональных компетенций будущего бакалавра по направлению подготовки 09.03.02 «Информационные системы и технологии» путем освоения возможностей:

- применения методов теории вероятностей и математической статистики при изучении общенаучных, общеинженерных, технических и специальных дисциплин;
- использования методов теории вероятностей и математической статистики при решении задач, возникающих в практической деятельности инженера по специальности, т.е. умения переводить реальные задачи на математический язык, выбирать оптимальный метод ее решения и исследований с интерпретацией или оценкой полученного результата;
- умения решать задачи теории вероятностей и математической статистики с доведением решения до практически приемлемого результата с применением при необходимости, вычислительной техники.

Для освоения дисциплины поставлены следующие задачи:

- обучение студентов основным математическим методам теории вероятностей и математической статистики, необходимым для глубокого изучения общенаучных, общеинженерных, технических и специальных дисциплин;
- развитие логического и алгоритмического мышления, общего уровня математической культуры;
- выработка навыков математического исследования прикладных вопросов, необходимых для анализа и моделирования устройств, процессов и явлений при поиске оптимальных решений для осуществления научно-технического прогресса;
- обучение студентов методам обработки и анализа результатов численных и натуральных экспериментов;

- привитие студентам умения самостоятельного изучения учебной литературы по математике и ее приложениям.

Перед выполнением заданий студент должен изучить соответствующие разделы курса по учебным пособиям, рекомендуемым в данных указаниях. В них же даются также некоторые начальные теоретические сведения и приводятся решения типовых примеров.

В процессе самостоятельного изучения материала студент может решить предложенный в методическом указании набор заданий. Это позволит студенту судить о степени усвоения соответствующего раздела курса, укажет на имеющиеся у него пробелы, на желательное направление работы, поможет сформулировать вопросы для постановки их перед преподавателем.

Если студент испытывает затруднения в освоении теоретического или практического материала, то он может получить устную или письменную консультацию у преподавателя.

Практические занятия по теме «ТЕОРИЯ ВЕРОЯТНОСТЕЙ»

Цель занятий: освоить математическую символику и базовые знания темы Теория вероятностей, изучить методику применения методов теории вероятностей в общенаучных, технических и специальных дисциплинах, общеинженерных, использования методов теории вероятностей при решении задач, возникающих в деятельности инженера по специальности, практической овладеть способностью использовать закономерности теории вероятности, осуществлять поиск, основные критический анализ и синтез информации, применять системный подход для решения поставленных задач, применять математические модели, методы и средства для проектирования информационных и автоматизированных систем.

Тема.1 Теория вероятностей

Практическое занятие №1. Элементы комбинаторики.

Пусть имеется множество $X = \{x_1, x_2, ..., x_n\}$, состоящее из n различных элементов. (n, r) - выборкой называется множество, состоящее из r элементов, взятых из множества X.

 ${\it Упорядоченной}$ называется выборка, для которой важен порядок следования элементов. Если каждый элемент множества ${\it X}$ может извлекаться несколько раз, то выборка называется выборкой с повторениями.

Число P_k всех *перестановок* из k различных элементов равно

$$P_{k} = k!, \tag{3}$$

Число упорядоченных (n, r) - выборок (pазмещений) с повторениями $\hat{A}(n, r)$ и без повторений A(n, r) равно

$$\hat{A}_n^r = n^r \tag{4}$$

$$A_n^r = \frac{n!}{(n-r)!}. (5)$$

Число неупорядоченных $(n,\ r)$ - выборок $({\it covemanu}\check{u})$ с повторениями \hat{C}^r_n и без повторений C^r_n равно

$$\hat{C}_n^r = \frac{(n+r-1)!}{r!(n-1)!},\tag{6}$$

$$C_n^r = \frac{n!}{r!(n-r)!} \ . \tag{7}$$

Число различных разбиений множества из n элементов на k непересекающихся подмножеств, причем в 1-м подмножестве r_1 элементов, во 2-м r_2 элементов и т.д., а $n=r_1+r_2+...+r_k$ равно

$$P_n(r_1, r_2, ..., r_k) = \frac{n!}{r_1! r_2! ... r_k!}.$$
 (8)

Пример 1.1. В партии транзисторов n стандартных и m бракованных. При контроле оказалось, что первые k транзисторов стандартны. Найти вероятность p того, что следующий транзистор будет стандартным.

Pешение. Всего осталось для проверки n+m-k транзисторов, из которых стандартных n-k. По формуле классического определения вероятности

$$p = \frac{n-k}{n+m-k}.$$

Пример 1.2. Среди кандидатов в студенческий совет факультета три первокурсника, пять второкурсников и семь студентов третьего курса. Из этого состава наугад выбирают пять человек. Найти вероятность того, что все первокурсники попадут в совет.

Решение. Число способов выбрать пять человек из 3+5+7=15 равно числу сочетаний из 15 по 5 (неупорядоченная выборка без повторений):

$$C_{15}^5 = \frac{15!}{5! \cdot 10!} = 3003.$$

Выбрать трех первокурсников из трех можно одним способом. Оставшихся двух членов совета можно выбрать $C_{12}^{\,2}$ способами:

$$C_{12}^2 = \frac{12!}{2! \cdot 10!} = 66$$
.

Искомая вероятность p=66/3003=2/91.

Пример 1.3. Банковский сейф имеет кодовый замок, состоящий из шести дисков с восьмью буквами на каждом. Сейф открывается при наборе единственной комбинации букв. Злоумышленник пытается открыть сейф, причем на проверку одной кодовой комбинации у него уходит 10 секунд. Какова вероятность того, что злоумышленник успеет открыть сейф, если в его распоряжении 1 час?

Peшение. Обозначим искомую вероятность через P(A). По формуле (1) она будет равна m/n . Здесь n - общее число исходов, равное числу кодовых комбинаций замка. Оно определяется по формуле (3) и равно 8^6 . m - число благоприятствующих исходов, в данном случае равное числу комбинаций, которые успеет испробовать злоумышленник за 1 час, т.е. 360. Таким образом, искомая вероятность будет равна

$$P(A) = \frac{360}{8^6} \approx 1.4 \cdot 10^{-3}$$
.

Контрольные вопросы:

- 1. Что является предметом дисциплины Теория вероятностей и математическая статистика?
- 2. Какие приоритетные задачи поставлены перед дисциплиной?
- 3. Каково место дисциплины среди других наук?
- 4. Каковы основные этапы истории развития дисциплины как науки?
- 5. Основные понятия комбинаторики. Виды соединений.
- 6. Что называется, п-факториалом?
- 7. Перечислите основные задачи комбинаторики.
- 8. Что называется, перестановками?
- 9. Запишите формулу для числа перестановок из т элементов.
- 10. Что называется, размещениями?
- 11. Запишите формулу числа размещений из т элементов по п.
- 12. Что называется, сочетаниями?
- 13. Запишите формулу числа сочетаний из т элементов по п.
- 14. Охарактеризуйте место раздела комбинаторика в построении вероятностных моделей

Тема.1 Теория вероятностей

Практическое занятие №2. Вероятность.

Событием называется любой факт, который в результате опыта может произойти или не произойти.

Достоверным называется событие Ω , которое происходит в каждом опыте.

Невозможным называется событие \emptyset , которое в результате опыта произойти не может.

Несовместными называются события, которые в одном опыте не могут произойти одновременно.

 $\pmb{Cymmoй}$ (объединением) двух событий A и B (обозначается A+B, $A \cup B$) называется такое событие, которое заключается в том, что происходит хотя бы одно из событий, т.е. A или B, или оба одновременно.

Произведением (пересечением) двух событий A и B (обозначается $A \cdot B$, $A \cap B$) называется такое событие, которое заключается в том, что происходят оба события A и B вместе.

Противоположным к событию A называется такое событие \overline{A} , которое заключается в том, что событие A не происходит.

События A_k (k=1, 2, ..., n) образуют **полную группу**, если они попарно несовместны и в сумме образуют достоверное событие.

При преобразовании выражений можно пользоваться следующими тождествами:

$$A + \overline{A} = \Omega;$$
 $A \cdot \overline{A} = \emptyset;$ $A + \Omega = \Omega;$ $A \cdot \Omega = A;$ $A \cdot \emptyset = \emptyset;$

$$A + \emptyset = A;$$
 $\overline{A + B} = \overline{A} \cdot \overline{B};$ $\overline{A \cdot B} = \overline{A} + \overline{B};$ $A + \overline{A} \cdot B = A + B.$

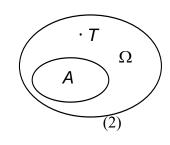
Классическое определение вероятности: вероятность события определяется по формуле

$$P(A) = \frac{m}{n} \quad , \tag{1}$$

где *n* - число всех элементарных равновозможных исходов данного опыта;

т - число равновозможных исходов, благоприятствующих событию А.

Геометрическое определение вероятности. Пусть в некоторую область случайным образом бросается точка T, причем все точки области Ω равноправны в отношении попадания точки T. Тогда за вероятность попадания точки T в область A принимается отношение



$$P(A) = \frac{S(A)}{S(\Omega)}$$
,

где S(A) и $S(\Omega)$ — геометрические меры (длина, площадь, объем и т.д.) областей A и Ω соответственно.

ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ

Если A и B - несовместные события, то

$$P(A \cup B) = P(A) + P(B). \tag{9}$$

Если имеется счетное множество несовместных событий A_1, \dots, A_n , то

$$P(A_1 + A_2 + \dots + A_n) = \sum_{i=1}^{n} P(A_i).$$
(10)

Вероятность суммы двух совместных событий равна сумме вероятностей каждого из событий минус вероятность их совместного появления:

$$P(A \cup B) = P(A) + P(B) - P(A \cdot B), \tag{11}$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cdot B) - P(B \cdot C) - P(A \cdot C) + P(A \cdot B \cdot C). \tag{12}$$

Событие A называется **независимым** от события B, если возможность наступления события A не зависит от того, произошло событие B или нет.

В противном случае события являются зависимыми. Условной вероятностью события B при наличии A называется величина

$$P(B/A) = P(A \cdot B)/P(A) \tag{13}$$

(при этом полагается, что P(A) не равно 0).

Для **независимых** событий P(B/A)=P(B).

Вероятность **произведения** (пересечения, совмещения) двух событий равна вероятности одного из них, умноженной на условную вероятность второго при наличии первого.

$$P(A \cdot B) = P(A) \cdot P(B/A) = P(B) \cdot P(A/B). \tag{14}$$

Для независимых событий

$$P(A \cdot B) = P(A) \cdot P(B). \tag{15}$$

Вероятности P(A) и $P(\overline{A})$ связаны соотношением

$$P(A) = I - P(\overline{A}). \tag{16}$$

Вероятность суммы п событий удобнее вычислять по формуле

$$P(A_1 + A_2 + \dots + A_n) = I - P(\overline{A}_1 \cdot \overline{A}_2 \cdot \mathbf{K} \cdot \overline{A}_n). \tag{17}$$

Вероятность произведения n событий A_i (i = 1,2,K, n) равна

$$P(A_1 \cdot A_2 \cdot \mathbf{K} \cdot A_n) = P(A_1) \cdot P(A_2 \mid A_1) \cdot P(A_3 \mid A_1 \cdot A_2) \cdot \mathbf{K} x$$

$$xP(A_n \mid A_1 \cdot A_2 \cdot \mathbf{K} \cdot A_{n-1}), \tag{18}$$

где $P(A_k \setminus A_l \cdot \mathbf{K} \cdot A_{k-l})$ - вероятность появления события A_k , при условии, что события A_l , A_2 , \mathbf{K} , A_{k-l} в данном опыте произошли. В случае независимых событий данная формула упрощается:

$$P(A_1 \cdot A_2 \cdot \mathbf{K} \cdot A_n) = P(A_1) \cdot P(A_2) \cdot \mathbf{K} \cdot P(A_n). \tag{19}$$

Пример 2.1. Сообщение передается одновременно по n каналам связи, причем для надежности по каждому каналу оно повторяется k раз. При одной передаче сообщение (независимо от других) искажается с вероятностью p. Каждый канал связи (независимо от других) «забивается» помехами с вероятностью q; «забитый» канал не может передавать сообщения. Найти вероятность того, что адресат получит сообщение без искажений.

Решение. Обозначим события:

 $A = \{$ хотя бы один раз сообщение передано без искажений $\}$;

 $B_i = \{$ по *i*-му каналу сообщение хотя бы один раз было передано без искажений $\}$.

Для выполнения события і-й канал, во-первых, не должен быть забит помехами и, вовторых, хотя бы одно сообщение по нему не должно быть искажено.

Вероятность того, что канал не «забит» помехами равна 1-q.

Вероятность того, что хотя бы одно сообщение передано без помех равна 1- p^k (p - вероятность того, что все сообщения переданы с искажениями).

Тогда
$$P(B) = (1 - q) \cdot (1 - p^k)$$
.

Вероятность события A, состоящего в том, что хотя бы на одном канале произойдет событие, равна

$$P(A) = P\left(\sum_{i=1}^{n} B_{i} \right) = 1 - P(\overline{A}) = 1 - P\left(\prod_{i=1}^{n} \overline{B}_{i} \right) = 1 - \prod_{i=1}^{n} (1 - P(B_{i})) = 1 - \prod_{i=1}^{n}$$

2.2. Какова вероятность угадать в спортлото "5 из 36" не менее трех номеров?

Решение. Событие A - угадать не менее трех номеров в спортлото, разбивается на сумму трех несовместных событий:

Аз - угадать ровно три номера;

А4 - угадать ровно четыре номера;

А5 - угадать ровно пять номеров.

При этом $P(A)=P(A_3)+P(A_4)+P(A_5)$, так как события несовместны.

Найдем вероятность $P(A_3)$. Для этого воспользуемся формулой (1). Здесь общее число комбинаций n по формуле (6) будет равно числу возможных заполнений карточек:

$$n = C_{36}^5 = \frac{36!}{5!(36-5)!} = 376992.$$

Число благоприятствующих комбинаций m в этом случае определяется следующим образом. Выбрать три номера из пяти выигравших можно $C_5^3 = 10$ способами. Однако каждый выбор трех правильных номеров сочетается с выбором двух неправильных номеров.

Число таких выборок равно $C_{31}^2 = 465$. Таким образом, число благоприятствующих событий равно произведению найденных чисел:

$$m = C_5^3 \cdot C_{31}^2 = 10 \cdot 465 = 4650$$
.

Тогда
$$P(A_3) = \frac{m}{n} = \frac{4650}{376992} \approx 0.123 \cdot 10^{-1}$$
.

Аналогично вычисляются $P(A_4) = 0.478 \cdot 10^{-3}$, $P(A_5) = 0.265 \cdot 10^{-5}$. Таким образом, искомая вероятность будет равна

$$P(A) = 0.123 \cdot 10^{-1} + 0.478 \cdot 10^{-3} + 0.265 \cdot 10^{-5} = 0.128 \cdot 10^{-1}$$

Контрольные вопросы:

- 1. Основные понятия теории вероятностей. События и их классификация.
- 2. Аксиоматическое определение вероятности.
- 3. Конечное вероятностное пространство.
- 4. Какие события называются достоверными? Приведите примеры.
- 5. Какие события называются невозможными? Приведите примеры.
- 6. Что называется, вероятностью события?
- 7. Какие события называются несовместными? Приведите примеры.

- 8. Чему равна сумма несовместных событий?
- 9. Какие события называются противоположными? Приведите примеры.
- 10. Классическое определения вероятности. Свойства вероятности.
- 11. Геометрическое определение вероятности.
- 12. Статистическое определение вероятности. Относительная частота события.
- 13. Как формулируется теорема сложения вероятностей?
- 14. Чему равна сумма вероятностей противоположных событий?
- 15. Как формулируется теорема умножения вероятностей?
- 16. Охарактеризуйте значение понятий теории вероятности в математическом моделировании при решении профессиональных задач

Тема.1 Теория вероятностей Практическое занятие № 3. Теоремы ТВ.

Допустим, что проводится некоторый опыт, об условиях которого можно сделать п исключающих друг друга предположений (zunome3): { $H_1, H_2, ..., H_n$ }, $H_i \cap H_i = \emptyset$ при $i \neq j$.

Событие A может появляться совместно с одной из гипотез H_i . Событие A можно представить как сумму n несовместных событий: $A = (A \cap H_1) \cup (A \cap H_2) \cup ... \cup (A \cap H_n).$

По правилу сложения вероятностей
$$P(A) = \sum_{i=1}^{n} P(H_i \mid A)$$
.

По правилу умножения вероятностей $P(H_i \cap A) = P(H_i) \cdot P(A/H_i)$. Тогда полная вероятность события A равна

$$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P(A/H_i).$$
 (20)

Следствием правила умножения и формулы полной вероятности является *формула Байеса*.

Вероятность наступления события A совместно с гипотезой H_k определяется с использованием теоремы умножения вероятностей:

$$P(A \cap H_k) = P(H_k) \cdot P(A/H_k) = P(A) \cdot P(H_k/A).$$

Таким образом, можно записать:

$$P(H_k/A)=P(H_k)\cdot P(A/H_k)/P(A)$$
.

С использованием формулы полной вероятности

$$P((H_k)/A) = \frac{P(H_k) \cdot P(A/H_k)}{\sum_{i=1}^{n} P(H_i) \cdot P(A/H_i)}.$$
(21)

Пример 3.1. В продажу поступили телевизоры трех заводов. Продукция первого завода содержит 10% телевизоров с дефектом, второго — 5% и третьего 3%. Какова вероятность купить неисправный телевизор, если в магазин поступило 25% телевизоров с первого завода, 55% — со второго и 20% — с третьего?

Решение. С рассматриваемым событием A={приобретенный телевизор оказался с дефектом } связано три гипотезы: H_1 ={телевизор выпущен первым заводом}, H_2 ={выпущен вторым заводом}, H_3 ={выпущен третьим заводом}. Вероятности этих событий определяются из условия задачи: $P(H_1)$ =0,25; $P(H_2)$ =0,55; $P(H_3)$ =0,2. Условные вероятности события A также определяются из условия задачи: $P(A/H_1)$ =0,1; $P(A/H_2)$ =0,05; $P(A/H_3)$ =0,03. Отсюда по формуле полной вероятности следует:

$$P(A) = 0.25 \cdot 0.1 + 0.55 \cdot 0.05 + 0.2 \cdot 0.03 = 0.0585.$$

Пример 3.2. На вход радиоприемного устройства с вероятностью 0,9 поступает смесь полезного сигнала с помехой, а с вероятностью 0,1 только помеха. Если поступает полезный сигнал с помехой, то приемник с вероятностью 0,8 регистрирует наличие сигнала, если поступает только помеха, то регистрируется наличие сигнала с вероятностью 0,3. Известно, что приемник показал наличие сигнала. Какова вероятность того, что сигнал действительно пришел?

Peшение. С рассматриваемым событием A={приемник зарегистрировал наличие сигнала} связано две гипотезы H_1 ={пришел сигнал и помеха}, H_2 ={пришла только помеха}. Вероятности этих гипотез $P(H_1)$ =0,9, $P(H_2)$ =0,1. Условные вероятности события A по отношению к гипотезам H_1 и H_2 находим из условия задачи: $P(A/H_1)$ =0,8, $P(A/H_2)$ =0,3.

Требуется определить условную вероятность гипотезы H_1 по отношению к событию A, для чего воспользуемся формулой Байеса:

$$P(H_1/A) = \frac{P(H_1) \cdot P(A/H_1)}{P(H_1) \cdot P(A/H_1) + P(H_2) \cdot P(A/H_2)} = \frac{0.9 \cdot 0.8}{0.9 \cdot 0.8 + 0.1 \cdot 0.3} = 0.96.$$

3.3. Для решения вопроса идти в кино или на лекцию студент подбрасывает монету. Если студент пойдет на лекцию, он разберется в теме с вероятностью 0,9, а если в кино - с вероятностью 0,3. Какова вероятность того, что студент разберется в теме?

Решение. Применим формулу полной вероятности (20). Пусть A - событие, состоящее в том, что студент разобрался в теме, событие (гипотеза) H_1 - студент идет в кино, H_2 - студент идет на лекцию. Известны из условия задачи следующие вероятности:

$$P(H_1)=P(H_2)=0.5$$
; $P(A/H_1)=0.3$; $P(A/H_2)=0.9$.

Искомая вероятность события А будет равна

$$P(A) = P(H_1) \cdot P(A/H_1) + P(H_2) \cdot P(A/H_2) = 0.5 \cdot 0.3 + 0.5 \cdot 0.9 = 0.6.$$

3.4. Пусть одна монета из 10000000 имеет герб с обеих сторон, остальные монеты обычные. Наугад выбранная монета бросается десять раз, причем во всех бросаниях она падает гербом кверху. Какова вероятность того, что была выбрана монета с двумя гербами?

Решение. Применим формулу Байеса (21). Пусть событие A - монета десять раз подряд падает гербом кверху. Гипотезы: H_1 - выбрана нормальная монета; H_2 - выбрана монета с двумя гербами. По условию задачи необходимо определить условную вероятность $P(H_2/A)$. Неизвестные в формуле (21) вероятности равны

 $P(A/H_1)=0.5^{10};$ $P(A/H_2)=1.$

Следовательно,

$$P(H_2/A) = \frac{P(H_2) \cdot P(A/H_2)}{P(H_1) \cdot P(A/H_1) + P(H_2) \cdot P(A/H_2)} = \frac{10^{-7} \cdot 1}{10^{-7} \cdot 1 + 0.9999999 \cdot 0.5^{10}} \approx 1,02 \cdot 10^{-4}.$$

Контрольные вопросы:

- 1. Условная вероятность. Независимость событий.
- 2. Формула полной вероятности. Формула Байеса.
- 3. Значение и применение теорем теории вероятности в обработке эмпирических и экспериментальных данных при решении профессиональных задач

Тема.1 Теория вероятностей

Практическое занятие №4-5. Повторные испытания. Распределение Пуассона.

Пусть производится n независимых опытов. В результате каждого опыта событие A появляется с вероятностью p и не появляется с вероятностью 1-p . Вероятность P(n,k) того, что в последовательности из n опытов интересующее нас событие A произойдет ровно k раз (формула Бернулли) равна

$$P(n,k) = C_n^k \cdot p^k \cdot (1-p)^{n-k} = \frac{n!}{k! \cdot (n-k)!} \cdot p^k \cdot (1-p)^{n-k}.$$
 (22)

Пусть производится серия из n независимых испытаний, в результате каждого из которых может появиться одно из событий $A_1, A_2, ..., A_r$ с вероятностями $p_1, p_2, ..., p_r$ соответственно.

Вероятность того, что в серии из n испытаний событие A_1 наступит ровно k_1 раз, событие $A_2 - k_2$ раз, ..., событие $A_r - k_r$ раз $(k_1 + ... + k_r = n)$ равна

$$P(n,k_1,K,k_r) = \frac{n!}{k_1!K k_r!} \cdot p_1^{k_1} \cdot p_2^{k_2} \cdot K \cdot p_r^{k_r}.$$
 (23)

Локальная теорема Лапласа

Вероятность того, что в n независимых испытаниях (n-достаточно большое число), в каждом из которых вероятность появления события равна p, событие наступит ровно k раз, приближенно равна

$$P_{n}(k) \approx \frac{\varphi(x)}{\sqrt{npq}},$$
 (24)

где

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), \qquad x = \frac{k - np}{\sqrt{npq}}, \quad q = 1 - p.$$

Интегральная теорема Лапласа

Вероятность того, что в n независимых испытаниях, в каждом из которых некоторое событие появляется с вероятностью p , событие наступит не менее k_1 и не более k_2 раз, приближенно равна

$$P_n(k_1 \le k \le k_2) = (\Phi(x_2) - \Phi(x_1)), \tag{25}$$

где

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int\limits_0^x \exp\biggl(-\frac{z^2}{2}\biggr) dz - \text{функция Лапласа,}$$

$$x_1 = \frac{(k_1 - np)}{\sqrt{npq}}, \quad x_2 = \frac{(k_2 - np)}{\sqrt{npq}}.$$

Пример 4.1. По каналу связи передается n=6 сообщений, каждое из которых независимо от других, с вероятностью p=0,2 оказывается искаженным. Найти вероятности следующих событий:

 $A = \{$ ровно два сообщения из 6 искажены $\}$,

 $B = \{$ не менее двух сообщений из 6 искажены $\}$,

 $C = \{$ все сообщения будут переданы без искажений $\}$,

 $D = \{$ все сообщения будут искажены $\}$.

Решение. По формуле Бернулли (1.21)

$$P(A) = C_6^2 \cdot p^2 \cdot (1-p)^4 = \frac{6!}{4! \cdot 2!} \cdot 0, 2^2 \cdot 0, 8^4 = 0,197,$$

$$P(B) = P(6,2) + P(6,3) + P(6,4) + P(6,5) + P(6,6) = 1 - P(6,0) - P(6,1) =$$

$$= 1 - C_6^0 \cdot p^0 \cdot (1-p)^6 - C_6^1 \cdot p^1 \cdot (1-p)^5 = 1 - 0, 8^6 - 6 \cdot 0, 2^1 \cdot 0, 8^5 = 0,345,$$

$$P(C) = (1-p)^6 = 0,262, \qquad P(D) = p^6 = 0, 2^6 = 0,000064.$$

Пример 4.2. Вероятность появления события A за время испытаний равна 0,8. Определить вероятность того, что в 100 испытаниях событие A появится: а) 80 раз; б) не менее 75 и не более 90 раз; в) не менее 75 раз.

Решение

1) Воспользуемся локальной теоремой Муавра-Лапласа:

$$P_{100}(80) = \frac{\varphi(x)}{\sqrt{100 \cdot 0, 8 \cdot 0, 2}}, \qquad x = \frac{80 - 100 \cdot 0, 8}{\sqrt{100 \cdot 0, 8 \cdot 0, 2}} = 0.$$

$$\varphi(0) = 0.3989$$
, тогда $P(100.80) = 0.0997$.

2) Согласно интегральной теореме Муавра-Лапласа

$$P_{100}(75 < k < 90) = \left(\Phi\left(\frac{90 - 80}{4}\right) - \Phi\left(\frac{75 - 80}{4}\right)\right) = \left(\Phi(2, 5) - \Phi(-1, 25)\right) = \left(\Phi(2, 5) + \Phi(1, 25)\right).$$

Значение функции Лапласа определяем по таблице Лапласа Ф(2,5)=0,4938;

$$\Phi(1,25) = 0.3944$$
. $P_{100}(75 < k < 90) = 0.8882$.

Контрольные вопросы:

- 1. Последовательность независимых испытаний. Формула Бернулли.
- 2. Локальная и интегральная теоремы Муавра-Лапласа.
- 3. Значение и применение моделей теории вероятности в применении системного подхода для решения профессиональных задач

Тема.1 Теория вероятностей

Практическое занятие №6. Случайные величины.

Под случайной величиной (СВ) понимается величина, которая в результате опыта со случайным исходом принимает то или иное значение, причем, заранее до опыта неизвестно какое именно. Обозначения случайной величины: X, Y; значения случайной величины: x, y.

Случайные величины могут быть *дискретными* или *непрерывными*, а область возможных исходов может быть представлена конечным множеством, счетным или бесконечным.

Закон распределения случайной величины — любое правило, устанавливающее соответствие между значениями случайной величины и вероятностями ее наступления.

Рядом распределения дискретной СВ X называется таблица, в верхней строке которой перечислены все возможные значения СВ $x_1, x_2, ..., x_n$ ($x_{i-1} < x_i$), а в нижней — вероятности их появления $p_1, p_2, ..., p_n$, где p_i = $P\{X=x_i\}$.

<i>x</i> ₁	<i>x</i> ₂	•••	x_n
<i>p</i> ₁	<i>p</i> 2	•••	p_n

Так как события $\{X=x_1\}$, ... , $\{X=x_n\}$... несовместны и образуют полную группу, то справедливо контрольное соотношение

$$p_1 + p_2 + \dots + p_n = 1. (26)$$

Функцией распределения случайной величины X называется вероятность того, что она примет значение меньшее, чем аргумент функции x: $F(x)=P\{X < x\}$.

Свойства функции распределения:

1.
$$F(-\infty) = 0$$
.

2.
$$F(+\infty) = 1$$
.

3.
$$F(x_1) \le F(x_2)$$
, при $x_1 < x_2$.
4. $P(a \le X < b) = F(b) - F(a)$. (27)

Функция распределения дискретной случайной величины

Исходной информацией для построения функции распределения дискретной случайной величины X является ряд распределения этой CB.

x_i	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	•••	x_n	$>x_n$
p_i	<i>p</i> ₁	<i>p</i> ₂	р3	•••	p_n	0
$F(x_i)$	0	<i>p</i> ₁	<i>p</i> ₁ + <i>p</i> ₂		p_1 ++ p_{n-1}	1

$$F(x_i) = P\{X < x_i\} = P\{(X = x_1) \cup (X = x_2) \cup ... \cup (X = x_{i-1})\} = p_1 + ... + p_{i-1}.$$

Функция распределения любой дискретной СВ есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям случайной величины, и равны вероятностям этих значений.

Непрерывная случайная величина (НСВ). Плотность вероятности

Вероятность попадания непрерывной случайной величины X на участок от x до $x+\Delta x$ равна приращению функции распределения на этом участке:

$$P\{x \le X \le x + \Delta x\} = F(x + \Delta x) - F(x)$$
.

Плотность вероятности на этом участке определяется отношением

$$f(x) = \lim_{\Delta x \to 0} \frac{P\{x \le X < x + \Delta x\}}{\Delta x} = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \frac{dF(x)}{dx}.$$
 (28)

Плотностью распределения (или плотностью вероятности) непрерывной случайной величины X в точке x называется производная ее функции распределения в этой точке и обозначается f(x). График плотности распределения называется кривой распределения.

Пусть имеется точка x и прилегающий к ней отрезок dx. Вероятность попадания случайной величины X на этот интервал равна f(x)dx. Эта величина называется элементом вероятности.

Вероятность попадания случайной величины X на произвольный участок [a, b[равна сумме элементарных вероятностей на этом участке:

$$P\{a \le X < b\} = \int_{a}^{b} f(x)dx.$$
 (29)

Это соотношение позволяет выразить функцию распределения F(x) случайной величины X через ее плотность:

$$F(x) = P\{X < x\} = P\{-\infty < X < x\} = \int_{-\infty}^{x} f(x) dx.$$
 (30)

В геометрической интерпретации F(x) равна площади, ограниченной сверху кривой плотности распределения f(x) и лежащей левее точки x.

Основные свойства плотности распределения:

1. Плотность распределения неотрицательна: $f(x) \ge 0$.

2. Условие **нормировки**:
$$\int_{-\infty}^{\infty} f(x)dx = 1.$$
 (31)

Пример 5.1. По одной и той же стартовой позиции противника производится пуск из пяти ракет, причем вероятность попадания в цель при каждом пуске одной ракеты равна 0,8. Построить ряд распределения числа попаданий.

Решение. Случайная величина X (число попаданий в цель) может принимать следующие значения: 0, 1, 2, 3, 4, 5. Найдем вероятность принятия величиной X этих значений, используя формулу Бернулли:

$$P\{X = 0\} = (1 - p)^5 = 0.2^5 = 0.00032,$$

$$P\{X = 1\} = C_5^1 \cdot p \cdot (1 - p)^4 = 5 \cdot 0.8 \cdot 0.2^4 = 0.0064,$$

$$P\{X = 2\} = C_5^2 \cdot p^2 \cdot (1 - p)^3 = 10 \cdot 0.8^2 \cdot 0.2^3 = 0.0512,$$

$$P\{X = 3\} = C_5^3 \cdot p^3 \cdot (1 - p)^2 = 10 \cdot 0.8^3 \cdot 0.2^2 = 0.2048,$$

$$P\{X = 4\} = C_5^4 \cdot p^4 \cdot (1 - p) = 5 \cdot 0.8^4 \cdot 0.2 = 0.4096,$$

$$P\{X = 5\} = p^5 = 0.8^5 = 0.32768.$$

Ряд распределения имеет вид:

x_i	0	1	2	3	4	5
p_i	0,00032	0,0064	0,0512	0,2048	0,4096	0,32768

Пример 5.2. Случайная величина X распределена по закону, определяемому плотностью вероятности вида

$$f(x) = \begin{cases} c \cdot \cos x, & -\pi/2 \le x \le \pi/2 \\ 0, & |x| > \pi/2. \end{cases}$$

Найти константу c, функцию распределения F(x) и вычислить $P\{|x| < \pi/4\}$.

Pешение. Константу c вычислим исходя из условия нормировки:

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\pi/2}^{\pi/2} c \cdot \cos x dx = c \cdot \sin x \Big|_{-\pi/2}^{\pi/2} = c + c = 2 \cdot c = 1 ,$$

откуда c = 0.5.

Так как плотность вероятности задана различными формулами на разных интервалах, то и функцию распределения будем искать для каждого интервала в отдельности.

Для
$$x < -\pi/2$$
 $F(x) = \int_{-\infty}^{x} f(y) dy = \int_{-\infty}^{x} 0 dy = 0$,
для $-\pi/2 \le x \le \pi/2$ $F(x) = \int_{-\infty}^{-\pi/2} 0 dy + \int_{-\pi/2}^{x} \frac{\cos y}{2} dy = \frac{\sin y}{2} \begin{vmatrix} x \\ -\pi/2 \end{vmatrix} = \frac{1 + \sin x}{2}$,
для $x > \pi/2$ $F(x) = \int_{-\infty}^{-\pi/2} 0 dy + \int_{-\pi/2}^{\pi/2} \frac{\cos y}{2} dy + \int_{\pi/2}^{x} 0 dy = 1$.

Окончательно имеем

$$F(x) = \begin{cases} 0, & x < -\pi/2 \\ (1+\sin x)/2, & |x| \le \pi/2 \\ 1, & x > \pi/2. \end{cases}$$

Вероятность
$$P\{|x| < \pi/4\} = F\left(\frac{\pi}{4}\right) - F\left(-\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{4} + \frac{1}{2}\right) - \left(-\frac{\sqrt{2}}{4} + \frac{1}{2}\right) = \frac{\sqrt{2}}{2}$$
.

ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

Одна из основных характеристик СВ - математическое ожидание:

$$m_{X} = M[X] = \begin{cases} \sum_{i} x_{i} \cdot P\{X = x_{i}\} \ \partial n \text{Я} \ \mathcal{A}CB \\ \int_{-\infty}^{\infty} x \cdot f(x) dx \ \partial n \text{Я} \ HCB. \end{cases}$$
(32)

Математическое ожидание характеризует среднее значение CB и обладает следующими свойствами:

- 1. M[c] = c.
- 2. $M[c \cdot X] = c \cdot M[X]$.
- 3. M[X+c] = M[X]+c.
- 4. $M[X_1+X_2] = M[X_1]+M[X_2]$.

 $\pmb{Modoŭ}$ случайной величины называется ее наиболее вероятное значение, т.е. то значение, для которого вероятность p_i (для дискретной CB) или f(x) (для непрерывных CB) достигают максимума. Обозначения: Mx, Mo.

Медианой случайной величины X называется такое ее значение, для которого выполняется условие $P\{X \le Me\} = P\{X \ge Me\}$. Медиана, как правило, существует только для непрерывных случайных величин.

Квантилью χ_p случайной величины X является такое ее значение, для которого выполняется условие $P\{X < \chi_p\} = F(\chi_p) = p$.

Начальный момент *s*-го порядка CB X есть математическое ожидание s-й степени этой случайной величины: $\alpha_s = M[X^s]$.

Центрированной случайной величиной называется отклонение СВ от математического ожидания:

$$\overset{\circ}{X} = X - m_X, \quad M[\overset{\circ}{X}] = M[X - m_X] = 0.$$

Моменты центрированной случайной величины - *центральные моменты*. **Центральный момент** порядка s CB X есть математическое ожидание s-й степени центрированной случайной величины:

$$\mu_{S} = M[X^{\circ}] = M[(X - m_{X})^{S}].$$

Для любой случайной величины центральный момент первого порядка равен 0.

Дисперсия случайной величины есть математическое ожидание квадрата соответствующей центрированной случайной величины.

Расчетные формулы:

$$D[X] = \begin{cases} \sum_{i}^{1} (x_{i} - m_{X})^{2} \cdot P\{X = x_{i}\} = \sum_{i} x_{i}^{2} \cdot P\{X = x_{i}\} - (m_{X})^{2}, \ \partial \Lambda A \ \mathcal{A}CB \end{cases}$$

$$\int_{-\infty}^{\infty} (x - m_{X})^{2} \cdot f(x) dx = \int_{-\infty}^{\infty} x^{2} \cdot f(x) dx - (m_{X})^{2}, \quad \partial \Lambda A \ \mathcal{A}CB$$
(33)

Вычислить дисперсию можно и через второй начальный момент:

$$D[X] = M[X^2] - m_X^2$$
.

Дисперсия случайной величины характеризует степень рассеивания (разброса) значений случайной величины относительно ее математического ожидания и обладает следующими свойствами:

- 1. D[c] = 0.
- 2. D[X+c] = D[X].
- 3. $D[c \cdot X] = c^2 \cdot D[X].$

$$\sigma[c \cdot X] = c \cdot \sigma[X].$$

Средним квадратическим отклонением (СКО) СВ X называется характеристика

$$\sigma_X = \sigma[X] = \sqrt{D[X]}. \tag{34}$$

СКО измеряется в тех же физических единицах, что и CB, и характеризует ширину диапазона значений CB.

Правило 3 о. Практически все значения СВ находятся в интервале:

$$[m - 3\sigma; m + 3\sigma;].$$
 (35)

Пример 6.1. Из партии численностью 25 изделий, среди которых имеется шесть нестандартных, случайным образом выбраны три изделия. Найти математическое ожидание и среднее квадратическое отклонение нестандартных изделий, содержащихся в выборке.

Решение. По условию задачи СВ X принимает следующие значения: x_1 =0; x_2 =1; x_3 =2; x_4 =3. Вероятность того, что в этой выборке окажется ровно i (i = 0, 1, 2, 3) нестандартных изделий, вычисляется по формуле

$$p_i = P\{X = x_i\} = \frac{C_6^i \cdot C_{19}^{3-i}}{C_{25}^i},$$

откуда

$$p_1$$
=0,41; p_2 =0,43; p_3 =0,11; p_4 =0,05.

Дисперсию определим по формулам

$$D[X] = M[X^2] - (M[X])^2$$

$$M[X] = 0 \cdot 0.41 + 1 \cdot 0.43 + 2 \cdot 0.11 + 3 \cdot 0.05 = 0.8$$

$$M[X^2] = 0 \cdot 0.41 + 1 \cdot 0.43 + 2^2 \cdot 0.11 + 3^2 \cdot 0.05 = 1.32$$

$$D[X] = 1,32 - (0,8)^2 = 0,68.$$

Тогда
$$\sigma[X] = \sqrt{D[X]} = 0.82$$
.

Пример 6.2. Непрерывная СВ распределена по закону Лапласа: $f(x) = b \cdot e^{-|x|}$.

Найти коэффициент b, математическое ожидание M[X], дисперсию D[X], среднее квадратическое отклонение $\sigma[X]$.

Решение. Для нахождения коэффициента b воспользуемся свойством нормировки плотности распределения $\int\limits_{0}^{\infty} f(x) dx = 2 \cdot b \int\limits_{0}^{\infty} e^{-x} dx = 2 \cdot b = 1$, откуда b = 1/2. Так как

функция $x \cdot e^{-|x|}$ - нечетная, то $\mathbf{M} \big[X \big] = 0, 5 \cdot \int\limits_{-\infty}^{\infty} x \cdot e^{-|x|} dx = 0$, дисперсия $\mathbf{D}[X]$ и СКО $\sigma[X]$

соответственно равны:

$$D[X] = 0.5 \cdot \int_{-\infty}^{\infty} x^2 \cdot e^{-|x|} dx = 2 \cdot 0.5 \cdot \int_{0}^{\infty} x^2 \cdot e^{-|x|} dx = 2,$$

$$\sigma[X] = \sqrt{D[X]} = \sqrt{2}.$$

Контрольные вопросы:

- 1. Понятие случайной величины. Закон распределения случайной величины.
- 2. Закон распределения дискретной случайной величины. Многоугольник распределения.
- 3. Интегральная функция распределения и ее свойства.
- 4. Дифференциальная функция распределения и ее свойства.
- 5. Математическое ожидание и его свойства.
- 6. Дисперсия и среднее квадратическое отклонение.
- 7. Мода и медиана.
- 8. Моменты случайных величин.
- 9. Место понятий теории дискретных и случайных величин в вероятностном моделировании информационных и автоматизированных систем

Тема.1 Теория вероятностей

Практическое занятие №7. Законы распределения непрерывных случайных величин. Показательное (экспоненциальное) распределение

Случайная величина T имеет *показательное* распределение, если ее плотность вероятности:

$$f(t) = \begin{cases} \lambda e^{-\lambda t}, & t \ge 0\\ 0, & t < 0 \end{cases}$$
 (36)

функция распределения:

$$F(t) = \begin{cases} 1 - e^{-\lambda t}, & t \ge 0\\ 0, & t < 0 \end{cases}$$
(37)

числовые характеристики:

$$M[T] = 1/\lambda, D[T] = 1/\lambda^2.$$
 (38)

Равномерное распределение

СВ X имеет равномерное распределение на участке [a, b], если ее плотность вероятности:

$$f(x) = \begin{cases} 1/(b-a), & a \le x \le b \\ 0, & x < a, \ x > b \end{cases}$$
 (39)

функция распределения:

$$F(x) = \begin{cases} 0, & x < a \\ (x-a)/(b-a), & a \le x \le b, \\ 1, & x > b \end{cases}$$
 (40)

числовые характеристики:

$$M[X] = \frac{a+b}{2}, \qquad D[X] = \frac{(b-a)^2}{12}.$$
 (41)

Контрольные вопросы:

- 1. Биномиальное распределение.
- 2. Пуассоновское распределение.
- 3. Геометрическое распределение.
- 4. Равномерное распределение.
- 5. Значение законов распределения дискретных и случайных величин в вероятностном моделировании процессов в информационных и автоматизированных системах.

Тема.1 Теория вероятностей

Практическое занятие №8. Законы распределения непрерывных случайных величин. Нормальный закон распределения

СВ X имеет нормальное распределение, если ее плотность вероятности:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-m)^2}{2\sigma^2}\right\},\qquad(42)$$

функция распределения:

$$F(x) = 0.5 \cdot \Phi\left(\frac{x - m}{\sigma}\right),\tag{43}$$

где $\Phi(x)$ — функция Лапласа: $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int\limits_0^x e^{-\frac{t^2}{2}} dt$.

Значения функции Лапласа приведены в Приложении. При использовании таблицы значений функции Лапласа следует учитывать :

$$\Phi(-x) = -\Phi(x), \quad \Phi(0) = 0, \quad \Phi(\infty) = 1.$$

Числовые характеристики:

$$M[X] = m, \quad D[X] = \sigma^2. \tag{44}$$

Контрольные вопросы:

- 1. Показательное распределение.
- 2. Нормальное распределение
- 3. Значение законов распределения дискретных и случайных величин в вероятностном моделировании процессов в информационных и автоматизированных системах.

Компетентностно-ориентированные задания и задачи по разделу

Теория вероятностей

Задание 1.

В задачах 1.1-1.5 подбрасываются две игральные кости.

- 1.1. Определить вероятность того, что сумма выпавших чисел равна восьми.
- 1.2. Определить вероятность того, что сумма выпавших чисел делится без остатка на шесть.
 - 1.3. Определить вероятность того, что сумма выпавших чисел превышает 10.
 - 1.4. Определить вероятность того, что выпадут одинаковые числа.
 - 1.5. Определить вероятность того, что выпадут разные, но четные числа.
- 1.6. В урне четыре белых и пять черных шаров. Из урны наугад вынимают два шара. Найти вероятность того, что один из этих шаров - белый, а другой - черный.
- 1.7. В урне четыре белых и пять черных шаров. Из урны наугад вынимают два шара. Найти вероятность того, что оба шара будут одинакового цвета.
- 1.8. На десяти карточках написаны буквы A, A, A, M, M, T, T, E, И, К. После перестановки вынимают наугад одну карточку за другой и раскладывают их в том порядке, в каком они были вынуты. Найти вероятность того, что на карточках будет написано слово "математика".
- 1.9. Телефонный номер состоит из шести цифр, каждая из которых равновозможно принимает значения от 0 до 9. Найти вероятность того, что все цифры одинаковы.

- 1.10. Условие задачи 1.9. Вычислить вероятность того, что все цифры четные.
- 1.11. Условие задачи 1.9. Вычислить вероятность того, что номер не содержит цифры пять.
- 1.12. Условие задачи 1.9. Вычислить вероятность того, что все цифры различные и расположены в порядке возрастания (соседние цифры отличаются на 1).

В задачах 1.13-1.19 наудачу взяты два положительных числа x и y, причем $x \le 5, y \le 2$. Найти вероятность того, что $y+ax-b \le 0$ и $y-cx \le 0$.

- 1.13. a=1, b=5, c=1.
- 1.14. a=1, b=5, c=0,5.
- 1.15. a=1, b=5, c=0,25.
- 1.16. a=1, b=5, c=2.
- 1.17. a=2, b=10, c=2.
- 1.18. a=2, b=10, c=1.
- 1.19. a=2, b=10, c=0,5.

В задачах 1.20-1.23 из колоды в 36 карт (6,7,8,9,10,B,Д,K,T) наугад извлекаются 3 карты.

- 1.20. Определить вероятность того, что будут вытащены карты одной масти.
- 1.21. Определить вероятность того, что будут вытащены три туза.
- 1.22. Определить вероятность того, что будут вытащены карты разных мастей.
- 1.23. Определить вероятность того, что среди извлеченных карт не будет 9.
- 1.24. На плоскости проведены параллельные прямые, находящиеся друг от друга на расстоянии 8 см. Определить вероятность того, что наугад брошенный на эту плоскость круг радиусом 3 см не будет пересечен ни одной линией.
- 1.25. В урне пять белых и восемь черных шаров. Из урны вынимают наугад один шар и откладывают в сторону. Этот шар оказался белым. После этого из урны берут еще один шар. Найти вероятность того, что этот шар тоже будет белым.

В задачах 1.26-1.30 номер автомобиля содержит четыре цифры, каждая из которых равновозможно принимает значения от 0 до 9 (возможен номер 0000).

- 1.26. Определить вероятность того, что вторая цифра номера равна четырем.
- 1.27. Определить вероятность того, что номер содержит хотя бы одну цифру 0.
- 1.28. Определить вероятность того, что первые три цифры номера равны пяти.
- 1.29. Определить вероятность того, что номер делится на 20.
- 1.30. Определить вероятность того, что номер не содержит цифры 2.

Задание 2.

Дискретная случайная величина X может принимать одно из пяти фиксированных значений x_1, x_2, x_3, x_4, x_5 с вероятностями p_1, p_2, p_3, p_4, p_5 соответственно (таблица 1). Вычислить математическое ожидание и дисперсию величины X. Рассчитать и построить график функции распределения.

Таблица 1

Вариант	X 1	X 2	Х3	X4	X 5	p ₁	p ₂	p ₃	p ₄	p ₅
5.1	1	2	3	4	5	0.2	0.2	0.2	0.2	0.2
5.2	1	2	3	4	5	0.1	0.2	0.3	0.2	0.2
5.3	1	2	3	4	5	0.4	0.1	0.1	0.3	0.1
5.4	1	2	3	4	5	0.3	0.3	0.1	0.1	0.2
5.5	-2	-1	1	3	7	0.2	0.2	0.2	0.2	0.2
5.6	-2	-1	1	3	7	0.1	0.3	0.2	0.2	0.2
5.7	-5	-2	0	1	2	0.5	0.1	0.1	0.2	0.1
5.8	-5	-2	0	1	2	0.1	0.2	0.1	0.3	0.3
5.9	0	1	2	3	4	0.2	0.2	0.2	0.2	0.2
5.10	0	1	2	3	4	0.3	0.2	0.1	0.2	0.2
5.11	0	1	2	3	4	0.1	0.2	0.3	0.4	0
5.12	-1	0	1	2	3	0.6	0.1	0.1	0.1	0.1
5.13	-1	0	1	2	3	0.3	0.2	0.1	0.1	0.3
5.14	3	4	5	6	7	0.1	0.2	0.3	0.4	0
5.15	3	4	5	6	7	0.5	0.1	0.1	0.1	0.2
5.16	-5	-4	-3	5	6	0.1	0.3	0.2	0.2	0.2
5.17	-2	0	2	4	9	0.3	0.2	0.1	0.1	0.3
5.18	-2	0	2	4	9	0.3	0.1	0.1	0.2	0.3
5.19	-2	0	2	4	9	0.15	0.15	0.2	0.4	0.1
5.20	5	6	7	8	9	0.1	0.1	0.1	0.1	0.6
5.21	1	4	7	8	9	0.3	0.15	0.25	0.15	0.15
5.22	1	4	7	8	9	0.2	0.2	0.2	0.2	0.2
5.23	-10	-4	0	4	10	0.2	0.2	0.2	0.2	0.2
5.24	-10	-4	0	4	10	0.3	0.1	0.2	0.1	0.3
5.25	2	4	6	8	10	0.1	0.2	0.3	0.35	0.05
5.26	2	4	6	8	10	0.7	0.1	0.1	0.05	0.05
5.27	2	4	6	8	10	0.2	0.3	0.05	0.25	0.2
5.28	1	4	5	7	8	0.6	0.1	0.1	0.05	0.15

5.29	1	4	5	7	8	0.3	0.3	0.1	0.15	0.15
5.30	5	6	7	9	12	0.05	0.15	0.2	0.4	0.2

Задание 3.

Случайная величина X задана плотностью вероятности

$$f(x) = \begin{cases} 0, & x < a, x > b \\ \varphi(x,c), & a \le x \le b \end{cases}$$
 (таблица 2).

Определить константу C, математическое ожидание, дисперсию, функцию распределения величины X, а также вероятность ее попадания в интервал (α, β)

Таблица 2

Вариант	φ(x,c)	a	b	α	β
6.1	$c \cdot x$	1	2	0.5	1.5
6.2	cx^{11}	0	1	0.5	1
6.3	cx^2	-1	1	0	0.5
6.4	cx^3	0	2	1	2
6.5	cx^4	0	1	-2	2
6.6	c	-2	2	-1	1
6.7	csin(x)	0	π	0	π/2
6.8	$c\sin(2x)$	0	$\pi/2$	$\pi/4$	π
6.9	$c\sin(3x)$	0	$\pi/3$	-1	1
6.10	$c \cdot \cos(x)$	-π/2	π/2	0	1
6.11	$c \cdot \cos(2x)$	0	$\pi/4$	0.5	1
6.12	c e-x	0	4	1	2
6.13	c e ^{-2x}	0	∞	1	3
6.14	4 e ^{-cx}	0	∞	0	1
6.15	c x	-2	2	1.5	2
6.16	$c e^x$	0	1	0	0.5
6.17	$c x^5$	0	1	0.5	0.7
6.18	c x ⁶	0	2	1	2
6.19	$c x^7$	0	1	0	0.5
6.20	c x ⁸	-1	1	0	2
6.21	$c x^9$	0	1	0	0.25
6.22	$c x^{10}$	-1	1	-0.5	0.5
6.23	c/x	1	4	2	3
6.24	c/x^2	1	2	1	1.5
6.25	c/x^3	1	2	1	1.5
6.26	c/x^4	1	3	1	2
6.27	c/x^5	1	2	1	1.5

6.28	c/x^6	1	2	0	1.5
6.29	c/x^7	1	2	1	2
6.30	c/x^8	1	2	1	3

Список литературы

Основная литература:

- 1. Балдин, К. В. Теория вероятностей и математическая статистика : учебник / К. В. Балдин, В. Н. Башлыков, А. В. Рукосуев. М. : Дашков и К, 2016. 472 с. ISBN 978-5-394-02108-4. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/62453.html
- 2. Шилова, З. В. Теория вероятностей и математическая статистика : учебное пособие / З. В. Шилова, О. И. Шилов. Саратов : Ай Пи Ар Букс, 2015. 158 с. ISBN 978-5-906-17262-4. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/33863.html

Дополнительная литература:

- 1. Учебно-методическое пособие по курсу Теория вероятностей и математическая статистика. Часть І / составители Д. Б. Демин, И. С. Синева, Е. А. Скородумова. М. : Московский технический университет связи и информатики, 2016. 46 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/61556.html
- 2. Учебно-методическое пособие по курсу Теория вероятностей и математическая статистика. Часть II / составители А. В. Власов, М. С. Лохвицкий, И. С. Синева. М. : Московский технический университет связи и информатики, 2016. 32 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/61557.html
- 3. Гмурман В. Е. Теория вероятностей и математическая статистика : Учеб. пособие для бакалавров. М. : ЮРАЙТ, 2013.

Практические занятия по теме «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Цель занятий: освоить математическую символику и базовые знания темы Математическая статистика, изучить методику применения методов математической статистики в общенаучных, общеинженерных, технических и специальных дисциплинах, выработать навыки использования методов математической статистики при решении задач, возникающих в практической деятельности инженера по специальности, овладеть способностью использовать основные закономерности Математической статистики, осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач, применять математические модели, методы и средства для проектирования информационных и автоматизированных систем.

Тема 2. Математическая статистика Практическое занятие №10. Выборочный метод.

Статистика, основные понятия

Генеральной совокупностью называется множество объектов, из которых производится выборка. Каждый из объектов задает фиксированное значение случайной величины.

Bыборка - множество $\{x_1, x_2, ..., x_n\}$ случайно отобранных объектов (значений) из генеральной совокупности.

Объемом выборки называется число (n) входящих в нее объектов.

Вариационным рядом называется выборка $\{\hat{x}_1,\hat{x}_2,...,\hat{x}_n\}$, полученная в результате расположения значений исходной выборки в порядке возрастания. Значения \hat{x}_i называются вариантами.

Эмпирическая функция распределения

Эмпирическая функция распределения определяется формулой

$$F^*(x) = m_{\langle x \rangle} / n, \tag{1}$$

где x - аргумент (неслучайная величина, $-\infty < X < +\infty$);

n - объем выборки;

 $m_{< x}$ - количество значений в выборке или вариационном ряду, строго меньших x.

При $n \to \infty$ эмпирическая функция распределения $F^*(x)$ по вероятности сходится к теоретической функции распределения F(x).

Основные свойства функции $F^*(x)$.

- 1. $0 \le F^*(x) \le 1$.
- $2. F^*(x)$ неубывающая ступенчатая функция.
- 3. $F^*(x) = 0, x \le \hat{x}_1$.
- 4. $F^*(x) = 1, x > \hat{X}_n$.

Эмпирическая функция распределения является наилучшей оценкой закона распределения (несмещенной, состоятельной, эффективной). Недостаток функции $F^*(x)$ заключается в ее невысокой наглядности: визуально сложно подобрать типовой закон распределения.

Порядок построения графика функции $F^*(x)$ следующий.

- 1. Построить вариационный ряд.
- 2. На числовой оси x выделить полуинтервалы $(A_i, B_i]$, на которых функция $F^*(x)$ не изменяет своего значения. Границы полуинтервалов определяются соседними отличающимися значениями вариационного ряда.
 - 3. На каждом полуинтервале по формуле (1) вычисляется значение функции $F^*(x)$.
 - 4. Построить график.

Гистограмма распределения случайной величины

Гистограммой называется оценка плотности распределения вероятности. На практике наиболее часто используются два метода построения гистограммы: равноинтервальный и равновероятностный. Порядок построения гистограммы следующий.

- 1. Построить вариационный ряд, т.е. расположить выборочные значения в порядке возрастания: $\hat{\mathcal{X}}_1 \leq \hat{\mathcal{X}}_2 \leq \ldots \leq \hat{\mathcal{X}}_n$.
- 2. Вся область возможных значений $\left[\hat{x}_{_{1}},\hat{x}_{_{n}}\right]$ разбивается на M непересекающихся и примыкающих друг к другу интервалов.

U3 статистических соображений параметр M рекомендуется выбирать с помощью следующих соотношений:

$$M \approx \operatorname{int}\left(\sqrt{n}\right), \qquad n \le 100,$$
 (2)

$$M \approx \operatorname{int}((2-4) \cdot \lg(n)), \qquad n > 100, \tag{3}$$

где int(x) - целая часть числа x . Желательно, чтобы n без остатка делилось на M.

Введем обозначения параметров:

 A_i, B_i - соответственно левая и правая границы *i*-го интервала $(A_{i+1} = B_i);$

 $h_i = B_i$ - A_i - длина i-го интервала;

 v_{i} - количество чисел в выборке, попадающих в i-ый интервал.

При использовании *равноинтервального* метода построения гистограммы параметры A_i , B_i , h_i вычисляются следующим образом:

$$h_i = h = (\hat{x}_n - \hat{x}_1)/M;$$
 $A_i = \hat{x}_1 + (i-1) \cdot h;$ $B_i = A_{i+1};$ $i = 1, 2, ..., M.$ (4)

Если при подсчете значений какое-то число в выборке точно совпадает с границей между интервалами, то необходимо в счетчик обоих интервалов прибавить по 0,5.

В случае применения *равновероятностного* метода границы A_i , B_i выбираются таким образом, чтобы в каждый интервал попадало одинаковое количество выборочных значений:

$$v_i = v = n / M. \tag{5}$$

В этом случае

$$A_1 = \hat{x}_1;$$
 $B_1 = (\hat{x}_v + \hat{x}_{v+1})/2;$ $A_2 = B_1;$ $A_i = (\hat{x}_{(i-1)v} + \hat{x}_{(i-1)v+1})/2;$ $i = 2,3,...,M.$ (6)

- 3. Вычисляется средняя плотность вероятности для каждого интервала по формуле
- 4. На графике провести две оси: x и $f^*(x)$.
- 5. На оси х отмечаются границы всех интервалов.
- 6. На каждом интервале строится прямоугольник с основанием h_i и высотой f_i^* . Полученная при этом ступенчатая линия называется гистограммой, график которой приблизительно выглядит так, как показано на Рисунок 1.

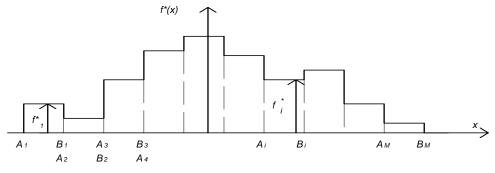


Рисунок 1

Замечания.

- 1. Суммарная площадь всех прямоугольников равна единице.
- 2. В равновероятностной гистограмме площади всех прямоугольников одинаковы. По виду гистограммы можно судить о законе распределения случайной величины.
- 3. Перед построением гистограммы вычисленные значения A_i , B_i , h_i , v_i , f_i^* рекомендуется занести в табл. 0.

Таблица 0

i	A_{i}	B_i	h_i	v_i	f_i^*
1					
N					
M					

Достоинства использования гистограммы: простота применения, наглядность.

ТОЧЕЧНЫЕ ОЦЕНКИ ПАРАМЕТРОВ И ЧИСЛОВЫХ ХАРАКТЕРИСТИК

Почти все распределения случайной величины зависят от одного или нескольких параметров. Например, плотность вероятности экспоненциального закона:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

зависит от параметра λ.

C тараметра \hat{Q} параметра Q распределения называется приближенное значение параметра, вычисленное по результатам эксперимента (по выборке).

Статистические оценки делятся на точечные и интервальные. *Точечной* называется оценка, определяемая одним числом. Желательно, чтобы оценка была несмещенной, состоятельной и эффективной.

- 1. Оценка \hat{Q} называется *несмещенной*, если $M[\hat{Q}] = Q$. Несмещенность -минимальное требование к оценкам.
- 2. Оценка \hat{Q} называется состоятельной, если при увеличении числа n она сходится по вероятности к значению параметра Q:

$$\lim_{n\to\infty} (P(\left|\hat{Q}-Q\right|<\varepsilon))=1,$$

где ε - любое положительное число. Несмещенная оценка является состоятельной, если $\lim_{n\to\infty} D \Big[\hat{\mathcal{Q}} \Big] = 0$.

3. Несмещенная оценка \hat{Q} является эффективной, если ее дисперсия минимальна по отношению к дисперсии любой другой оценки.

Точечные оценки числовых характеристик

1. Несмещенная состоятельная оценка *математического ожидания*, называемая выборочным средним, вычисляется по формуле

$$\overline{x} = \sum_{i=1}^{n} x_i / n. \tag{8}$$

2. Несмещенная состоятельная оценка дисперсии равна

$$S_0^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_i - \overline{x})^2.$$
 (9)

3. Смещенная состоятельная оценка дисперсии

$$S^{2} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$$
 (10)

4. Несмещенная состоятельная оценка дисперсии

$$S_1^2 = \frac{1}{n} \cdot \sum_{i=1}^n (x_i - m_x)^2. \tag{11}$$

5. Состоятельная оценка среднеквадратического отклонения

$$S_0 = \sqrt{S_0^2} \,. \tag{12}$$

6. Несмещенная состоятельная оценка корреляционного момента

$$\hat{K}_{XY} = \frac{1}{n-1} \cdot \sum_{k=1}^{n} (x_k - \overline{x}) \cdot (y_k - \overline{y}), \tag{13}$$

где x_k, y_k - значения, которые приняли случайные величины X, Y в k-м опыте;

 \overline{x} , \overline{y} - средние значения случайных величин X и Y соответственно.

7. Состоятельная оценка коэффициента корреляции

$$\hat{r}_{x,y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}}.$$
(14)

8. Выборочный начальный момент к-го порядка определяется по формуле

$$\hat{\alpha}_k = \frac{1}{n} \cdot \sum_{i=1}^n (x_i)^k . \tag{15}$$

9. Выборочный центральный момент к-го порядка равен

$$\hat{\mu}_{k} = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(x_{i} - \overline{x} \right)^{k}. \tag{16}$$

10. В случае неравноточных измерений несмещенная состоятельная оценка математического ожидания равна

$$\widetilde{x} = \sum_{i=1}^{n} \left(x_i / D[\xi_i] \right) / \sum_{i=1}^{n} \left(1 / D[\xi_i] \right), \tag{17}$$

где $D[\xi_i]$ - дисперсия случайной величины в *i*-м опыте.

11. Несмещенная состоятельная и эффективная оценка вероятности в схеме независимых опытов Бернулли:

$$p^* = w = m/n, \tag{18}$$

где m - число успешных опытов.

Контрольные вопросы:

- 1. Основные понятия математической статистики (выборка, вариационный ряд, гистограмма).
- 2. Статистические оценки параметров распределения и их свойства.
- 3. Точечные оценки математического ожидания и дисперсии.
- 4. Методы нахождения точечных оценок (метод максимального правдоподобия, метод наименьших квадратов).
- 5. Точность оценки, доверительная вероятность и доверительный интервал.
- 6. Доверительные интервалы для параметров нормального распределения.
- 7. Значение точечных и интервальных оценок в моделировании, теоретическом и экспериментальном исследовании в профессиональной деятельности

Тема 2. Математическая статистика

Практическое занятие №11. Статистические методы обработки экспериментальных данных.

Методы получения оценок параметров распределения

Для вычисления приближенных значений параметров чаще всего применяются методы моментов и максимального правдоподобия.

Суть метода моментов заключается в следующем. Пусть имеется выборка $\{x_1, ..., x_n\}$ независимых значений случайной величины с известным законом распределения $f(x, Q_1, ..., Q_m)$ и m неизвестными параметрами $Q_1, ..., Q_m$. Последовательность вычислений следующая:

1. Вычислить значения m начальных и/или центральных теоретических моментов

$$\alpha_{k} = M[X^{k}], \quad \mu_{k} = M[(X - m_{x})^{k}]. \tag{19}$$

- 2. Определить m соответствующих выборочных начальных $\hat{\mathbf{Q}}_k$ и/или центральных $\hat{\boldsymbol{\mu}}_k$ моментов по формулам (15),(16).
- 3. Составить и решить систему из m уравнений, в каждом из которых приравниваются теоретические и выборочные моменты. Каждое уравнение имеет вид $\alpha_{_k}=\hat{\alpha}_{_k}$ или $\mu_{_k}=\hat{\mu}_{_k}$.

Замечание. Часть уравнений может содержать начальные моменты, а оставшаяся часть - центральные.

Согласно методу максимального правдоподобия оценки \hat{Q}_1 , ..., \hat{Q}_m получаются из условия максимума по параметрам Q_1 , ..., Q_m положительной функции правдоподобия $L(x_1,...,x_n,Q_1,...,Q_m)$.

Если случайная величина X - непрерывна, а значения x_i независимы, то

$$L(x_1,...,x_n,Q_1,...,Q_m) = \prod_{i=1}^n f(x_i,Q_1,...,Q_m).$$
 (20)

Если случайная величина X - дискретна и принимает независимые значения x_i с вероятностями

$$P(X = x_i) = p_i(x_i, Q_1, ..., Q_m),$$
(21)

то функция правдоподобия равна

$$L(x_1,...,x_n,Q_1,...,Q_m) = \prod_{i=1}^n p_i(x_i,Q_1,...,Q_m).$$
 (22)

Система уравнений согласно этому методу может записываться в двух видах:

$$\frac{\partial L(x_1, ..., x_n, Q_1, ..., Q_m)}{\partial Q_i} = 0, i = 1, 2, ..., m (23)$$

или

$$\frac{\partial \ln(L(x_1,...,x_n,Q_1,...,Q_m))}{\partial Q_i} = 0, \qquad i = 1,2,...,m.$$
 (24)

Пример 1. Пусть x_i - независимые значения случайной величины X, распределенной по экспоненциальному закону, т.е.

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

Необходимо получить оценку параметра λ методом максимального правдоподобия. *Решение*. Функция правдоподобия имеет вид

$$L(x_1,...,x_n,\lambda) = \prod_{i=1}^n \lambda e^{-\lambda x_i} = \lambda^n \cdot e^{-\lambda \cdot \sum_{i=1}^n x_i}.$$

Тогда

$$\ln(L(x_1,...,x_n,\lambda)) = n \cdot \ln(\lambda) - \lambda \cdot \sum_{i=1}^n x_i.$$

Далее записываем уравнение

$$\frac{\partial \ln(L)}{\partial \lambda} = n/\lambda - \sum_{i=1}^{n} x_i = 0.$$

Отсюда получаем выражение для оценки параметра λ :

$$\hat{\lambda} = n / \sum_{i=1}^{n} x_i = 1 / \overline{x}.$$

Пример 2. Случайная величина X распределена по равномерному закону, т.е.

$$f(x) = \begin{cases} 1/(b-a), & a \le x < b \\ 0, & x < a \lor x \ge b. \end{cases}$$

Необходимо определить оценки параметров a и b.

Решение. По исходной выборке определяем выборочные моменты $\hat{\alpha}_{_1}$ и по формулам (15) и (16) соответственно. Составляем систему из 2-х уравнений: $\alpha_{_1}=\hat{\alpha}_{_1},\ \mu_{_2}=\hat{\mu}_{_2}$. Здесь

$$\alpha_{1} = M[X] = \int_{a}^{b} \frac{x}{(b-a)} dx = (a+b)/2,$$

$$\mu_{2} = M[(X-m_{x})^{2}] = (b-a)^{2}/12,$$

$$\hat{\alpha}_{1} = \sum_{i=1}^{n} x_{i}/n, \quad \hat{\mu}_{2} = \sum_{i=1}^{n} (x_{i} - \hat{\alpha}_{1})^{2}/n$$

Подставив данные выражения в систему и решив ее, получим $\hat{\alpha}=\hat{\alpha}_{_1}-\sqrt{3\hat{\mu}_{_2}}$, $\hat{b}=\hat{\alpha}_{_1}+\sqrt{3\hat{\mu}_{_2}}$.

Контрольные вопросы:

- 1. Метод моментов.
- 2. Метод наибольшего правдоподобия.
- 3. Значение метода моментов и наибольшего правдоподобия статистической обработке экспериментальных данных

Тема 2. Математическая статистика

Практическое занятие №12-14. Статистические гипотезы. Критерии оценки нулевой гипотезы.

C татистической гипотезой называется всякое непротиворечивое множество утверждений $\{H_0, H_1, ..., H_{k-1}\}$ относительно свойств распределения случайной величины. Любое из утверждений H_i называется альтернативой гипотезы. Простейшей гипотезой является двухальтернативная $\{H_0, H_1\}$. В этом случае альтернативу H_0 называют нулевой гипотезой, а H_1 - конкурирующей гипотезой.

Критерием называется случайная величина

$$K = \varphi(x_1, K, x_n),$$

которая позволяет принять или отклонить нулевую гипотезу H_0 .

При проверке гипотез можно допустить ошибки 2 родов.

 $Omu \delta \kappa a$ первого рода состоит в том, что будет отклонена гипотеза H_0 , если она верна ("пропуск цели"). Вероятность совершить ошибку первого рода обозначается α и называется уровнем значимости. Наиболее часто на практике принимают, что $\alpha=0.05$ или $\alpha=0.01$.

 $Ouu \delta \kappa a$ второго рода заключается в том, что гипотеза H_0 принимается, если она неверна ("ложное срабатывание"). Вероятность оши бки этого рода обозначается β .

Критерием согласия называется критерий проверки гипотезы о предполагаемом законе распределения.

Критерий согласия χ^2

Это один из наиболее часто применяемых критериев. Алгоритм проверки гипотезы следующий.

- 1. Построить гистограмму равновероятностным способом.
- 2. По виду гистограммы выдвинуть гипотезу

$$H_0: f(x) = f_0(x),$$

 $H_1: f(x) \neq f_0(x),$

где $f_0(x)$ - плотность вероятности гипотетического закона распределения: равномерного, экспоненциального или нормального.

Замечание. Гипотезу об экспоненциальном законе распределения можно выдвигать в том случае, если все числа в выборке положительные.

3. Вычислить значение критерия по формуле

$$\chi^{2} = n \sum_{i=1}^{M} \frac{\left(p_{i} - p_{i}^{*}\right)^{2}}{p_{i}} = \sum_{i=1}^{M} \frac{\left(v_{i} - np_{i}\right)^{2}}{np_{i}}, \qquad (25)$$

где $p_i^* = \frac{V_i}{n}$ - частота попадания в *i*-й интервал;

 p_i - теоретическая вероятность попадания случайной величины в i-ый интервал при условии, что гипотеза H_0 верна.

Формулы для расчета p_i в случае экспоненциального, равномерного и нормального законов соответственно равны.

Экспоненциальный закон

$$p_i = e^{\frac{-A_i}{\overline{x}}} - e^{\frac{-B_i}{\overline{x}}}.$$
 (26)

При этом $A_1 = 0$, $B_m = +\infty$.

Равномерный закон

$$p_i = (B_i - A_i)/(\hat{x}_n - \hat{x}_1). \tag{27}$$

Нормальный закон

$$p_{i} = 0.5 \left(\Phi \left(\frac{B_{i} - \overline{x}}{S_{0}} \right) - \Phi \left(\frac{A_{i} - \overline{x}}{S_{0}} \right) \right). \tag{28}$$

При этом $A_1 = -\infty$, $B_M = +\infty$.

 $\it 3амечания.$ После вычисления всех вероятностей $\it p_i$ проверить, выполняется ли контрольное соотношение

$$\left| 1 - \sum_{i=1}^{M} p_i \right| \le 0,01. \tag{29}$$

4. Из таблицы "Хи-квадрат" Приложения выбирается значение $\chi^2_{\alpha,k}$, где α - заданный уровень значимости ($\alpha=0.05$ или $\alpha=0.01$), а k - число степеней свободы, определяемое по формуле

$$k = M - 1 - s$$
.

Здесь s - число параметров, от которых зависит выбранный гипотезой H_0 закон распределения. Значения s для равномерного закона равно 2, для экспоненциального - 1, для нормального - 2.

5. Если $\chi^2 > \chi^2_{\alpha,k}$, то гипотеза H_0 отклоняется. В противном случае нет оснований ее отклонить.

Критерий согласия Колмогорова

Последовательность действий при проверке гипотезы следующая.

- 1. Построить вариационный ряд.
- 2. Построить график эмпирической функции распределения $F^*(x)$.
- 3. Выдвинуть гипотезу:

 $H_0: F(x) = F_0(x)$,

 $H_1: F(x) \neq F_0(x)$,

где $F_0(x)$ - теоретическая функция распределения типового закона: равномерного, экспоненциального или нормального. Ниже приведены формулы для расчета $F_0(x)$.

Равномерный закон

$$F_0(x) = \begin{cases} 0, & x < \hat{x}_1 \\ (x - \hat{x}_1) / (\hat{x}_n - \hat{x}_1), & \hat{x}_1 \le x \le \hat{x}_n \\ 1, & x > \hat{x}_n \end{cases}$$
(30)

Экспоненциальный закон

$$F_0(x) = \begin{cases} 1 - e^{-x/\bar{x}}, & x \ge 0\\ 0, & x < 0 \end{cases}$$
 (31)

Нормальный закон

$$F_{0}(x) = 0.5 + 0.5 \cdot \Phi\left(\frac{x - \overline{x}}{s_{0}}\right)$$
 (32)

- 4. Рассчитать по формулам (30 32) 10-20 значений и построить график функции $F_0(x)$ в одной системе координат с функцией $F^*(x)$.
- 5. По графику определить максимальное по модулю отклонение между функциями $F^*(x)$ и $F_0(x)$.
 - 6. Вычислить значение критерия

$$\lambda = \sqrt{n} \cdot \max \left| F^*(x) - F_0(x) \right|. \tag{33}$$

- 7. Принимают тот или иной уровень значимости (чаще всего 0,05 или 0,01). Тогда доверительная вероятность $\gamma=1-\alpha$.
 - 8. Изтаблицы вероятностей Колмогорова выбрать критическое значение λ_{γ} .
- 9. Если $\lambda > \lambda_\gamma$, то нулевая гипотеза H_0 отклоняется, в противном случае принимается, хотя она может быть неверна.

Достоинства критерия Колмогорова по сравнению с критерием χ^2 : возможность применения при очень маленьких объемах выборки (n < 20), более высокая "чувствительность", а, следовательно, меньшая трудоемкость вычислений.

Недостаток: критерий можно использовать в том случае, если параметры Q_1 , ..., Q_k распределения заранее известны, а эмпирическая функция распределения $F^*(x)$ должна быть построена по несгруппированным выборочным данным.

Контрольные вопросы:

- 1. Статистическая гипотеза. Ошибки первого и второго рода.
- 2. Статистический критерий проверки нулевой гипотезы. Наблюдаемое значение критерия.
- 3. Критические области и их отыскание.
- 4. Сравнение двух дисперсий нормальных генеральных совокупностей.
- 5. Проверка гипотезы о нормальном распределении генеральной совокупности, критерий Пирсона.
- 6. Понятие о дисперсионном анализе. Однофакторный дисперсионный анализ.
- 7. Обоснуйте важность понятия статистической гипотезы и ошибок в решении профессиональных задач.
- 8. Каково значение критериев оценки нулевой гипотезы в решении профессиональных задач.

Тема 2. Математическая статистика

Практическое занятие №15-16 Элементы теории корреляции.

 $Perpeccue \check{u}$ случайной величины Y на X называется условное математическое ожидание случайной величины Y при условии, что X = x:

$$m_{y}(x) = M[Y/X = x].$$
 (34)

Регрессия Y на X устанавливает зависимость среднего значения величины Y от величины X. Если X и Y независимы, то

$$m_{\nu}(x) = m_{\nu} = \text{const.}$$

Простейшим видом регрессии является линейная:

$$m_{y}(x) = a_0 + a_1 x.$$

Определение оценок коэффициентов a_0 , a_1 осуществляется с помощью метода наименьших квадратов.

Пусть имеется выборка $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$, содержащая n пар значений случайных величин X и Y. Тогда оценки параметров \hat{a}_0 и \hat{a}_1 вычисляются по следующим формулам:

$$\hat{a}_{I} = \frac{K_{XY}^{*}}{S_{0}^{2}(x)},\tag{35}$$

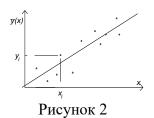
$$\hat{a}_0 = \bar{y} - \hat{a}_l \bar{x}. \tag{36}$$

где \bar{x} , \bar{y} - оценки математического ожидания величин X и Y;

 $S_0^2(x)$ - оценка дисперсии величины X;

 \hat{K}_{XY} - оценки корреляционного момента величин X и Y.

Для визуальной проверки правильности вычисления величин \hat{a}_0 , \hat{a}_1 необходимо построить диаграмму рассеивания и график уравнения регрессии $\bar{y}(x) = \hat{a}_0 + \hat{a}_1 \cdot x$ (Рисунок 2).



Если оценки параметров a_0 , a_1 рассчитаны без грубых ошибок, то сумма квадратов отклонений всех точек (x_i, y_i) от прямой $\overline{y}(x) = \hat{a}_0 + \hat{a}_1 \cdot x$ должна быть минимально возможной.

Контрольные вопросы:

- 1. Функциональная, статистическая и корреляционная зависимости.
- 2. Условные средние. Выборочные уравнения регрессии.
- 3. Отыскание параметров выборочного уравнения прямой линии регрессии по несгруппированным данным.
- 4. Корреляционная таблица.
- 5. Выборочный коэффициент корреляции.
- 6. Выборочное корреляционное отношение и его свойства.
- 7. Общая, факторная и остаточная дисперсии.
- 8. Сравнение нескольких средних методом дисперсионного анализа.
- 9. Отыскание параметров выборочного уравнения прямой линии регрессии по сгруппированным данным.
- 10. Криволинейная корреляция.
- 11. Множественная корреляция.
- 12. Опишите задачи, теории корреляции и ее значение для прогнозирования развития процессов в задачах профессиональной деятельности.

Компетентностно-ориентированные задания и задачи по разделу Математическая статистика

Задание 1.

Дано распределение признака X (случайной величины X) (таблица 1), полученной по п наблюдениям. Необходимо: 1) построить гистограмму, кумуляту и эмпирическую функцию распределения X; 2) найти: а) среднюю арифметическую x; б) медиану Me и моду Mo; в) дисперсию x, среднее квадратическое отклонение x и коэффициент вариации x; г)

начальные $\widetilde{\mathcal{V}}_k$ и центральные $\widetilde{\mu}_k$ моменты k-го порядка (k=1,2,3,4); д) коэффициент асимметрии $\widetilde{A}S$ и эксцесс $\widetilde{E}k$.

X—суммарное число набранных баллов при тестировании; n=100 (студентов).

Таблица 1

											1 a0	лица I
Вариант	x_i	4-6	6-8	8-10	10- 12	12-14	14-16	16- 18	18-20	20-22	22- 24	24-26
1	n_i	1	3	6	11	15	20	14	12	10	6	2
2	n_i	2	3	5	11	14	20	15	12	9	6	1
3	ni	1	2	6	12	15	20	14	13	10	5	2
4	ni	2	2	6	11	14	21	14	12	10	6	2
5	ni	1	3	5	12	15	20	16	11	9	6	2
6	ni	2	4	7	11	14	19	13	12	10	5	3
7	n_i	2	3	7	11	14	20	14	12	8	6	2
8	n_i	2	4	6	12	15	20	13	11	10	5	2
9	n_i	1	4	7	11	15	21	14	11	10	5	1
10	ni	1	4	6	12	14	20	14	12	10	5	2
11	ni	1	4	7	12	15	20	15	11	9	6	1
12	ni	2	3	6	12	16	20	15	12	8	5	1
13	ni	2	3	7	12	16	20	14	11	8	6	1
14	ni	1	3	6	12	16	22	14	11	9	4	2
15	n_i	2	3	6	12	15	22	14	12	8	5	1
16	n_i	1	4	8	11	16	21	14	11	8	5	1
17	ni	1	5	7	11	16	20	15	10	8	5	2
18	n_i	1	5	8	11	15	20	14	11	9	4	2
19	ni	1	4	8	12	15	21	14	11	9	4	1
20	ni	1	4	7	10	16	21	14	12	9	4	1
21	n_i	1	3	6	13	14	21	15	12	10	3	2
22	n_i	1	4	9	13	14	19	15	13	9	5	1
23	n_i	2	5	6	11	15	22	16	12	7	3	1
24	n_i	2	3	5	12	16	22	14	11	8	6	1
25	n_i	1	3	6	10	17	23	14	11	9	4	2
26	ni	2	3	7	12	14	22	17	10	7	5	1
27	ni	1	4	8	15	16	21	12	10	7	5	1
28	n_i	1	5	7	11	17	19	16	10	7	5	2
29	n_i	1	5	8	11	14	21	14	11	9	4	2
30	ni	1	4	8	12	15	24	13	10	8	4	1

Задание 2.

Случайная величина Х задана функцией распределения

$$F(x) = 1 - e^{-\lambda x} \qquad (x \ge 0).$$

Произведена выборка (таблица 2). Найти оценку параметра λ методом моментов. Таблица 2

1.	X_{i}	3	5	6	8	10
	n_{i}	2	3	5	10	10
2	x_{i}	2	3	5	7	10
3.	n_{i}	1	3	6	9	11
5.	X_{i}	4	6	7	9	10

2.	X_{i}	1	3	6	8	10
	n_{i}	2	4	5	9	10
4	X_i	3	4	6	8	10
4.	n_{i}	2	4	5	8	11
6.	X_i	1	5	8	9	10

	n_{i}	1	4	5	10	10
_	x_{i}	2	5	6	8	11
7.	n_i	1	3	6	9	11
	X_i	4	6	8	9	10
9.	n_i	2	2	4	10	12
1.1	X_i	4	5	6	9	10
11.	n_{i}	4	5	5	6	10
12	\boldsymbol{x}_{i}	3	4	6	9	10
13.	n_i	1	4	5	9	11
15.	\boldsymbol{x}_{i}	2	3	5	9	11
13.	n_{i}	5	5	6	7	7
17.	X_i	2	3	4	5	6
1/.	n_{i}	4	5	6	7	8
19.	X_i	1	4	7	11	12
19.	n_{i}	4	5	6	7	8
21.	\boldsymbol{x}_{i}	5	7	13	17	20
21.	n_i	1	4	7	8	10
23.	X_i	2	4	7	10	15
23.	n_i	2	4	6	8	10
25.	X_i	3	5	9	14	17
23.	n_{i}	4	5	6	7	8
27.	X_i	3	7	10	15	20
21.	n_{i}	4	5	6	7	8
29.	X_i	5	7	9	11	13
<i>49</i> .	n_{i}	4	5	6	7	8

	n_{i}	1	2	4	10	13
0	X_i	3	5	6	9	11
8.	n_{i}	1	4	5	9	11
10	X_i	4	5	7	10	11
10.	n_{i}	2	3	6	8	11
12	X_{i}	4	6	8	9	10
12.	n_i	1	5	6	8	10
1.4	X_{i}	2	3	6	7	10
14.	n_i	2	3	3	8	14
1.6	x_{i}	2	4	7	9	10
16.	n_i	4	5	5	7	9
10	X_{i}	3	4	5	6	7
18.	n_i	4	5	6	7	8
20	x_{i}	1	3	5	7	9
20.	n_i	1	4	7	8	10
22	x_{i}	1	5	8	11	17
22.	n_i	3	5	6	7	9
24.	x_i	2	5	9	13	17
24.	n_{i}	2	4	6	8	10
26	X_i	2	6	8	13	19
26.	n_{i}	2	4	6	8	10
20	X_i	5	7	9	11	13
28.	n_{i}	2	4	6	8	10
20	X_i	7	9	11	13	15
30.	n_{i}	4	5	6	7	8

Задание 3.

Случайная величина X распределена по биномиальному закону. Статистическое распределение выборки представлено в таблице 3. Найти точечную оценку параметра p указанного закона распределения случайной величины (r=10) методом наибольшего правдоподобия.

1.	X_{i}	0	1	2	3	4	5	6	7
	n_{i}	2	3	10	22	26	20	12	5
2.	x_{i}	1	2	3	4	5	6	7	8
	n_{i}	2	5	9	22	26	19	12	5
3.	x_{i}	0	1	2	3	4	5	6	7
	n_{i}	2	3	10	24	26	20	10	5
4.	x_{i}	0	1	2	3	4	5	6	7
	n_{i}	2	3	9	22	26	21	10	7

16.	X_i	0	1	2	3	4	5	6	7
	n_{i}	2	3	13	21	25	19	12	5
17.	X_i	1	2	3	4	5	6	7	8
	n_{i}	2	3	8	23	24	21	12	7
18.	X_i	0	1	2	3	4	5	6	7
	n_{i}	2	3	8	23	27	20	10	7
19.	X_{i}	1	2	3	4	5	6	7	8
	n_{i}	2	3	9	22	27	20	12	5

5.	X_i	1	2	3	4	5	6	7	8
	n_{i}	2	4	10	21	26	22	11	4
6.	X_{i}	0	1	2	3	4	5	6	7
	n_{i}	2	4	10	21	24	20	12	7
7.	x_{i}	1	2	3	4	5	6	7	8
	n_{i}	2	3	9	22	26	21	10	7
8.	x_{i}	2	3	4	5	6	7	8	9
	n_{i}	2	3	12	22	24	20	11	6
9.	x_{i}	0	1	2	3	4	5	6	7
	n_{i}	2	5	9	22	26	19	12	5
10.	X_i	1	2	3	4	5	6	7	8
	n_{i}	2	3	9	23	27	20	12	4
11.	x_{i}	2	3	4	5	6	7	8	9
	n_{i}	2	4	10	21	24	20	12	7
12.	\boldsymbol{x}_{i}	0	1	2	3	4	5	6	7
	n_{i}	2	4	10	21	26	22	11	4
13.	\boldsymbol{x}_{i}	0	1	2	3	4	5	6	7
	n_{i}	2	3	12	22	24	20	11	6
14.	X_i	1	2	3	4	5	6	7	8
	n_{i}	2	3	9	23	27	20	12	4
15.	X_i	2	3	4	5	6	7	8	9
	n_i	2	4	10	22	25	18	14	5

20.	X_i	0	1	2	3	4	5	6	7
	n_{i}	2	3	10	25	26	20	11	3
21.	X_{i}	0	1	2	3	4	5	6	7
	n_{i}	2	3	9	23	27	20	12	4
22.	x_i	2	3	4	5	6	7	8	9
	n_{i}	2	5	10	21	26	19	12	5
23.	x_i	2	3	4	5	6	7	8	9
	n_{i}	2	5	10	20	26	21	11	5
24.	\boldsymbol{x}_{i}	0	1	2	3	4	5	6	7
	n_{i}	2	4	9	22	26	20	12	5
25.	x_i	2	3	4	5	6	7	8	9
	n_{i}	2	4	10	21	26	22	11	4
26.	x_i	0	1	2	3	4	5	6	7
	n_{i}	2	4	10	21	23	22	12	6
27.	\boldsymbol{x}_{i}	0	1	2	3	4	5	6	7
	n_{i}	2	3	12	21	25	22	11	4
28.	\boldsymbol{x}_{i}	1	2	3	4	5	6	7	8
	n_{i}	2	3	13	22	25	20	11	4
29.	x_i	0	1	2	3	4	5	6	7
	n_{i}	2	4	10	22	26	23	10	4
30.	x_i	0	1	2	3	4	5	6	7
	n_{i}	2	3	10	24	26	20	12	3

Задание 4.

Случайная величина X распределена по закону Пуассона с неизвестным параметром λ . Статистическое распределение выборки представлено в таблице 3. Найти точечную оценку параметра λ методом наибольшего правдоподобия.

Задание 5.

Дано распределение признака X (случайной величины X), полученной по выборке объема n=100 (таблица 4). Методом произведений найти: выборочную среднюю, выборочную дисперсию, асимметрию и эксцесс.

Вариа нт	x_i	6	8	10	12	14	16	18	20	22	24	26
1	ni	1	3	6	11	15	20	14	12	10	6	2
2	ni	2	3	5	11	14	20	15	12	9	6	4
3	ni	1	2	6	12	15	20	14	13	10	5	2
4	n_i	2	2	6	11	14	21	14	12	10	6	2
5	n_i	1	3	5	12	15	20	16	11	9	6	2
6	n_i	2	4	7	11	14	19	13	12	10	5	3
7	n_i	2	3	7	11	14	20	14	12	8	6	3
8	ni	2	4	6	12	15	20	13	11	10	5	2
9	ni	1	4	7	11	15	21	14	11	10	5	1

10	n_i	1	4	6	12	14	20	14	12	10	5	2
11	n_i	1	4	7	12	15	20	15	11	9	5	1
12	n_i	2	3	6	12	16	20	15	12	8	5	1
13	n_i	2	3	7	12	16	20	14	11	8	6	1
14	n_i	1	3	6	12	16	22	14	11	9	4	2
15	n_i	2	3	6	12	15	22	14	12	8	5	1
16	n_i	1	4	8	11	16	21	14	11	8	5	1
17	n_i	1	5	7	11	16	20	15	10	8	5	2
18	n_i	1	5	8	11	15	20	14	11	9	4	2
19	n_i	1	4	8	12	15	21	14	11	9	4	1
20	n_i	1	4	7	10	16	21	14	12	9	4	3
21	n_i	1	4	6	11	15	23	15	10	9	5	1
22	n_i	2	3	7	12	16	18	15	12	8	5	2
23	n_i	2	3	5	12	16	24	12	11	8	6	1
24	n_i	1	2	6	12	16	23	14	11	9	4	2
25	n_i	1	3	6	12	15	21	17	12	7	5	1
26	n_i	1	4	8	11	17	21	14	10	8	5	1
27	n_i	1	5	7	11	14	22	15	10	8	5	2
28	n_i	1	5	8	11	13	23	14	11	9	4	1
29	n_i	1	4	8	12	15	18	14	11	10	5	2
30	n_i	1	4	7	10	14	23	14	12	9	4	3

Задание 6.

Для исследования доходов населения города, составляющего 20 тыс. человек, по схеме собственно-случайной бесповторной выборки было отобрано 1000 жителей. Получено следующее распределение жителей по месячному доходу (руб.) (таблица 5).

Необходимо: 1. а) Найти вероятность того, что средний месячный доход жителя города отличается от среднего дохода его в выборке не более, чем на 45 руб. (по абсолютной величине); б) определить границы, в которых с надежностью 0,99 заключен средний месячный доход жителей города.

2. Каким должен быть объем выборки, чтобы те же границы гарантировать с надежностью 0,9973?

Вариант	ν.	менее	500-1000	1000-	1500-	2000-	свыше
	x_i	500		1500	2000	2500	2500
1	n_i	58	96	239	328	147	132
2	n_i	52	102	230	320	140	156
3	n_i	53	98	242	340	150	117
4	n_i	46	94	246	334	148	132
5	n_i	58	101	238	324	146	133
6	n_i	52	90	237	328	142	151
7	n_i	48	86	224	330	143	169
8	n_i	60	95	226	340	148	131
9	n_i	51	87	235	338	151	138
10	n_i	47	97	228	349	153	126
11	n_i	44	104	241	346	145	120
12	n_i	40	86	240	332	157	145
13	n_i	55	101	239	328	152	125
14	n_i	61	100	230	336	143	130
15	n_i	49	96	250	337	144	124
16	n_i	53	94	248	329	148	128

17	n_i	54	93	246	341	152	114
18	n_i	46	92	249	342	151	120
19	n_i	58	91	238	327	143	143
20	n_i	49	101	240	331	150	129
21	n_i	44	106	231	348	147	124
22	n_i	40	85	245	331	156	143
23	n_i	55	101	237	328	154	125
24	n_i	61	99	233	335	142	130
25	n_i	51	97	243	339	146	124
26	n_i	53	94	247	329	149	128
27	n_i	56	95	236	343	156	114
28	n_i	47	93	244	342	151	123
29	n_i	58	91	234	329	145	143
30	n_i	49	104	232	334	152	129

Задание 7.

Дано распределение признака X (X — месячный доход жителя региона в руб.), полученной по n наблюдениям (n=1000 жителей) (таблица 5). Необходимо на уровне значимости 0,05 проверить гипотезу о нормальном законе распределения признака (случайной величины) X, используя критерий согласия: а) χ^2 -Пирсона; б) Колмогорова.

Задание 8. Найти выборочное уравнение линейной регрессии Y на X на основании корреляционной таблицы (таблица 6).

Bap		К	оррел	яцион	ная т	аблиц	(a	Bap	Корреляционная таблица							
иан								иант								
T																
1	YX	10	15	20	25	30	35	2	YX	10	15	20	25	30	35	40
	15	6	4						100	2	4		8	4		10
	25		6	8					110	3		5		2	10	
	35				21	2	5		120		3		4	5	6	
	45				4	12	6		130	2		4	6			5
	55					1	5		140		4	7			1	5
3	YX	20	25	30	35	40	45	4	YX	5	10	15	20	25	30	35
	10		4	8			4		15	10		4	8		4	2
	20	2		4		2			25		10	2		5		3
	30			10	8				35		6	5	4		3	
	40		4		10	4			45	5			6	4		2
									55	5	1			7	4	
5	YX	5	10	15	20	25	30	6	YX	10	15	20	25	30	35	
	14	4	6		8		4		10	2	4		8	4	10	
	24		8	10		6			30		4	7		5	1	
	34			32					50	3	2	5	10			
	44			4	12	6			70	2		4	6	5		
									90		3	5	6		4	
7	YX	15	20	25	30	35	40	8	YX	10	12	14	16	18	20	22
	100	2	1		7				20		2	6	5			4
	120	4		2			3		40	4			5	1		7
	140		5		10	5	2		60	4	2	8	10		4	

	160			3	1	2	3			80		3			10	2	5
										100	3		4		6	5	
9	YX	20	25	30	35	40	45		10	YX	5	10	15	20	25	30	
	105			4	2	1				80	5	1		4	7		
	115	2	1		3	8	5			100		2	6	5		4	
	125		4	2	1		3			120	3		4		5	6	
	135	3	2	10		3	2			140		10		2	3	5	
	145	1	3		8		2			160	10		4	8	2	4	
11	X	10	15	20	25	30	35		12	Y	10	15	20	25	30	35	40
	1		10	20	23				12	x \	10	10	20	23	30		10
	15	6	4							10	1		5		7	4	
	25		6	8						20	-	2		4	6		5
	35				20	2	5			30		3		5		4	6
	45				5	12	6			40	10		2	3		5	
	55					1	5			50	2		4		4	8	10
13	YX	5	10	15	20	25	30	3	14	YX	30	40	50	60	70	80	90
				10											, 0		
	30	4	6	-	4	7	2	5		20	4	6	-	4	7	2	5
	40	4	4	5	-	7	1			30	4	4	5	_	7	1	6
	50	_	4	3	5	1.0		6		40		4	3	5	10		0
	60	5	3		1.0	10	2	0		50	5	3	4	1.0	4	2	8
1.5	70 x x	10	1.5	4	10	4	2	8	1.6	60 X	2.4	20	4	10	4.0	2	40
15	Y	12	17	22	27	32	37		16	Y	24	28	32		40	44	48
	105		4		3	4.0				10	4	6	_	4	_	2	5
	115	2	3	1		10				20	4		5	_	7	1	
	125	3		5	1		4			30	_	4	3	5	1.0		6
	135				8	2	1			40	5	3		4.0	10	2	
	145	1	2	• •		•			4.0	50 v	_		4	10	4	2	8
17	YX	10	15	20	25	30	35		18	YX	5	10	15	20	25	30	35
	14	_	_	4	2	1				5	10		3	5		1	4
	24	2	1		3	8	5			15		4	10		2	8	
	34		4	2	1		3			25	3	4		6			6
	44	3	2	10		3	2			35				4	7	1	5
	54	1	3		9		1			45	2	5			10		
19	YX	10	15	20	25	30	35		20	YX	10	15	20	25	30	35	40
	20	1	5		7		4			15	2		4	6	5		
	40	2		4		6	5			30		4	7			1	5
	60		3	5	4	6				45	3			4	5	6	
	80	10		2	3		5			60	3	5		2			10
	100	2	4		4	8	10			75		4	2		4	10	8
21	YX	5	10	15	20	25	30		22	YX	20	22	24	26	28	30	32
	15		6	4	2		2			30		6		4		2	5
	25	4	2	8	1	5				40	4		5		7	1	
	35				10	7	1			50		4	3	5			6
	45	5	3	8		6	7			60	5	3			10	2	
	55	9	5		4		1			70		4	10	4	2	8	
23	YX	5	10	15	20	25	30	35	24	YX	5	10	15	20	25	30	
1		Ι1 Λ	Ì	1 2	5	Ì	1	4		100		6	4	2		2	
		10		3	3				1								
	25		4	10		2	8			110	4	2	8	1	5		
		3	4		6 4	2		6 5			5	3	8		5 7 6	1 7	

	55	2	5			10				140	9	5		4		1	
25	YX	10	15	20	25	30	35	40	26	YX	20	25	30	35	40	45	
	10	2		4	6	5				30		6		4		2	
	20		4	7			1	5		40	4	1	5		7		
	30	3			4	5	6			50	3		4	5		6	
	40	3	5		2			10		60	5	3		10	2		
	50		4	2		4	10	8		70		2	3		3	5	
27	YX	5	10	15	20	25	30	35	28	YX	10	15	20	25	30	35	
	30		6		4		2	5		36		4		3			
	40	4		5		7	1			46	2	3	1		10		
	50		4	3	5			6		56	3		5	1		4	
	60	5	3			10	2			66				8	2	1	
	70			4	10	4	2	8		76	1	2					
29	Y X	10	15	20	25	30	35	40	30	Y X	42	46	50	54	58	62	
	30		4	7			1	5		15			4	2	1		
	50	2		4	6	5				25	2	1		3	8	5	
	70		3		4	5	6			35		4	2	1		3	
	90	10		2			5	3		45	3	2	10		3	2	
	110	2	4		8	4		10		55	1	3		9		1	

Список литературы

Основная литература:

- 1. Балдин, К. В. Теория вероятностей и математическая статистика: учебник / К. В. Балдин, В. Н. Башлыков, А. В. Рукосуев. М.: Дашков и К, 2016. 472 с. ISBN 978-5-394-02108-4. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/62453.html
- 2. Шилова, З. В. Теория вероятностей и математическая статистика : учебное пособие / З. В. Шилова, О. И. Шилов. Саратов : Ай Пи Ар Букс, 2015. 158 с. ISBN 978-5-906-17262-4. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/33863.html

Дополнительная литература:

- 1. Учебно-методическое пособие по курсу Теория вероятностей и математическая статистика. Часть І / составители Д. Б. Демин, И. С. Синева, Е. А. Скородумова. М. : Московский технический университет связи и информатики, 2016. 46 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/61556.html
- 2. Учебно-методическое пособие по курсу Теория вероятностей и математическая статистика. Часть II / составители А. В. Власов, М. С. Лохвицкий, И. С. Синева. М. : Московский технический университет связи и информатики, 2016. 32 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/61557.html
- 3. Гмурман В. Е. Теория вероятностей и математическая статистика : Учеб. пособие для бакалавров. М. : ЮРАЙТ, 2013.

Значения функции
$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$
.

х	0	1	2	3	4	5	6	7	8	9
0,0	0,3989	3989	3989	3988	3986	3984	3982	3980	3977	3973
0,1	3970	3965	3961	3956	3951	3945	3939	3932	3925	3918
0,2	3910	3902	3894	3885	3876	3867	3857	3847	3836	3825
0,3	3814	3802	3790	3778	3765	3752	3739	3725	3712	3697
0,4	3683	3668	3653	3637	3621	3605	3589	3572	3555	3538
0,5	3521	3503	3485	3467	3448	3429	3410	3391	3372	3352
0,6	3332	3312	3292	3271	3251	3230	3209	3187	3166	3144
0,7	3123	3101	3079	3056	3034	3011	2989	2966	2943	2920
0,8	2897	2874	2850	2827	2803	2780	2756	2732	2709	2685
0,9	2661	2637	2613	2589	2565	2541	2516	2492	2468	2444
1,0	2420	2396	2371	2347	2323	2299	2275	2251	2227	2203
1,1	2179	2155	2131	2107	2083	2059	2036	2012	1989	1965
1,2	1942	1919	1895	1872	1849	1826	1804	1781	1758	1736
1,3	1714	1691	1669	1647	1626	1604	1582	1561	1539	1518
1,4	1497	1476	1456	1435	1415	1394	1374	1354	1334	1315
1,5	1295	1276	1257	1238	1219	1200	1182	1163	1145	1127
1,6	1109	1093	1074	1057	1040	1023	1006	0989	0973	0957
1,7	0940	0925	0909	0893	0878	0863	0848	0833	0818	0804
1,8	0790	0775	0761	0748	0734	0721	0707	0694	0681	0669
1,9	0656	0644	0632	0620	0608	0596	0584	0573	0562	0551
2,0	0540	0529	0519	0508	0498	0488	0478	0468	0459	0449
2,1	0440	0431	0422	0413	0404	0396	0387	0379	0371	0363
2,2	0355	0347	0339	0332	0325	0317	0310	0303	0297	0290
2,3	0283	0277	0270	0264	0258	0252	0246	0241	0235	0229
2,4	0224	0219	0213	0208	0203	0198	0194	0189	0184	0180
2,5	0175	0171	0167	0163	0158	0154	0151	0147	0143	0139
2,6	0136	0132	0129	0126	0122	0119	0116	0113	0110	0107
2,7	0104	0101	0099	0096	0093	0091	0088	0086	0084	0081
2,8	0079	0077	0075	0073	0071	0069	0067	0065	0063	0061
2,9	0060	0058	0056	0055	0053	0051	0050	0048	0047	0046

3,0	0044	0043	0042	0040	0039	0038	0037	0036	0035	0034
3,1	0033	0032	0031	0030	0029	0028	0027	0026	0025	0025
3,2	0024	0023	0022	0022	0021	0020	0020	0019	0018	0018
3,3	0017	0017	0016	0016	0015	0015	0014	0014	0013	0013
3,4	0012	0012	0012	0011	0011	0010	0010	0010	0009	0009
3,5	0009	8000	8000	8000	8000	0007	0007	0007	0007	0006
3,6	0006	0006	0006	0005	0005	0005	0005	0005	0005	0004
3,7	0004	0004	0004	0004	0004	0004	0003	0003	0003	0003
3,8	0003	0003	0003	0003	0003	0002	0002	0002	0002	0002
3,9	0002	0002	0002	0002	0002	0002	0002	0002	0001	0001

Таблица 2

Значения функции
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-z^{2}/2} dz$$
.

х	$\Phi\left(x\right)$	X	$\Phi\left(x\right)$	x	$\Phi\left(x\right)$	x	$\Phi\left(x\right)$	x	$\Phi\left(x\right)$
0,00	0,0000	0,35	0,1368	0,70	0,2580	1,05	0,3531	1,40	0,4192
0,01	0,0040	0,36	0,1406	0,71	0,2611	1,06	0,3554	1,41	0,4207
0,02	0,0080	0,37	0,1443	0,72	0,2642	1,07	0,3577	1,42	0,4222
0,03	0,0120	0,38	0,1480	0,73	0,2673	1,08	0,3599	1,43	0,4236
0,04	0,0160	0,39	0,1517	0,74	0,2704	1,09	0,3621	1,44	0,4251
0,05	0,0199	0,40	0,1554	0,75	0,2734	1,10	0,3643	1,45	0,4265
0,06	0,0239	0,41	0,1591	0,76	0,2764	1,11	0,3665	1,46	0,4279
0,07	0,0279	0,42	0,1628	0,77	0,2794	1,12	0,3686	1,47	0,4292
0,08	0,0319	0,43	0,1664	0,78	0,2823	1,13	0,3708	1,48	0,4306
0,09	0,0359	0,44	0,1700	0,79	0,2852	1,14	0,3729	1,49	0,4319
0,10	0,0398	0,45	0,1736	0,80	0,2881	1,15	0,3749	1,50	0,4332
0,11	0,0438	0,46	0,1772	0,81	0,2910	1,16	0,3770	1,51	0,4345
0,12	0,0478	0,47	0,1808	0,82	0,2939	1,17	0,3790	1,52	0,4357
0,13	0,0517	0,48	0,1844	0,83	0,2967	1,18	0,3810	1,53	0,4370
0,14	0,0557	0,49	0,1879	0,84	0,2995	1,19	0,3830	1,54	0,4382
0,15	0,0596	0,50	0,1915	0,85	0,3023	1,20	0,3849	1,55	0,4394
0,16	0,0636	0,51	0,1950	0,86	0,3051	1,21	0,3869	1,56	0,4406
0,17	0,0675	0,52	0,1985	0,87	0,3078	1,22	0,3883	1,57	0,4418
0,18	0,0714	0,53	0,2019	0,88	0,3106	1,23	0,3907	1,58	0,4429

0,19	0,0753	0,54	0,2054	0,89	0,3133	1,24	0,3925	1,59	0,4441
0,20	0,0793	0,55	0,2088	0,90	0,3159	1,25	0,3944	1,60	0,4452
0,21	0,0832	0,56	0,2123	0,91	0,3186	1,26	0,3962	1,61	0,4463
0,22	0,0871	0,57	0,2157	0,92	0,3212	1,27	0,3980	1,62	0,4474
0,23	0,0910	0,58	0,2190	0,93	0,3238	1,28	0,3997	1,63	0,4484
0,24	0,0948	0,59	0,2224	0,94	0,3264	1,29	0,4015	1,64	0,4495
0,25	0,0987	0,60	0,2257	0,95	0,3289	1,30	0,4032	1,65	0,4505
0,26	0,1026	0,61	0,2291	0,96	0,3315	1,31	0,4049	1,66	0,4515
0,27	0,1064	0,62	0,2324	0,97	0,3340	1,32	0,4066	1,67	0,4525
0,28	0,1103	0,63	0,2357	0,98	0,3365	1,33	0,4082	1,68	0,4535
0,29	0,1141	0,64	0,2389	0,99	0,3389	1,34	0,4099	1,69	0,4545
0,30	0,1179	0,65	0,2422	1,00	0,3413	1,35	0,4115	1,70	0,4554
0,31	0,1217	0,66	0,2454	1,01	0,3438	1,36	0,4131	1,71	0,4564
0,32	0,1255	0,67	0,2486	1,02	0,3461	1,37	0,4147	1,72	0,4573
0,33	0,1293	0,68	0,2516	1,03	0,3485	1,38	0,4162	1,73	0,4582
0,34	0,1331	0,69	0,2549	1,04	0,3508	1,39	0,4177	1,74	0,4591
1,75	0,4599	1,93	0,4732	2,22	0,4868	2,58	0,4951	2,94	0,4984
1,76	0,4608	1,94	0,4738	2,24	0,4875	2,60	0,4953	2,96	0,4985
1,77	0,4616	1,95	0,4744	2,26	0,4881	2,62	0,4956	2,98	0,4986
1,78	0,4625	1,96	0,4750	2,28	0,4887	2,64	0,4959	3,00	0,49865
1,79	0,4633	1,97	0,4756	2,30	0,4893	2,66	0,4961	3,20	0,49931
1,80	0,4641	1,98	0,4761	2,32	0,4898	2,68	0,4963	3,40	0,49966
1,81	0,4649	1,99	0,4767	2,34	0,4904	2,70	0,4965	3,60	0,499841
1,82	0,4656	2,00	0,4772	2,36	0,4909	2,72	0,4967	3,80	0,499928
1,83	0,4664	2,02	0,4783	2,38	0,4913	2,74	0,4969	4,00	0,499968
1,84	0,4671	2,04	0,4793	2,40	0,4918	2,76	0,4971	4,50	0,499997
1,85	0,4678	2,06	0,4803	2,42	0,4922	2,78	0,4973	5,00	0,499997
1,86	0,4686	2,08	0,4812	2,44	0,4927	2,80	0,4974		
1,87	0,4693	2,10	0,4821	2,46	0,4931	2,82	0,4976		
1,88	0,4699	2,12	0,4830	2,48	0,4934	2,84	0,4977		
1,89	0,4706	2,14	0,4838	2,50	0,4938	2,86	0,4979		
1,90	0,4713	2,16	0,4846	2,52	0,4941	2,88	0,4980		
1,91	0,4719	2,18	0,4854	2,54	0,4945	2,90	0,4981		
1,92	0,4726	2,20	0,4861	2,56	0,4948	2,92	0,4982		