Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ефанов Алексей Валерьевич

Должность: Директор Невиномысского технологического института (филиал) СКФУ

Дата подписания: 11.10.2022 14:51:10 Уникальный программный ключ:

49214306dd433e7a1b0f8632f645f9d53c99e3d0

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ: Зав. кафедрой ХТМиАХП
______ Е.Н. Павленко

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля успеваемости и промежуточной аттестации

по дисциплине «Общая и неорганическая химия» (ЭЛЕКТРОННЫЙ ДОКУМЕНТ)

Направление подготовки/специальность Направленность (профиль)/специализация 18.03.01 Химическая технология Химическая технология синтетических биологически активных веществ, химико-

фармацевтических препаратов и

косметических средств

Квалификация выпускника Форма обучения Год начала обучения Изучается в 1, 2 семестрах

бакалавр очная 2021 года

Предисловие

1.	Назначение – текущий контроль по дисциплине «Общая и неорганическая химия»
	 вид систематической проверки знаний, умений, навыков студентов. Задача текущего контроля – получить первичную информацию о ходе и качестве усвоения
	учебного материала, а также стимулировать регулярную целенаправленную работу
	студентов. Задача промежуточной аттестации – получить достоверную
	информацию о степени освоения дисциплины.
2.	Фонд оценочных средств текущего контроля успеваемости и промежуточной
	аттестации разработан на основе рабочей программы дисциплины Физическая
	химия в соответствии с образовательной программой высшего образования по направлению подготовки Химическая технология, утвержденной на заседании
	Ученого совета НТИ (филиал) СКФУ протокол № от «»г.
3.	Разработчик(и): Чередниченко Т.С., доцент кафедры ХТМиАХП
	Сыпко К.С., ст. преподаватель кафедры ХТМиАХП;
4.	ФОС рассмотрен и утвержден на заседании кафедры Химической технологии и аппаратов химических производств, Протокол № от «»г.
маши	н и аппаратов химических производств, протокол № от «т.
5.	ФОС согласован с выпускающей кафедрой Химической технологии машин и
	атов химических производств, Протокол № от «»г.
6.	Проведена экспертиза ФОС. Члены экспертной группы, проводившие внутреннюю
о. экспеј	
Предс	едатель Е.Н. Павленко, и.о. зав. кафедрой ХТМиАХП
	Свидченко А.И., доцент кафедры ХТМиАХП
Экспе	ртное заключение: ФОС соответствует требованиям ФГОС ВО по направлению
подго	говки Химическая технология. Рекомендовать к использованию в учебном процессе.
« <u></u>	» Е.Н. Павленко
	(подпись)

7. Срок действия ФОС на срок реализации образовательной программы

Паспорт фонда оценочных средств для проведения текущего контроля и промежуточной аттестации

По дисциплине Общая и неорганическая химия

Направление подготовки 18.03.01 Химическая технология

Профиль Химическая технология синтетических биологически активных веществ,

химико-фармацевтических препаратов и косметических средств

Квалификация выпускника бакалавр

Форма обучения очная

Год начала обучения 2021

Изучается в <u>1</u>, <u>2</u> семестре

Код оцениваемой компетенции (или ее части)	Этап формирования компетенции (№темы)	Тип контроля	Вид контроля	Наименование оценочного средства	Количество заданий дл уровня, шт. Базовый	ия каждого
УК-1; ОПК-1	1,2,3,4,5,6,7,8,9	устный	промежуточный	Вопросы к экзамену	57	21
УК-1; ОПК-1	1,2,3,4,5,6,7,8,9	устный	текущий	Вопросы для собеседования	42	33

Составитель _	(подпи	т.С. Чередниченко
	(подпи	<u> К.С. Сыпко</u>
« »	2021 г	,

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

		УТВЕРЖДАЮ:
Зав. кафе		дрой ХТМиАХП
		Е.Н. Павленко
"	<i>)</i>)	2021 г

Вопросы к экзамену

Базовый уровень

Вопросы к экзамену (1 семестр)

Вопросы (задача, задание) для проверки уровня обученности

Знать Базовый

- 1. Предмет и задачи общей и неорганической химии. Место химии в системе естественных наук..
- 2. Формы движения материи. Химическая форма движения материи.
- 3. Методы использования знаний свойств химических элементов, соединений и материалов на их основе для решения задач профессиональной деятельности
- 4. Определение, цели и задачи дисциплины «Общая и неорганическая химия».
- 5. Основные понятия химии атом, молекула, химический элемент, моль, эквивалент.
- 6. Углеродная единица. Абсолютная и относительная атомная и мольная массы.
- 7. Основные законы химии. Закон сохранения массы веществ, закон постоянства состава, Закон Авогадро и его следствия.
- 8. Относительная плотность газов. Определение мольных масс газов. Уравнение Клапейрона-Менделеева.
- 9. Уравнение Луи де Бройля. Двойственная природа электрона.
- 10. Движение электрона в свете представлений квантовой механики.
- 11. Атомные орбитали.
- 12. Квантовые числа. Принцип Паули. Принцип наименьшей энергии.
- 13. Правила Клечковского. Правило Гунда.
- 14. Две формулировки периодического закона Д.И. Менделеева. Структура ПС. Определение периодов и групп.
- 15. Причина периодичности свойств веществ. Понятие о вторичной периодичности.
- 16. Природа химической связи (ХС). Типы ХС.
- 17. Ковалентная связь (КС) направленность, насыщаемость, полярность и поляризуемость.
- 18. Термохимия. Тепловые эффекты.
- 19. Понятие энтальпии. Термохимические уравнения.
- 20. Закон Гесса и его следствие
- 21. Химическая кинетика определение, задачи. Необходимые и достаточные условия протекания химических реакций.

- 22. Энергия активации Уравнение Аррениуса.
- 23. Скорость химических реакций. Закон действия масс.
- 24. Молекулярность и порядок реакций.
- 25. Зависимость скорости реакций от температуры. Правило Вант-Гоффа.
- 26. Понятие о катализе.
- 27. Химическое равновесие. Константа равновесия.
- 28. Условия смещения химического равновесия принцип Ле-Шателье.
- 29. Уравнение Гиббса и его анализ.
- 30. Связь константы равновесия реакции и потенциала Гиббса.

Повышенный

- 1. История развития понятия "атом". Модель атома Дж. Дж. Томсона.
- 2. Ядерная модель Э. Резерфорда.
- 3. Уравнение М. Планка. Планетарная модель атома Н. Бора.
- 4. Метод валентных связей (МВС) основные положения.
- 5. Типы гибридизации sp-, sp2-, sp3- и sp3d2. Недостатки MBC.
- 6. Поляризуемость. Дипольные моменты молекул.
- 7. Понятие о делокализованных связях.
- 8. Ионная связь и её особенности.
- 9. Водородная и металлическая связи.
- 10. Виды межмолекулярного взаимодействия дисперсионное, ориентационное и индукционное.
- 11. Метод молекулярных орбиталей (ММО) основные положения.
- 12. Энергетические диаграммы двухатомных молекул.

Уметь, влалеть

- 1. Базовый
- 2. Составлять электронные схемы и формулы атомов малых и больших периодов.
- 3. Анализировать кривую потенциальной энергии образования молекулы водорода. Определять степень окисления и валентность.
- 4. Рассчитывать тепловые эффекты химических реакций. Составлять термохимические уравнения, использовать закон Гесса.
- 5. Рассчитывать скорость химических реакций используя закон действия масс. Определять молекулярность и порядок реакций.
- 6. Использовать правило Вант-Гоффа для расчета скорости реакции.
- 7. Рассчитывать константу равновесия. Определять направление смещения химического равновесия, используя принцип Ле-Шателье.
- 8. Рассчитывать концентрацию растворов.
- 9. Тепловые эффекты растворения.
- 10. Рассчитывать изменение температуры кипения и кристаллизации.
- 11. Определить константу и степень протолиза.
- 12. Составлять ионные реакции и ионные равновесия.
- 13. Протолиз различного типа солей. Константа и степень протолиза.
- 14. Определять степень окисления комплексообразователя и комплексного иона.
- 15. Алгоритмы составления полных уравнений ОВР электронного и ионно-электронного балансов.
- 16. Рассчитывать ЭДС гальванического элемента используя уравнение Нернста.
- 17. Законы электролиза М. Фарадея.
- 18. Коррозия металлов химическая и электрохимическая.
- 19. Методы защиты металлических изделий от коррозии.
- 20. Составлять уравнения процесса коррозии протекающие при нарушении покрытий оцинкованного, луженного, кадмированного, хромированного и никелированного железа.

- 21. Повышенный
- 22. Анализировать кривую потенциальной энергии образования молекулы водорода.
- 23. Определять степень окисления и валентность.
- 24. Составлять электронные схемы и формулы атомов малых и больших периодов
- 25. Рассчитывать тепловые эффекты химических реакций.
- 26. Составлять термохимические уравнения, использовать закон Гесса.
- 27. Рассчитывать скорость химических реакций используя закон действия масс.
- 28. Определять молекулярность и порядок реакций.
- 29. Использовать правило Вант-Гоффа для расчета скорости реакции.
- 30. Рассчитывать константу равновесия.
- 31. Определять направление смещения химического равновесия, используя принцип Ле-Шателье.
- 32. Рассчитывать концентрацию растворов.
- 33. Тепловые эффекты растворения.

Вопросы к экзамену (2 семестр)

Вопросы (задача, задание) для проверки уровня обученности

Знать Базовый

- 1. Определение растворов. Способы выражения концентраций растворов.
- 2. Растворимость определение, способы выражения. Растворимость твердых и жидких веществ. Закон распределения.
- 3. Разбавленные растворы неэлектролитов. Осмос. Закон Вант-Гоффа.
- 4. Теория электролитической диссоциации. Понятие "протолиз". Константа и степень протолиза.
- 5. Ионные реакции и ионные равновесия. Условия смещения ионных равновесий.
- 6. Произведение растворимости и его связь с растворимостью малорастворимых соединений.
- 7. Протолиз различного типа солей.
- 8. Константа и степень протолиза.
- 9. Комплексные соединения (КС) определение, причины образования.
- 10. Основные положения теории А. Вернера.
- 11. Структура КС. Степень окисления комплексообразователя и комплексного иона.
- 12. Классификация и номенклатура КС. Что определяет устойчивость КС. Ионизация КС в растворах.
- 13. Окислительно-восстановительные реакции (ОВР) определение, типы.
- 14. Алгоритмы составления полных уравнений ОВР электронного и ионно-электронного балансов.
- 15. Предмет электрохимии. Гальванический элемент (ГЭ). Стандартный электродный потенциал (СЭП).
- 16. Стандартный водородный электрод устройство и принцип работы.
- 17. Определение СЭП металлов. Понятие ЭДС ГЭ.
- 18. Зависимость ОВ потенциалов от различных факторов.
- 19. Уравнение Нернста. Схемы ГЭ.
- 20. Электролиз определение; устройство и принцип работы электролизёра.
- 21. Электроды растворимые и нерастворимые. Электролиз растворов и расплавов.
- 22. Законы электролиза М. Фарадея.

- 23. Коррозия металлов химическая и электрохимическая.
- 24. Защита металлических изделий от коррозии.
- 25. Процессы коррозии протекающие при нарушении покрытий оцинкованного, луженного, кадмированного, хромированного и никелированного железа.
- 26. Общие свойства металлов положение в ПС; химические и физические свойства.
- 27. Общие свойства неметаллов положение в ПС; химические и физические свойства

Повышенный

- 1. Растворимость газов. Закон Генри. Тепловые эффекты растворения.
- 2. Давление насыщенного пара. Изменение температуры кипения и кристаллизации. Первый и второй законы Рауля.
- 3. Вода протолиз, ионное произведение; рН и рОН.
- 4. Понятие о буферных растворах.
- 5. Природа химической связи в КС.
- 6. Метод валентных связей (МВС). Недостатки МВС.
- 7. Направленность ОВР. Уравнение Нернста.
- 8. Электролитический синтез алюминия и меди.
- 9. Аккумуляторы щелочные и кислотные. Сущность OB-процессов при зарядке и разрядке свинцового, железо-никелевого и серебряно-цинкового электродов.

Уметь, владеть

Базовый

- 1. Рассчитывать изменение температуры кипения и кристаллизации.
- 2. Определить константу и степень протолиза.
- 3. Составлять ионные реакции и ионные равновесия.
- 4. Протолиз различного типа солей. Константа и степень протолиза.
- 5. Определять степень окисления комплексообразователя и комплексного иона.
- 6. Алгоритмы составления полных уравнений ОВР электронного и ионно-электронного балансов.
- 7. Рассчитывать ЭДС гальванического элемента используя уравнение Нернста.
- 8. Законы электролиза М. Фарадея.
- 9. Коррозия металлов химическая и электрохимическая.
- 10. Методы защиты металлических изделий от коррозии.
- 11. Составлять уравнения процесса коррозии протекающие при нарушении покрытий оцинкованного, луженного, кадмированного, хромированного и никелированного железа.

Повышенный

- 1. Рассчитывать концентрацию растворов.
- 2. Тепловые эффекты растворения.
- 3. Рассчитывать изменение температуры кипения и кристаллизации.
- 4. Определить константу и степень протолиза.
- 5. Составлять ионные реакции и ионные равновесия.
- 6. Протолиз различного типа солей. Константа и степень протолиза.
- 7. Определять степень окисления комплексообразователя и комплексного иона.
- 8. Алгоритмы составления полных уравнений ОВР электронного и ионно-электронного балансов.
- 9. Рассчитывать ЭДС гальванического элемента используя уравнение Нернста.
- 10. Законы электролиза М. Фарадея.
- 11. Коррозия металлов химическая и электрохимическая.
- 12. Методы защиты металлических изделий от коррозии.
- 13. Составлять уравнения процесса коррозии протекающие при нарушении покрытий оцинкованного, луженного, кадмированного, хромированного и

1. Критерии оценивания компетенций

Оценка «отлично» выставляется студенту, полностью освоившему все компетенции показавшему всесторонние, систематизированные, глубокие знания учебной программы дисциплины и умение уверенно применять их на практике при решении конкретных задач, свободное и правильное обоснование принятых решений;

Оценка «хорошо» выставляется студенту, если он в недостаточной мере освоил все компетенции, но твердо знает материал, грамотно и по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе или в решении задач некоторые неточности;

Оценка «удовлетворительно» выставляется студенту частично и поверхностно освоившему компетенции показавшему фрагментарный, разрозненный характер знаний, недостаточно правильные формулировки базовых понятий, нарушения логической последовательности в изложении программного материала, но при этом он владеет основными разделами учебной программы, необходимыми для дальнейшего обучения и может применять полученные знания по образцу в стандартной ситуации;

Оценка «неудовлетворительно» выставляется студенту, который не освоил компетенции и не знает большей части основного содержания учебной программы дисциплины, допускает грубые ошибки в формулировках основных понятий дисциплины и не умеет использовать полученные знания при решении типовых практических задач.

2. Описание шкалы оценивания

Промежуточная аттестация в форме экзамена предусматривает проведение обязательной экзаменационной процедуры и оценивается 40 баллами из 100. Минимальное количество баллов, необходимое для допуска к экзамену, составляет 33 балла. Положительный ответ студента на экзамене оценивается рейтинговыми баллами в диапазоне от 20 до 40 ($20 \le S_{9K3} \le 40$), оценка меньше 20 баллов считается неудовлетворительной.

Шкала соответствия рейтингового балла экзамена 5-балльной системе

Рейтинговый балл по дисциплине	Оценка по 5-балльной системе
35 – 40	Отлично
28 – 34	Хорошо
20 – 27	Удовлетворительно

3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедура проведения экзамена осуществляется в соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования в СКФУ.

В экзаменационный билет включаются 3 вопроса. Принципиальным отличием вопросов базового уровня от повышенного является то, что они носят более углубленный характер.

Для подготовки по билету отводиться 30 мин.

При подготовке к ответу студенту предоставляется право пользования справочными таблицами.

Составитель		Т.С. Чередниченко
	(подпись)	
		К.С. Сыпко
	(подпись)	
« »	2021 г.	

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

	УТВЕРЖДАЮ:
Зав. кас	редрой ХТМиАХП
	Е.Н. Павленко
«»	2021 г.

Вопросы для собеседования

по дисциплине Общая и неорганическая химия

Базовый уровень

Основные понятия и законы химии.

- 1. Что называется оксидами? Какую степень окисления проявляет кислород в оксидах?
- 2. Дайте краткую классификацию оксидам.
- 3. Что называется кислотами? Приведите их классификацию
- 4. Что называется основаниями? Приведите их классификацию

Общие закономерности протекания химических процессов.

- 1. Что изучает химическая кинетика и для чего она служит?
- 2. Какие факторы необходимы для вступления в химическую реакцию реагирующих частиц?
- 3. Дайте определение скорости химической реакции. Как выглядит график, отражающий зависимость скорости элементарной реакции вида $P+G \leftrightarrow Q$ от: 1) концентрации реагента G; 2) концентрации продукта реакции Q?
- 4. Как читается первая формулировка закона действия масс?
- 5. Какой смысл имеет константа скорости реакций? От чего зависит и от чего не зависит этот параметр?
- 6. Приложим ли закон действия масс к сложным (многостадийным) реакциям? Ответ поясните на примере.
- 7. Укажите, когда скорость химической реакции действительно пропорциональна произведению концентраций реагирующих веществ в степенях, равных их стехиометрическим коэффициентам.
- 8. Что называют молекулярностью и порядком химических реакций? Всегда ли они одинаковы?
- 9. Как определяют молекулярность и порядок сложных реакций? Поясните ответ на примере.
- 10. Какие частицы называют «активными»? Дайте определение понятию «энергия активации». *Растворы*.
- 1. Что такое электролитическая диссоциация?
- 2. Электролиты и не электролиты.
- 3. Кто из химических соединений является электролитом?
- 4. Что называется протолизом?
- 5. Какие соли подвергаются протолизу?
- 6. Сформулируйте понятие «произведение растворимости». Для какого типа соединений оно применимо? Приведите примеры.
- 7. Напишите уравнения процессов протолиза для следующих соединений: $CaCO_3$, Ag_2CrO_4 , $Al(OH)_3$. Как будут выглядеть соответствующие им выражения произведений растворимости? Найдите их значения в справочнике и запишите.
- 8. Что такое активность? Ионная сила раствора? Приведите формулы для их расчета.
- 9 Из каких компонентов состоят водные растворы следующих веществ: Na_3PO_4 , K_2SO_3 , $NaNO_3$? Ответ дать с учетом процессов протолиза ионов.
- 10 Для чего применяют ареометр? Какова последовательность операций при замере плотности жидкости?

Комплексные соединения

- 1. Какие соединения называют комплексными?
- 2 Чем объясняется их многообразие?
- 3 Почему трудно дать всеобъемлющее (очень полное, исчерпывающее) определение комплексным соединениям?
 - 4 Кто автор координационной теории КС? Когда она появилась?
 - 5 Из каких элементов состоят КС? Приведите примеры.
- 6 Какая связь называется донорно-акцепторной или координационной? Какой атом, молекула или ион является донором в комплексах $[Cr(CO)_6]$, $[Ag(NH_3)_2]^+$, $[AlH_4]^-$?
- 7 Как рассчитывается степень окисления комплексообразователя и заряд комплексного иона? Ответ поясните на примере комплексов вопроса 6.
- 8 На какие типы подразделяют комплексные соединения? Приведите по два примера таких соединений и дайте им названия.
- 9 Что такое координационное число комплексообразователя? Какие частицы называют лигандами? Ответ поясните на примерах.

Окислительно-восстановительные реакции

- 1 Что называют степенью окисления? Как её обозначают и какие значения может она принимать? Ответ поясните на примерах.
 - 2 Как определяется максимальная и минимальная степени окисления элементов?
 - 3 Какие реакции называют окислительно-восстановительными? Приведите примеры.
 - 4 Какие реагенты называют восстановителями, какие окислителями?
 - 5 В чем суть метода полуреакций? Для каких систем он применим?
 - 6 Как выражается константа равновесия реакции и что она выражает?
 - 7 Как можно рассчитать константу равновесия? Приведите соответствующие формулы.
 - 8 От каких факторов зависит протекание окислительно восстановительных реакций?
 - 9 Зависимость от каких параметров отражает уравнение Нернста?

Повышенный уровень

Основные понятия и законы химии.

- 1. Какие элементы образуют оксиды?
- 2. Как составляется химическая формула оксида?
- 3. Какие оксиды образует азот?
- 4. Какие оксиды взаимодействуют с водой. Привести пример.
- 5 Какие соединения называются солями? Приведите их классификацию

Общие закономерности протекания химических процессов.

- 1. Как изменяется энергия активации в присутствии катализатора?
- 2. Что происходит с реагирующими частицами при нагревании?
- 3. Приведите формулировку правила Вант-Гоффа. Какая формула отражает математическую зависимость возрастания скорости с увеличением температуры?
- 4. Какой смысл имеет температурный коэффициент? Что означает, например, если ү = 3?
- 5. Определите температурный коэффициент скорости реакции, если при понижении температуры на 45 0 C реакция замедлилась в 30 раз. Ответ: $\gamma = 2,13$.
- 6. При 393 К реакция заканчивается за 25 мин. Через сколько минут эта реакция закончится при 443 К (γ =2,5)? Ответ: 0,255 мин.
- 7. Какие химические реакции называют обратимыми? необратимыми? Приведите примеры таких реакций.
- 8. При каких условиях наступает химическое равновесие в обратимых системах?
- 9. Какой параметр называют константой равновесия? Как отражается её зависимость от констант прямой и обратной реакций?
- 10. От каких факторов зависит константа равновесия? от каких не зависит?
- 11. Почему в выражении константы равновесия концентрации веществ указаны в степенях, соответствующих их стехиометрическим коэффициентам, а не экспериментально определяемым числам x, y и др.?
- 12. Каким соотношением связана константа равновесия с энергией Гиббса?
- 13. Приведите формулировку принципа Ле Шателье. Какое практическое значение имеет этот принцип? Приведите примеры.

Растворы.

- 1. Напишите молекулярные, полные и краткие ионные уравнения реакций взаимодействия:
 - а) карбоната калия с соляной кислотой;
 - б) азотистой кислоты с гидроксидом натрия;
 - в) карбоната магния с азотной кислотой;
 - г) гидрокарбоната натрия с едким натром;
 - д) гидроксида алюминия с едким натром;
 - е) соляной кислоты с силикатом натрия.
- 2. Приведите примеры четырёх типов солей, образованных сильными или слабыми кислотами и основаниями.
- 3. Как связаны ПР и растворимость малорастворимых сильных электролитов? Отобразите эту связь на примере Ag_3AsO_4 .
- 4. Перечислите условия растворения осадков малорастворимых веществ. Как можно, например, растворить осадок $Zn(OH)_2$?
- 5. Какое явление называют «солевым эффектом»? Приведите примеры.
- 6. Плотность и титр растворов имеют одинаковую размерность ($\Gamma/\text{см}^3$). В чем различие этих параметров?
- 7. Приведите алгоритм взвешивания твёрдых веществ

Комплексные соединения

- 1 Чем оценивают прочность комплексов? Напишите выражения для констант нестойкости и констант устойчивости для комплексных ионов: $[Ag(NH_3)_2]^+$, $[Ag(CN)_2]^-$, $[Ag(NO_2)_2]^-$.
 - 2 В чем отличие двойных солей от «типичных» комплексов?
- 3 Какие комплексные соединения относят к ацидокомплексам? Какие к аутокомплесам? Приведите примеры.
 - 4 Как ТВС объясняет образование химической связи в комплексах?
- 5 Какие комплексы называют карбонилами? Объясните образование таких комплексов с позиции теории валентных связей.

Окислительно-восстановительные реакции

- 1 Как оценивают эквиваленты окислителя и восстановителя? В каких единицах они выражаются?
- 2 Что называют мольной массой окислителя и восстановителя? Какова их размерность? Приведите примеры.
- 3 Какова структура алгоритма метода электронного баланса? Ответ иллюстрируйте примерами.

1. Критерии оценивания компетенций

Оценка «отлично» выставляется студенту, полностью освоившему все компетенции показавшему всесторонние, систематизированные, глубокие знания учебной программы дисциплины и умение уверенно применять их на практике при решении конкретных задач, свободное и правильное обоснование принятых решений;

Оценка «хорошо» выставляется студенту, еслион в недостаточной мере освоил все компетенции, но твердо знает материал, грамотно и по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе или в решении задач некоторые неточности;

Оценка «удовлетворительно» выставляется студенту частично и поверхностно освоившему компетенции показавшему фрагментарный, разрозненный характер знаний, недостаточно правильные формулировки базовых понятий, нарушения логической последовательности в изложении программного материала, но при этом он владеет основными разделами учебной программы, необходимыми для дальнейшего обучения и может применять полученные знания по образцу в стандартной ситуации;

Оценка «неудовлетворительно» выставляется студенту, который не освоил компетенции и не знает большей части основного содержания учебной программы дисциплины, допускает грубые ошибки в формулировках основных понятий дисциплины и не умеет использовать полученные знания при решении типовых практических задач.

2. Описание шкалы оценивания

Максимально возможный балл за весь текущий контроль устанавливается равным **55.** Текущее контрольное мероприятие считается сданным, если студент получил за него не менее 60% от установленного для этого контроля максимального балла. Рейтинговый балл, выставляемый студенту за текущее контрольное мероприятие, сданное студентом в установленные графиком контрольных мероприятий сроки, определяется следующим образом:

Уровень выполнения контрольного	Рейтинговый балл (в % от максимального
задания	балла за контрольное задание)
Отличный	100
Хороший	80
Удовлетворительный	60
Неудовлетворительный	0

3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедура проведения данного оценочного мероприятия включает в себя: собеседование по тематике лабораторных занятий.

Предлагаемые студенту задания позволяют проверить компетенции УК-1, ОПК-1. Принципиальные отличия заданий базового уровня от повышенного заключатся в том, что они носят более глубоких характер.

Для подготовки к данному оценочному мероприятию необходимо: 5,4 ч. Для подготовки необходимо изучить литературу, составить конспект и план ответа.

При подготовке к ответу студенту предоставляется право пользования планом ответа.

При проверке задания, оцениваются

- последовательность и рациональность изложения материала;
- полнота и достаточный объем ответа;
- научность в оперировании основными понятиями;
- использование и изучение дополнительных литературных источников.

Оценочный лист

Наименова	Индикаторы	2	3	4	5	Примеча
ние		ба	бал	балла	бал	ние
компетенци		ЛЛ	ла		ла	
И		a				
УК-1	Знать: основные законы общей и неорганической химии прогнозировать свойства веществ Уметь: интерпретировать закономерности в изменении свойств элементов в связи с их электронным строением (положением в периодической системе) Владеть: владеть методами анализа результатов эксперимента					
ОПК-1	Знать: методы научного познания природы и место химии в современной научной картине мира Уметь: пользоваться химической терминологией и символикой Владеть: методами решения химических задач					

Составитель		Т.С. Чередниченко
_	(подпись)	
		К.С. Сыпко
	(подпись)	
«»	2021 г.	

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

		УТВЕРЖДАЮ	Э:
Bai	в. кафед	рой ХТМиАХП	
		Е.Н. Павле	нко
X	>>	201	Γ.

Комплект заданий для контрольной работы

по дисциплине Общая и неорганическая химия

Тема 1. Вариант 1	Основные понят	ия и законы химии.
Базовый уровень	Задание 1	С какими из перечисленных ниже веществ прореагирует азотная кислота: N_2O_5 , $Al(OH)_3$, CaO , HCl , K_2S ?
	Задание 2	Изобразите графические формулы этих соединений. Напишите уравнения соответствующих реакций. Составьте уравнения реакций взаимодействия следующих соединений: а) нитрат серебра и иодид калия; б) оксид цинка и гидроксид
	Задание 3	натрия. Составьте формулы нормальных и кислых солей
Продвинутый уровень	Задание 4	мышьяковистой H_3AsO_3 и серной H_2SO_4 кислот и магния. Можно ли получить раствор, содержащий одновременно $Ba(OH)_2$ и HCl ? $CaCl_2$ и Na_2CO_3 ? $NaCl$ и $AgNO_3$? KCl
		Укажите, какие комбинации невозможны и почему.
Вариант 2		
Базовый уровень	Задание 1	Напишите уравнения реакций образования: $Mg_2P_2O_7$ в результате взаимодействия основного и кислотного оксидов; $Ca_3(PO_4)_2$ – основания и кислотного оксида; $Ba(NO_3)_2$ – кислоты и основания.
	Задание 2	Составьте формулы основных солей железа и соляной кислоты, алюминия и серной кислоты.
	Задание 3	Напишите уравнения реакций образования $BaSO_4$ в результате взаимодействия основания и кислоты; $K_3[Cr(OH)_6]$ – амфолитного оксида и основания; Na_2SO_3 – кислотного оксида и основания.
Продвинутый уровень	Задание 4	Докажите уравнениями реакций амфолитность следующих соединений: ZnO , Al_2O_3 , $Sn(OH)_2$, $Cr(OH)_3$.

Вариант 3		
Базовый уровень	Задание 1	Напишите химические формулы следующих солей: сульфат меди (+2), гидросиликат натрия, ацетат калия, хлорид дигидроксожелеза (+3), карбонат аммония, дигидрофосфат лития, тетрагидроксоалюминат калия. Укажите типы приведённых солей
	Задание 2	Составьте формулы кислых калиевых солей ортофосфорной кислоты, основной цинковой соли угольной кислоты, основных алюминиевых солей соляной кислоты.
	Задание 3	Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия между: 1) H_2SO_4 и $Ba(OH)_2$; 2) $FeCl_3$ и NH_4OH ; 3) CH_3COON_3
Продвинутый уровень	Задание 4	При взаимодействии 6,48 г трехвалентного металла с кислотой выделяется 8,06 дм ³ водорода (н.у.). Вычислить эквивалентную и мольную массу металла
Вариант 4		
Базовый уровень	Задание 1	Вычислите эквивалент и эквивалентную массу фосфорной кислоты H_3PO_4 в реакциях образования: а)
	Задание 2	гидрофосфата; б) дигидрофосфата; в) фосфата. Чему равен при нормальных условиях эквивалентный объем кислорода? На сжигание 3 г металла (+2) требуется 1,38 дм ³ кислорода (н.у.). Вычислить эквивалентную массу и мольную массу этого металла.
	Задание 3	При сгорании 10,00 г металла образуется 18,88 г оксида металла. Определите эквивалентную массу металла
Продвинутый уровень	Задание 4	Масса 1 дм ³ кислорода равна 1,4 г. Сколько дм ³ кислорода расходуется при сгорании 21 г магния, эквивалент которого равен 1/2 моль
Вариант 5		
Базовый уровень	Задание 1	В какой массе $Cr(OH)_3$ содержится столько же
	-	эквивалентов, сколько в 174 г ${ m Mg(OH)}_2$?
	Задание 2	Одинаков ли эквивалент хрома в соединениях ${\rm CrC1}_3$ и ${\rm Cr}_2({\rm SO}_4)_3$ и эквивалентная масса железа в
		соединениях FeCl_2 и FeCl_3 ? Дать мотивированный ответ
	Задание 3	Определите эквивалентные массы металла и серы, если 3,24 г металла образуют 3,48 г оксида и 3,72 г сульфида
Продвинутый уровень	Задание 4	Из 6,62 г нитрата металла получается 5,56 г его хлорида. Вычислить эквивалентную массу этого металла
Вариант 6		
Базовый уровень	Задание 1	При взаимодействии 6,48 г трехвалентного металла с кислотой выделяется 8,06 дм ³ водорода (н.у.). Вычислить эквивалентную и мольную массу металла
	Задание 2	На восстановление 1,8 г оксида металла пошло 833 см ³

	Задание 3	водорода при н.у. Вычислите эквивалентные массы оксида и металла Элемент образует ряд газообразных соединений, плотность которых по водороду 8, 15, 22, 29. Содержание элемента в данных соединениях соответственно равно 75,0; 80,0; 81,81 и 82,76 %. Определите относительную атомную массу и
Продвинутый уровень	Задание 4	название элемента Элемент образует ряд газообразных соединений, относительные молекулярные массы которых равны 16, 44, 46 и 58. Содержание элемента в них соответственно составляет 75,0; 27,4; 52,2 и 62,0 %. Определите относительную атомную массу и название элемента
Вариант 7		
Базовый уровень	Задание 1	С какими из перечисленных ниже веществ прореагирует серная кислота (конц): Zn. K, N_2O_5 , Al(OH) $_3$, CaO, HCl, K_2S ? Изобразите
	Задание 2	графические формулы этих соединений. Напишите уравнения соответствующих реакций. Составьте уравнения реакций взаимодействия следующих соединений:
	Задание 3	а) нитрат серебра и иодид натрия; б) оксид алюминия и гидроксид калия. Составьте формулы нормальных и кислых солей
		мышьяковистой H_3AsO_3 и соляной HCl кислот и натрия.
Продвинутый	Задание 4	Можно ли получить раствор, содержащий одновременно
уровень	Зидиние т	Ba(OH) ₂ и HCl? CaCl ₂ и Na ₂ CO ₃ ? NaCl и AgNO ₃ ? KC
Dam		Укажите, какие комбинации невозможны и почему.
Вариант 8 Базовый уровень	Задание 1	w c Ma DO
Визовани уровено	Задание 1	Напишите уравнения реакций образования: $Mg_2P_2O_7$ в результате взаимодействия основного и кислотного оксидов; $Ca_3(PO_4)_2$ – основания и кислотного оксида; $Ba(NO_3)_2$
	Задание 2	 кислоты и основания. Составьте формулы основных солей алюминия и соляной кислоты, цинка и серной кислоты.
	Задание 3	Напишите уравнения реакций образования ${ m BaSO}_4$ в
		результате взаимодействия основания и кислоты; $K_3[Cr(OH)_6]$ – амфолитного оксида и основания;
		$\mathrm{Na_2SO_3}$ – кислотного оксида и основания.
Продвинутый уровень	Задание 4	Докажите уравнениями реакций амфолитность следующих соединений: ZnO , Al_2O_3 , $Sn(OH)_2$, $Cr(OH)_3$.
Вариант 9		2 3
Базовый уровень	Задание 1	Напишите химические формулы следующих солей: сульфат калия, гидросиликат железа (+3), ацетат меди, хлорид дигидроксожелеза (+3), бромид аммония, дигидрофосфат натрия, тетрагидроксоалюминат лития. Укажите типы приведённых солей
	Задание 2	Составьте формулы кислых калиевых солей ортофосфорной кислоты, основной цинковой соли серной кислоты, основных алюминиевых солей азотной кислоты.
	Задание 3	Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия между: 1) H_2SO_4 и $Ba(OH)_2$; 2) $FeCl_3$ и NH_4OH ; 3) CH_3COONa и HCl .

Продвинутый уровень	Задание 4	Некоторое количество металла, эквивалентная масса которого равна 27,9 г/моль, вытесняет из кислоты 700 мл водорода, измеренного при нормальных условиях. Определить массу металла.
Вариант 10		
Базовый уровень	Задание 1	Можно ли получить раствор, содержащий одновременно: а) $Ba(OH)_2$ и HCl ; б) $CaCl_2$ и Na_2CO_3 ; в) $NaCl$ и $AgNO_3$; г) KCl и $NaNO_3$. Указать, какие комбинации невозможны и почему.
	Задание 2	Какие из перечисленных кислот образуют кислые соли: HJ , H_2Se , H_2SeO_3 , $H_2C_2O_4$, CH_3COOH
	Задание 3	Какие кислоты могут быть получены непосредственным взаимодействием с водой оксидов: P_2O_5 , CO_2 , N_2O_5 , NO_2 , SO_2 ?
Продвинутый уровень	Задание 4	Написать уравнения реакций, свидетельствующих об основных свойствах FeO, Cs ₂ O, HgO, Bi ₂ O ₃ .
Тема 2 Вариант 1	Строение атом	
Базовый уровень	Задание 1	Структура валентного электронного уровня атома
		элемента выражается формулой: a) $5s^25p^4$; б) $3d^54s^1$.
	Задание 2	Определите порядковый номер и название элемента Какое максимальное число электронов может содержать атом в электронном уровне с главным квантовым числом $n=5$ и $n=3$?
	Задание 3	Напишите электронные формулы атомов элементов с порядковыми номерами 24 и 33. Составьте их графические схемы. К какому электронному семейству относится каждый из них и почему
Продвинутый уровень	Задание 4	Сколько не спаренных электронов содержат невозбужденные атомы B, S, Cr? Составьте их электронные и графические схемы
Вариант 2		
Базовый уровень	Задание 1	Составьте электронные формулы атомов элементов с порядковым номером 32 и 42. У последнего один $5s$ -электрон «проваливается» на $4d$ -подуровень. К какому
	Задание 2	электронному семейству они относятся? Какой подуровень заполняется в атомах после заполнения $5p$ -подуровня? после заполнения $5f$ -
	Задание 3	подуровня? Какие из электронных формул, отражающих строение невозбужденного атома некоторого элемента, не верны: 1) $1s^22s^22p^53s^1$; 2) $1s^22s^22p^6$; 3) $1s^22s^22p^63s^23p^63d^4$;
Продвинутый уровень	Задание 4	4) $1s^22s^22p^63s^23p^64s^2$; 5) $1s^22s^22p^63s^23d^2$? Почему Запишите электронные формулы атомов элементов с зарядом ядра 8; 13 и 18. Составьте электронно-графические схемы.
Вариант 3		
Базовый уровень	Задание 1	Какое максимальное количество электронов может располагаться в S-, p-, d- и f -подуровнях данного
		•
		уровня?
		Почему? Написать электронную структуру атома с зарядом ядра $Z=22$.
	Задание 2	Электронная структура атома описывается формулой

		$1s^22s^22p^63s^23p^63d^64s^2$. Какой это элемент?
	Задание 3	Сколько атомных орбиталей содержит второй энергетический
Продвинутый	Задание 4	уровень в атомах химических элементов? Сколько атомных орбиталей содержит третий энергетический
уровень	Задание ч	уровень в атомах химических элементов?
Вариант 4 Базовый уровень	Задание 1	Сколько атомных орбиталей содержит третий энергетический
<i>Б</i> изовый уровень	Задание 1	уровень атома цинка? Приведите электронную формулу
	Задание 2	атома этого элемента. Сколько атомных орбиталей содержит пятый энергетический
	Зидиние 2	уровень атома лантана? Приведите электронную формулу
	Задание 3	атома этого элемента Сколько атомных орбиталей содержит шестой
		энергетический уровень атома церия? Приведите
Продвинутый	Задание 4	электронную формулу атома этого элемента. Из приведенных электронных конфигураций:
уровень	, ,	$1p^2, 2s^2, 2p^7, 3d^1, 3f^7, 4p^6, 5s^3, 3d^{14}$ выберите те,
		которые практически существовать не могут. Объясните
Вариант 5		причины.
Базовый уровень	Задание 1	По электронным конфигурациям ионов определите заряд ядер
		их атомов: 3^{3-} : $3d^{10}4s^24p^6$; 3^{3+} : $3s^23p^63d^04s^0$.
		Запишите электронные формулы атомов и электронные структуры их внешних оболочек.
	Задание 2	По заряду ядра атома $(Z=23)$ запишите электронные
		конфигурации валентных подуровней и, используя правила Клечковского, укажите последовательность их заполнения.
	Задание 3	По зарядам ядер запишите электронные структуры атомов в
		основном и возбужденном состояниях. Объясните, как использовано правило Гунда при записи этих электронных
Продвинутый	Задание 4	структур Структура валентного электронного уровня атома
уровень	Заданис ч	элемента выражается формулой: a) $5s^25p^4$; б) $3d^54s^1$.
		Определите
Вариант 6		порядковый номер и название элемента
Базовый уровень	Задание 1	Составьте электронные формулы атомов элементов с
		порядковым номером 32 и 42. У последнего один 5s -электрон
		«проваливается» на 4d -подуровень. К какому электронному семейству они относятся?
	Задание 2	Какой подуровень заполняется в атомах после
		заполнения 5р -подуровня? после заполнения 5f -подуровня?
	Задание 3	Какие из электронных формул, отражающих строение
		невозбужденного атома некоторого элемента, не верны: 1) $1s^22s^22p^53s^1$; 2) $1s^22s^22p^6$; 3) $1s^22s^22p^63s^23p^63d^4$; 4) $1s^22s^22p^63s^23p^64s^2$; 5) $1s^22s^22p^63s^23d^2$? Почему?
Продвинутый уровень	Задание 4	3апишите электронные формулы атомов элементов с зарядом ядра 8; 13 и 18. Составьте электронно-графические схемы.
Вариант 7		
Базовый уровень	Задание 1	Какое квантовое число определяет количество орбиталей в

		данном подуровне атома? Чему равно число орбиталей на s-
	Задание 2	, p-, d— и f— подуровнях? Напишите значения всех четырех квантовых чисел для трех любых электронов на 4p-подуровне. Значениями какого квантового числа различаются три электрона указанного попуровня? Почему максимальное число электронов на p-
	Задание 3	подуровне равно 6? Составить электронные формулы и представить графически размещение электронов по квантовым ячейкам для указанных элементов. Проанализируйте возможности разъединения спаренных электронов при возбуждении атомов с образованием-валентных электронов в
Продвинутый уровень	Задание 4	соответствии с теорией спин-валентности. Углерод, хлор. Элемент находится во II группе периодической системы химических элементов Д.И. Менделеева. 3,01*10 ²³ молекул его гидроксида имеют массу 29 граммов. Назовите элемент, напишите электронную формулу его атома.
Вариант 8		
Базовый уровень	Задание 1	Внешний энергетический уровень атома элемента имеет строение:ns2np4. кислота, которая соответствует его высшему оксиду, имеет относительную молярную массу 145. Назовите элемент.
	Задание 2	Атом химического элемента на d-орбиталях третьего электронного уровня имеет 7 электронов. Составьте электронную формулу элемента.
	Задание 3	Сокращенная электронная формула элемента изображена в виде:5р3. Какой это элемент? Напишите полную электронную формулу и набор квантовых чисел для "последнего" электрона на внешнем электронном уровне
Продвинутый уровень	Задание 4	Напишите полную электронную формулу элемента церия $_{58}$ Ce.
Вариант 9 Базовый уровень	Задание 1	Напишите полную электронную формулу и нарисуйте орбитальную диаграмму для элемента ₁₉ К. Запишите набор квантовых чисел для последнего (наиболее далекого от ядра) электрона этого элемента
	Задание 2	Для какого элемента "последним" в электронной оболочке будет электрон с таким набором квантовых чисел: $n = 4$, $l = 1$, $m = -1$, $s = -1/2$
	Задание 3	Сокращенная электронная формула элемента изображена в виде:3d ⁸ . Какой это элемент? Напишите полную электронную формулу и набор квантовых чисел для 8-го электрона на d-подуровне
Продвинутый уровень Вариант 10	Задание 4	Элемент имеет внешний электронный уровень такого строения: $3p^3$. Что это за элемент?
Базовый уровень	Задание 1	Назовите элементы и укажите число неспаренных электронов в атомах, имеющих следующие электронные конфигурации: a) $1s^2 2s^2 2p^6 3s^2 3p^2$; б) $1s^2 2s^2 2p^6 3s^2 3p^4$; в) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$.
	Задание 2	Напишите электронные формулы для следующих элементов: ${}_{6}C$, ${}_{12}Mg$, ${}_{16}S$, ${}_{21}Sc$.
	Задание 3	Для какого элемента "последним" в электронной оболочке будет электрон с таким набором квантовых чисел: $n=2, l=1, m=0, s=-1/2$
Продвинутый уровень	Задание 4	Даны элементы с зарядами ядер $Z = 7$ и $Z = 15$. Который из них лучший акцептор электронов?

Тема 4		Химическая связь.
Вариант 1		
Базовый уровень	Задание 1	Установить, какие из перечисленных ниже молекул F_2 , HF, BeF_2 , BF_3 , PF_3 , CF_4 являются полярными.
	Задание 2	Охарактеризовать валентные возможности атомов кислорода и селена.
	Задание 3	Расположите молекулы NH_3 , H_2O , SiH_4 , PH_3 в порядке увеличения длины химической связи элемент-водород.
Продвинутый уровень	Задание 4	Хлорид натрия NaCl растворим в воде, его температура плавления 801 °C. Фосфид алюминия AlP нерастворим в воде, его температура плавления более 1700 °C. Объясните различия в физических свойствах этих соединений с точки зрения строения их кристаллических решеток. Какой тип кристаллической решетки (ионная, атомная, металлическая, молекулярная) наиболее вероятен для фосфида алюминия? Велика ли разница электроотрицательности между алюминием и фосфором?
Вариант 2		
Базовый уровень	Задание 1	Расположите молекулы O_2 , N_2 , Cl_2 , Br_2 в порядке увеличения энергии химической связи
	Задание 2	Установить тип кристаллической решетки у следующих веществ: графит, цинк, хлорид цинка, твердый диоксид углерода.
	Задание 3	укажите, какой тип химической связи в следующих веществах BeH_2 , BF_3 , C_2H_4 , NaF , $BaCl_2$, K_2O , Rb_2S , H_2O .
Продвинутый уровень	Задание 4	Для гидросульфата натрия постройте графическую формулу и укажите виды химической связи в молекуле.
Вариант 3		
Базовый уровень	Задание 1	Объясните механизм образования ковалентной химической связи в молекуле HBr и оцените степень ее полярности.
	Задание 2	Определите химические свойства, валентность и возможные степени окисления атома углерода в основном и возбужденном состояниях.
	Задание 3	Определите, какая связь C-N или C-H является более полярной. Укажите, к ядру какого атома происходит смещение общей электронной пары.
Продвинутый уровень	Задание 4	Какую валентность, обусловленную неспаренными электронами (спинвалентность), может проявлять фосфор в нормальном и возбужденном состоянии?
Вариант 4		пормальном и возоужденном состоянии:
Базовый уровень	Задание 1	Что такое гибридизация валентных орбиталей? Какое строение имеют молекулы типа AB_n , если связь в них образуется за счет ${}^{sp-}$, ${}^{sp^2}$ -, ${}^{sp^3}$ -гибридизации орбиталей атома A ?
	Задание 2	Какой способ образования ковалентной связи называют донорно-акцепторным? Какие химические связи имеются в ионах NH ₄ и BF ₄ ? Укажите донор и акцептор.
	Задание 3	ионах у кажите донор и акцептор. Как метод валентных связей (ВС) объясняет линейное строение молекулы BeCl ₂ и тетраэдрическое CH ₄
Продвинутый уровень	Задание 4	Какую валентность, обусловленную неспаренными электронами (спинвалентность), может проявлять сера в нормальном и возбужденном состоянии?
Вариант 5		

Какую ковалентную связь называют ст-связью и какую π связью? Разберите на примере строения молекулы азота.

Базовый уровень

Задание 1

	20 70 70 70	Cuarura vaaranavuu araumavan vuost atau vuosa n
	Задание 2	Сколько неспаренных электронов имеет атом хлора в нормальном и возбужденном состояниях? Распределите эти электроны по квантовым ячейкам. Чему равна валентность хлора, обусловленная неспаренными электронами?
	Задание 3	Распределите электроны атома серы по квантовым ячейкам. Сколько неспаренных электронов имеют ее атомы в нормальном и возбужденном состояниях? Чему равна валентность серы, обусловленная неспаренными электронами?
Продвинутый уровень	Задание 4	Как метод молекулярных орбиталей (МО) описывает строение двухатомных гомоядерных молекул элементов второго периода?
Вариант 6		
Базовый уровень	Задание 1	Что называют электрическим моментом диполя? Какая из молекул HC1, HBr, HI имеет наибольший момент диполя? Почему?
	Задание 2	Какие кристаллические структуры называют ионными, атомными, молекулярными и металлическими? Кристаллы каких веществ — алмаз, хлорид натрия, диоксид углерода, цинк — имеют указанные структуры?
	Задание 3	Как метод валентных связей (BC) объясняет угловое строение молекулы H_2S и линейное молекулы CO_2 ?
Продвинутый уровень	Задание 4	Какую химическую связь называют ковалентной? Чем можно объяснить направленность ковалентной связи? Как метод валентных связей (ВС) объясняет строение молекулы воды?
Вариант 7		
Базовый уровень	Задание 1	Нарисуйте энергетическую схему образования молекулы He_2 и молекулярного иона He_2 по методу молекулярных орбиталей. Как метод MO объясняет устойчивость иона He_2 и невозможность существования молекулы He_2 ?
	Задание 2	Какую химическую связь называют водородной? Между молекулами каких веществ она образуется? Почему H_2O и HF , имея меньшую молекулярную массу, плавятся и кипят при более высоких температурах, чем их аналоги?
	Задание 3	Нарисуйте энергетическую схему образования молекулы N_2 по методу молекулярных орбиталей (МО). Сколько электронов находится на связывающих и разрыхляющих орбиталях? Чему равен порядок связи в этой молекуле?
Продвинутый уровень	Задание 4	Какую ковалентную связь называют полярной? Что служит количественной мерой полярности ковалентной связи? Исходя из значений электроотрицательности атомов соответствующих элементов определите, какая из связей: HC1, IC1, BrF — наиболее полярна.
Вариант 8		, ,
Базовый уровень	Задание 1	Что следует понимать под степенью окисления атома? Определите степень окисления атома углерода и его валентность, обусловленную числом неспаренных электронов, в соединениях CH_4 , CH_3OH , $HCOOH$, CO_2 .
	Задание 2	Нарисуйте энергетическую схему образования молекулы F_2 по методу молекулярных орбиталей (МО). Сколько электронов находится на связывающих и разрыхляющих орбиталях? Чему равен порядок связи в этой молекуле?
	Задание 3	Нарисуйте энергетическую схему образования молекулярного иона H_2 и молекулы H_2 по методу молекулярных орбиталей. Где энергия связи больше? Почему?
Продвинутый уровень	Задание 4	Какие электроны атома бора участвуют в образовании ковалентных связей? Как метол валентных связей (ВС)

уровень

ковалентных связей? Как метод валентных связей (ВС)

Вариант 9		объясняет симметричную треугольную форму молекулы BF_3 ?
Базовый уровень	Задание 1	Нарисуйте энергетическую схему образования молекулы O_2 по методу молекулярных орбиталей (MO). Как метод MO объясняет парамагнитные свойства молекулы кислорода?
	Задание 2	Какие силы молекулярного взаимодействия называют ориентационными, индукционными и дисперсионными? Когда возникают эти силы и какова их природа?
	Задание 3	Какие виды химической связи имеются в молекуле NH ₄ I ?
Продвинутый уровень Вариант 10	Задание 4	Чему равна длина связи $O^+ - O^+$?
Базовый уровень	Задание 1	Определите вид химической связи в соединениях
	Задание 2	NaF, SiO ₂ , H ₂ S, HCl, O ₂ , BaO, SiF ₄ , NH ₃ , Br ₂ , O ₃ , Li ₂ O, Fe Зарисуйте механизм образования молекул с ионной связью:
	Задание 2	KCl, Na ₂ O, BaO, Rb ₂ S.
	Задание 3	Определите вид ковалентной связи в соединениях, тип перекрывания электронных облаков, зарисуйте механизм образования молекул при помощи электронных и структурных формул: Br ₂ , HI, H ₂ Se, N ₂ , PH ₃ , CH ₄ .
Продвинутый уровень	Задание 4	Какую химическую связь называют ионной? Каков механизм ее образования? Какие свойства ионной связи отличают ее от ковалентной? Приведите два примера типичных ионных соединений. Напишите уравнения превращения соответствующих ионов в нейтральные атомы.
Тема 5 Вариант 1	Общие законо	омерности протекания химических процессов.
Базовый уровень	Задание	Для уравнения реакции $2Al_2O_{3(r)}+6SO_{2(r)}+3O_{2(r)}=2Al_2(SO_4)_{3(r)}, \ \Delta H=-$
		1736 Рассчитайте стандартную теплоту образования первого в уравнении вещества исходя из приведенного термохимического уравнения реакции и данных по $\Delta H^{ofp.}$
	Задание 2	Реакция идёт по уравнению $A_{(\Gamma)} + 2B_{(\Gamma)} \square C_{(\Gamma)}$. Как
		изменится скорость реакции, если давление увеличить в 3 раза и одновременно повысить температуру на 30 °C? Температурный коэффициент скорости реакции равен 3
	Задание 3	При температуре 900 К константа равновесия равна 100. Вычислите стандартную энергию Гиббса при этой температуре.
Продвинутый уровень	Задание 4	Реакция протекает по уравнению $2N_2O \rightarrow 2N_2 + O_2$. Константа скорости реакции равна $5\cdot 10^{-4}$. Начальная концентрация N_2O равна 3,2 моль/дм³. Вычислите

Вариант 2

Базовый уровень Задание 1 Для уравнения реакции $4\mathrm{NO}_{2(\mathrm{r})} + \mathrm{O}_{2(\mathrm{r})} + 2\mathrm{H}_2\mathrm{O}_{(\mathrm{ж})} = 4\mathrm{HNO}_{3(\mathrm{ж})}, \qquad \Delta\mathrm{H}\text{=-}252$

когда разложится 25 % $\rm\,N_2O$

Рассчитайте стандартную теплоту образования первого в

скорость реакции в начальный момент и в тот момент,

		уравнении вещества исходя из приведенного термохимического уравнения реакции и данных по $\Lambda H^{oбp.}$
	Задание 2	Реакция протекает по уравнению $A+2B$ \square C . Константа скорости равна 0,4, а начальные концентрации (моль/дм³): $C_A=0,3; C_B=0,5$. Вычислите скорость
	Задание 3	реакции в начальный момент и после того, как прореагирует 0,1 моль/дм 3 вещества A Константа равновесия гомогенной системы $A_{(r)}+B_{(r)}$ \square 2 $C_{(r)}$ равна 50. Вычислите равновесные
Продвинутый	Задание 4	концентрации реагирующих веществ, если исходные концентрации веществ A и B соответственно равны 0,5 и 0,7 моль/дм 3 . Стандартная энергия Гиббса равна -46 кДж/моль.
уровень Вариант 3		Вычислите константу равновесия реакции при 600 К.
Базовый уровень	Задание 1	Для уравнения реакции $2Al_2O_{3(\tau)}+6SO_{2(\tau)}+3O_{2(\tau)}=2Al_2(SO_4)_{3(\tau)}, \ \Delta H=-$
		1736 Рассчитайте стандартную теплоту образования первого в уравнении вещества исходя из приведенного термохимического уравнения реакции и данных по $\Delta H^{oбp}$.
	Задание 2	Реакция протекает по уравнению $H_{2(r)} + I_{2(r)} = 2HI_{(r)}$. Константа скорости реакции равна 0,16. Начальные концентрации веществ были (моль/дм³): $C_{H_2} = 0,04$; $C_{I_2} = 0,05$. Вычислите
		начальную скорость реакции и ее скорость, когда $C_{H_2} = 0.04$ стала равной 0.03 моль/дм ³
	Задание 3	Реакция протекает по уравнению $CO_{(r)} + Cl_{2(r)}$ \Box $COCl_{2(r)}$ Начальные
		концентрации $CO_{(r)}$ и $Cl_{2(r)}$ равны (моль/дм ³): $C_{CO}=0.28;$ $Cl_2=0.09.$ Равновесная концентрация CO равна 0.2 моль/дм ³ . Вычислите константу равновесия.
Продвинутый уровень	Задание 4	Исходные концентрации SO_2 и O_2 в системе $2SO_2 + O_2$ \square $2SO_3$ соответственно равны (моль/дм³): 0,03 и 0,015. К моменту наступления равновесия
		концентрация SO_2 стала равной 0,01 моль/дм 3 . Вычислите равновесные концентрации остальных
Вариант 4		реагирующих веществ ($MOЛb/\partial M^3$).
Базовый уровень	Задание 1	Во сколько раз изменится скорость прямой и обратной реакции в системе если объем газовой смеси уменьшится в три раза? $2SO_2(r) + O_2(r) \rightleftarrows 2SO_3(r)$
	Задание 2	В какую сторону сместится равновесие системы? Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры

		от 30 до 70 С, если температурный коэффициент реакции
	Задание 3	равен 2. Константа равновесия гомогенной системы при 850 С
		равна 1. $CO(r) + H_2O(r) \rightleftarrows CO_2(r) + H_2(r)$
		Вычислите концентрации всех веществ при равновесии,
		если исходные концентрации: [CO]исх = 3 моль/л, [H ₂ O] исх = 2 моль/л.
Продвинутый уровень	Задание 4	Эндотермическая реакция разложения пентахлорида фосфора протекает по уравнению $PCl_{5}(r) \rightleftarrows PCl_{3}(r) + Cl_{2}(r); \Delta H = +92,59 кДж.$ Как надо изменить: а) температуру; б) давление; в)
		концентрацию, чтобы сместить равновесие в сторону
Вариант 5		прямой реакции — разложения PC1 ₅ ?
Базовый уровень	Задание 1	Окисление серы и ее диоксида протекает по уравнениям: а) $S(K) + O_2 = SO_2(\Gamma)$; б) $2SO_2(\Gamma) + O_2 = 2SO_3(\Gamma)$. Как изменится скорость этих реакций, если объемы каждой из систем уменьшить в четыре раза?
	Задание 2	Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 20 до 100 С, если температурный коэффициент реакции равен 2.
	Задание 3	Напишите выражение для константы равновесия гомогенной системы $N_2 + 3H_2 \leftrightarrow 2NH_3$. Как изменится скорость прямой реакции — образования аммиака, если
Продвинутый уровень	Задание 4	увеличить концентрацию водорода в три раза? Реакция идет по уравнению $N_2+0_2=2NO$. Концентрации исходных веществ до начала реакции были $[N_2]=0,049$ моль/л, $[0\ 2]=0,01$ моль/л. Вычислите концентрацию этих веществ, когда $[NO]=0,005$ моль/л. Ответ: $[N_2]=0,0465$ моль/л; $[0\ 2]=0,0075$ моль/л.
Вариант 6		
Базовый уровень	Задание 1	Как изменится скорость реакции, протекающей в газовой фазе, при повышении температуры на 60° С, если температурный коэффициент скорости данной реакции 2?
	Задание 2	Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 30 до 60 С, если температурный коэффициент реакции равен 2.
	Задание 3	В гомогенной системе $CO + Cl_2 \leftrightarrow COCl_2$ равновесные концентрации реагирующих веществ (моль/л): $[CO] = 0,2;$ $[Cl_2] = 0,3;$ $[COCl_2] = 1,2.$ Вычислите константу равновесия системы и исходные концентрации Cl_2 и CO .
Продвинутый уровень	Задание 4	Реакция идет по уравнению $N_2+3H_2=2NH_3$. Концентрации участвующих в ней веществ (моль/л): $[N_2]=0,80; [H_2]=1,5; [NH_3]=0,10$. Вычислите концентрацию водорода и аммиака, когда $[N_2]=0,5$ моль/л.
Вариант 7	n -	
Базовый уровень	Задание 1	Как изменится скорость реакции, протекающей в газовой фазе, при повышении температуры на 80° С, если

Задание 2

равен 2.

температурный коэффициент скорости данной реакции 3? Вычислите, во сколько раз увеличится скорость реакции,

протекающей в газовой фазе, при повышении температуры от 10 до 70 С, если температурный коэффициент реакции

	Задание 3	В гомогенной системе $A + 2B \leftrightarrow C$ равновесные концентрации реагирующих газов (моль/л): $[A] = 0.06$; $[B] = 0.12$; $[C] = 0.216$. Вычислите константу равновесия системы и исходные 56 концентрации веществ A и B
Продвинутый уровень	Задание 4	Реакция идет по уравнению $H_2 + I_2 = 2HI$. Константа скорости этой реакции при некоторой температуре равна 0,16. Исходные концентрации реагирующих веществ (моль/л): $[H_2] = 0,04$; $[I_2] = 0,05$. Вычислите начальную скорость реакции и ее скорость при $[H_2] = 0,03$ моль/л
Вариант 8		
Базовый уровень	Задание 1	Как изменится скорость реакции, протекающей в газовой фазе, при повышении температуры на 30° С, если температурный коэффициент скорости данной реакции 2?
	Задание 2	Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 15 до 80 С, если температурный коэффициент реакции равен 2.
	Задание 3	Константа скорости реакции разложения N_2O , протекающей по уравнению $2N_2O = 2N_2 + O_2$, равна Начальная концентрация N_2O равна 6,0 моль/л. Вычислите начальную скорость реакции и ее скорость, когда разложится 50% N_2O .
Продвинутый уровень	Задание 4	Исходные концентрации [NO]исх и [C12] исх в гомогенной системе 2NO + Cl2 2NOC1 составляют соответственно 0,5 и 0,2 моль/л. Вычислите константу равновесия, если к моменту наступления равновесия прореагировано 20% NO.
Вариант 9		inpopedi inpobalio 2070 110.
Базовый уровень	Задание 1	Как изменится скорость реакции, протекающей в газовой фазе, при повышении температуры на 100° С, если температурный коэффициент скорости данной реакции 3?
	Задание 2	Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 15 до 90 С, если температурный коэффициент реакции равен 2.
	Задание 3	При постоянной температуре в сосудах образовалось $12\ \Gamma\ H_2S$, $18\ \Gamma\ H_2O$, $18\ \Gamma\ H_2$, $15\ \Gamma\ CO_2$. Сравните
		скорости реакций образования перечисленных веществ.
Продвинутый уровень	Задание 4	Определите изменение скорости прямых элементарных газовых реакций: 1) $H_2 + OH = H_2O + H$ 2) $2NO + Cl_2 = 2NOCl$ при увеличении давления в 2 раза
Вариант 10		•
Базовый уровень	Задание 1	Как изменится скорость реакции, протекающей в газовой фазе, при повышении температуры на 50° С, если температурный коэффициент скорости данной реакции 2?
	Задание 2	Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 10 до 40 С, если температурный коэффициент реакции равен 2.
	Задание 3	Напишите выражение для константы равновесия гетерогенной системы $CO_2 + C \leftrightarrow 2CO$. Как изменится скорость прямой реакции — образования CO , если концентрацию CO_2 уменьшить в четыре раза? Как

		следует изменить давление, чтобы повысить выход СО?
Продвинутый уровень	Задание 4	Исходные концентрации [NO]исх и [C1 ₂]исх в гомогенной системе $2NO + Cl_2 \leftrightarrow 2NOC1$ составляют соответственно 0,5 и 0,2 моль/л. Вычислите константу равновесия, если к моменту наступления равновесия прореагировано 20% NO.
Тема 6 Вариант 1	Растворы	
Базовый уровень	Задание 1	К 1 дм 3 раствора с ω (KOH) = 10 % (ρ = 1,092 г/см 3)
		прибавили 0,5 дм ³ раствора $\omega(\text{KOH}) = 5 \% \ (\rho = 1,045 \ \text{г/см}^3)$. Объем смеси довели до 2 дм ³ . Вычислите молярную концентрацию
		полученного раствора.
	Задание 2	Степень протолиза уксусной кислоты CH_3COOH в 1 М растворе при 19°C равна 0,004. Вычислите концентрацию ионов CH_3COO^- , H^+ и общую концентрацию ионов в
	Задание 3	растворе. Вычислите массовую долю (%) водного раствора метанола $\mathrm{CH_3OH}$, температура кристаллизации которого –2,79 °C.
Продвинутый уровень	Задание 4	Криоскопическая константа воды $1,86^{\circ}$. Равные объемы растворов формалина НСНО и глюкозы $C_6H_{12}O_6$ при данной температуре обладают одинаковым осмотическим давлением. В каком весовом отномения раздум оти раместра?
Вариант 2		отношении взяты эти вещества?
Базовый уровень	Задание 1	Определите объем раствора 1,2 М NaOH, который потребуется для полного осаждения железа в виде гидроксида из раствора ${\rm FeCl}_3$ с массой 300 г с массовой долей соли в нем 12%.
	Задание 2	. Вычислите степень протолиза $0.05~\mathrm{M}$ раствора HIO_3 ,
	Задание 3	если константа протолиза кислоты равна $3\cdot 10^{-5}$. При какой приблизительно температуре будет кипеть водный раствор ($\omega=50$ %) сахарозы $C_{12}H_{22}O_{11}$, если
Продвинутый уровень	Задание 4	эбуллиоскопическая константа воды равна 0,52°? Давление пара эфира при 30 °C равно 0,86392·10 ⁵ Па. Сколько моль вещества надо растворить в 40 моль эфира, чтобы понизить давление пара при данной температуре на 0,013303·10 ⁵ Па?
Вариант 3		16epa1ype na 0,013303 10 11a.
Базовый уровень	Задание 1	На нейтрализацию 10 см^3 раствора NaOH пошло 6 см^3 $0,5 \text{ M}$ раствора HCl. Вычислите молярность
	Задание 2	раствора щелочи Вычислите рН смеси полученной вследствие прибавления к 0,5 дм ³ 0,05 М раствора муравьиной кислоты HCOOH 0,5 дм ³ 0,1 М раствора HCOOK ?
	Задание 3	Температура кристаллизации раствора, содержащего 66,3 г некоторого электролита в 500 см ³ воды, равна –0,558 °C

Вычислите мольную массу растворенного вещества, если

Продвинутый уровень	Задание 4	криоскопическая константа воды равна $1,86^{\circ}$. Равные объемы растворов формалина НСНО и глюкозы $C_6H_{12}O_6$ при данной температуре обладают одинаковым осмотическим давлением. В каком весовом отношении взяты эти вещества?
Вариант 4 Базовый уровень	Задание 1	Вычислите молярную концентрацию и молярную концентрацию эквивалента 20% -ного раствора хлорида кальция плотностью $1,178$ г/см ³ .
	Задание 2	Какой объем 20,01%-ного раствора HC1 (пл. 1,100 г/см ³) требуется для приготовления 1 л 10,17%-ного раствора (пл. 1,050 г/см ³)?
	Задание 3	Какая масса HN0 ₃ содержалась в растворе, если на нейтрализацию его потребовалось 35 см 0,4 н. раствора NaOH? Каков титр раствора NaOH?
Продвинутый уровень	Задание 4	Раствор, содержащий 0,512 г неэлектролита в 100 бензола, кристаллизуется при 5,296 С. Температура кристаллизации бензола 5,5 С. Криоскопическая константа 5,1. Вычислите молярную массу растворенного вещества.
Вариант 5		
Базовый уровень	Задание 1	Чему равна молярная концентрация эквивалента 30%-ного раствора NaOH плотностью 1,328 г/см ³ ? К 1 л этого раствора прибавили 5 л воды. Вычислите массовую (процентную) долю полученного раствора
	Задание 2	Смешали 10 см ³ 10%-ного раствора HNO3 (пл. 1,056 г/см ³) и 100 см ³ 30%-ного раствора HNO3 (пл. 1,184 г/см ³). Вычислите массовую (процентную) долю полученного
	Задание 3	раствора. Какую массу NaN0 ₃ нужно растворить в 400 г воды, чтобы приготовить 20%-ный раствор?
Продвинутый уровень	Задание 4	Вычислите массовую долю (%) водного раствора сахара $C_{12}H_{22}O_{11}$, зная, что температура кристаллизации раствора -0,93 С. Криоскопическая константа воды 1,86°
Вариант 6		
Базовый уровень	Задание 1	К 3 л 10%-ного раствора HNO3 плотностью 1,054 г/см ³ прибавили 5 л 2%-ного раствора той же кислоты плотностью 1,009 г/см ³ . Вычислите массовую (процентную) и молярную концентрации полученного раствора, объем которого равен 8 л.
	Задание 2	Какой объем 50%-ного раствора КОН (пл. 1,538 г/см ³) требуется для приготовления 3 л 6%-ного раствора (пл. 1,048 г/см ³)
	Задание 3	Смешали 300 г 20%-ного раствора и 500 г 40%-ного раствора NaCl. Чему равна массовая доля полученного раствора:
Продвинутый уровень	Задание 4	Вычислите температуру кристаллизации раствора мочевины $(NH_2)_2CO$, содержащего 5 г мочевины в 150 г воды. Криоскопическая константа воды 1,86.
Вариант 7		•
Базовый уровень	Задание 1	Вычислите молярную концентрацию эквивалента и моляльную концентрацию $20,8\%$ -ного раствора HNO_3 плотностью $1,12$ г/см ³ . Сколько граммов кислоты содержится в 4 л этого раствора?
	Задание 2	Какой объем 10%-ного раствора карбоната натрия (пл.

раствора (пл. 1,02 г/см³).

Какой объем 10%-ного раствора карбоната натрия (пл. $1,105 \text{ г/см}^3$) требуется для приготовления 5 л 2%-ного

Задание 2

	Задание 3	Смешали 247 г 62%-ного и 145 г 18%-ного раствора серной кислоты. Какова массовая доля полученного раствора?
Продвинутый уровень	Задание 4	Раствора: Раствора: Раствор, содержащий 3,04 г камфоры в 100 г бензола, кипит при 80,714°С. Температура кипения бензола 80,2°С. Вычислите эбулиоскопическую константу бензола.
Вариант 8		
Базовый уровень	Задание 1	Вычислите молярную концентрацию эквивалента, молярную и моляльную концентрации 16%-ного раствора хлорида алюминия плотностью 1,149 г/см ³
	Задание 2	На нейтрализацию 31 см 0,16 н. раствора щелочи требуется 217 см ³ раствора H ₂ SO ₄ ? Чему равны молярная концентрация эквивалента и титр раствора H ₂ SO ₄ ?
	Задание 3	Из 700 г 60%-ной серной кислоты выпариванием удалили 200 г воды. Чему равна массовая доля оставшегося раствора?
Продвинутый уровень	Задание 4	Вычислите массовую долю (%) водного раствора глицерина $C_3H_5(OH)_3$, зная, что этот раствор кипит при $100,39^{\circ}C$. Эбулиоскопическая константа воды $0,52^{\circ}$.
Вариант 9		
Базовый уровень	Задание 1	Сколько и какого вещества останется в избытке, если к 75 см 3 0,3 н. раствора H_2SO_4 прибавить 125 см 3 0,2 н. раствора КОН?
	Задание 2	Какой объем $0,3$ н. раствора кислоты требуется для нейтрализации раствора, содержащего $0,32$ г NaOH в 40 см ³ ?
	Задание 3	Из 10 кг 20%-ного раствора при охлаждении выделилось 400 г соли. Чему равна массовая доля охлажденного раствора?
Продвинутый уровень	Задание 4	Вычислите молярную массу неэлектролита, зная, что раствор, содержащий 2,25 г этого вещества в 250 г воды, кристаллизуется при -0,279°С. Крископическая константа воды 1,86.
Вариант 10		
Базовый уровень	Задание 1	Для осаждения в виде AgCl всего серебра, содержащегося в $100~{\rm cm}^3$ раствора ${\rm AgN0_3}$, потребуется $50~{\rm cm}^3~0.2~{\rm H}$. раствора HCl. Какова молярная концентрация эквивалента раствора ${\rm AgN0_3}$? Какая масса ${\rm AgCl}$ выпала в осадок?
	Задание 2	На нейтрализацию 1 л раствора, содержащего 1,4 г КОН, требуется 50 см ³ раствора кислоты. Вычислите молярную концентрацию эквивалента раствора кислоты
	Задание 3	Из 10 кг 20%-ного раствора при охлаждении выделилось 400 г соли. Чему равна массовая доля охлажденного раствора?
Продвинутый уровень	Задание 4	Вычислите температуру кипения 5%-ного раствора нафталина $C_{10}H_8$ в бензоле. Температура кипения бензола $80,2$ С. Эбулиоскопическая константа его $2,57$.
Тема 7. Вариант 1	Комплексные	соединения
Базовый уровень	Задание 1	Определите заряд комплексного иона, координационное число и степень окисления комплексообразователя в соединениях:

Задание 2 Какие орбитали третьего и четвертого энергетических

 $K_{3}[Cr(CN)_{6}]; Na[Ag(NO_{2})_{2}]; K_{2}[MoF_{8}]; [Co(H_{2}O)_{2}(NH_{3})]; K_{2}[MoF_{8}]; [Co(H_{2}O)_{2}(NH_{3})]; K_{3}[MoF_{8}]; K_{4}[MoF_{8}]; K_{5}[MoF_{8}]; K$

Продвинутый уровень	Задание 3 Задание 4	уровней кобальта (+3) гибридизируются при образовании комплексного иона $[\mathrm{Co}(\mathrm{CN})_6]^{3^-}$. Известно, что этот внутриорбитальный, низкоспиновый ион диамагнитен и не содержит не спаренных электронов Как метод ВС объясняет тетраэдрическое строение карбонила никеля? Почему в данном соединении координационное число никеля (0) равно 4? При прибавлении KCN к раствору сульфата тетраамминцинка $\mathrm{Zn}[(\mathrm{NH}_3)_4]\mathrm{SO}_4$ образуется растворимый тетрацианоцинкат калия $\mathrm{K}_2[\mathrm{Zn}(\mathrm{CN})_4]$. Напишите молекулярное и ионно-молекулярное уравнения реакции. Константа нестойкости какого иона: $[\mathrm{Zn}(\mathrm{NH}_3)_4]^{2^+}$ или $[\mathrm{Zn}(\mathrm{CN})_4]^{2^-}$ больше? почему?
Вариант 2 Базовый уровень	Задание 1	Составьте координационные формулы семи комплексных
Бизовый уровень	Заданис 1	соединений, которые можно получить из сочетания частиц
		Co ³⁺ , NH ₃ , , K ⁺ . Напишите уравнения их диссоциации
		в водных растворах. Какое из этих соединений является комплексным неэлектролитом? Координационное число
	20 20 20 20	Со ³⁺ равно 6.
	Задание 2	Какие орбитали внешнего энергетического уровня кобальта (+3) гибридизируются при образовании
		комплексного иона $[CoF_6]^{3-}$? Известно, что этот
	Задание 3	внешнеорбитальный, высокоспиновый ион парамагнитен и содержит четыре не спаренных электрона. Какую пространственную конфигурацию имеет этот ион? Как метод ВС объясняет строение карбонила железа?
		Почему он имеет строение тригональной бипирамиды, а координационное число железа (0) в данном соединении равно 5?
Продвинутый уровень	Задание 4	Иодид серебра растворяется в KCN и не растворяется в аммиаке. Напишите уравнение этой реакции. Исходя из этого решите, какой комплексный ион:
		$[\mathrm{Ag}(\mathrm{NH_3})_2]^+$ или $[\mathrm{Ag}(\mathrm{CN})_2]^-$ имеет меньшее
Вариант 3		значение константы нестойкости?
Базовый уровень	Задание 1	Составьте координационные формулы и напишите уравнения диссоциации комплексных соединений платины $PtCl_2 \cdot 4NH_3$; $PtCl_2 \cdot 3NH_3$; $PtCl_2 \cdot 2NH_3$; $PtCl_2 \cdot KCl \cdot NH_3$
	Задание 2	в водных растворах. Какое из этих соединений является комплексным неэлектролитом? Координационное число Pt^{2+} равно 4. Какие орбитали внешнего энергетического уровня никеля
	Ј адапи с 2	(II) гибридизируются при образовании комплексного иона
		[NiCl ₄] ²⁻ . Известно, что этот ион парамагнитен и
	Задание 3	содержит два не спаренных электрона. Какую пространственную конфигурацию имеет этот ион? Как метод ВС объясняет тетраэдрическое строение
		комплексных ионов NH_4^+ и BH_4^- ?

Продвинутый уровень	Задание 4	Растворы солей меди со щелочами образуют осадок $Cu(OH)_2$, а с сероводородом – осадок CuS . Чем можно объяснить, что концентрированный раствор сульфата тетраамминмеди (+2) $[Cu(NH_3)_4]SO_4$ образует осадок с сероводородом и не дает осадка со щелочью?
Вариант 4 Базовый уровень	Задание 1	Определите заряд комплексного иона, координационное число (к.ч.) и степень окисления комплексообразователя в соединениях: а) $K_4[Fe(CN)_6]$; б) $Na[Ag(N0_2)_2]$; в) $K_2[MoF_8]$; г) $[Cr(H_2O)_2 (NH_3)_3Cl]Cl_2$.
	Задание 2	Определите заряд комплексного иона, степень окисления и координационное число комплексообразователя в соединениях $K_4[Fe(CN)_6]$, $KttTiClg]$, $K_2[HgI_4]$. Как диссоциируют эти соединения в водных растворах?
	Задание 3	Константы нестойкости комплексных ионов [Co(CN) ₄] ² - [Hg(CN) ₄] ² -, [Cd(CN) ₄] ² - соответственно равны
Продвинутый уровень	Задание 4	8 ·10 ⁻²⁰ ; 4·10 ⁻⁴¹ , 1,4·10 ⁻¹⁷ ·В каком растворе, содержащем эти ионы, при равной молярной концентрации ионов CN больше? Константы нестойкости комплексных ионов $[Co(NH_3)_6]^{3+}$ $[Fe(CN)_6]^{4-}$, $[Fe(CN)_6]^{3-}$, соответственно равны 6,2 • 10 ⁻⁶ , 1,0 • 10 ⁻³⁷ , 1,0 • 10 ⁻⁴⁴ , Какой из этих ионов является более прочным? Напишите выражения для констант нестойкости указанных комплексных ионов и формулы соединений,
Вариант 5		содержащих эти ионы.
Базовый уровень	Задание 1	Напишите выражение для константы нестойкости комплекса ${\rm [Fe(CN)_6]}^{\ 4}$.
	Задание 2	Из сочетания частиц Co^{3+} , NH_3 , NO^{-2} и K^+ можно составить семь координационных формул комплексных соединений кобальта. Составьте формулы других шести соединений и напишите уравнения их диссоциации в водных растворах.
	Задание 3	Напишите выражения для констант нестойкости следующих комплексных ионов: $[Ag(CN)_2]^{-}$, $[Ag(NH_3)_2]^{+}$, $[Ag(SCN)_2]^{-}$ 3ная, что они соответственно равны $1,0 \cdot 10^{-21}$, $6,8 \cdot 10^{-8}$, $2,0 \cdot 10^{-11}$, укажите, в каком растворе, содержащем эти ионы, при равной молярной концентрации ионов $Ag+$ больше.
Продвинутый уровень	Задание 4	Константы нестойкости комплексных ионов $[\text{Co}(\text{NH}_3)_6]^{3+}$ $[\text{Fe}(\text{CN})_6]^{4-}$, $[\text{Fe}(\text{CN})_6]^{3-}$, соответственно равны $6,2 \cdot 10^{-6}$, $1,0 \cdot 10^{-37}$, $1,0 \cdot 10^{-44}$, Какой из этих ионов является более прочным? Напишите выражения для констант нестойкости указанных комплексных ионов и формулы соединений, содержащих эти ионы.
Вариант 6		, , , , , , , , , , , , , , , , , , ,
Базовый уровень	Задание 1	Определите заряд комплексного иона, степень окисления и координационное число комплексообразователя в соединениях $[Cu(NH_3)_4]SO_4$, $K_2[PtCl_6]$, $K[Ag(CN)_2]$. Напишите уравнения диссоциации этих соединений в водных растворах.
	Задание 2	Определите, чему равен заряд следующих комплексных

ионов: [Cr(H₂O)₄Cl₂], $[HgBr_4],$ $[Fe(CN)_6],$ Fe^{3+} . комплексообразователями являются Cr^{3+} , Hg^{2} Напишите формулы соединений, содержащих комплексные ионы. При прибавлении раствора KCN к раствору [Zn(NH₃)₄]SO₄ растворимое образуется комплексное $K_2[Zn(CN)_4].$ Напишите молекулярное ионцомолекулярное уравнения реакции. Константа нестойкости какого иона. [Zn(NH₃)₄]²⁺ . или $[Zn(CN)_4]^{-2}$, больше? Почему? Константы нестойкости комплексных ионов $[Co(NH_3)_6]^{3+}$ $[\text{Fe(CN)}_6]^4$, $[\text{Fe(CN)}_6]^3$, соответственно равны 6,2 • 10 $^{\circ}$ 6, 1,0 • 10 $^{\circ}$ 7, 1,0 • 10 $^{\circ}$ 4, Какой из этих ионов является более прочным? Напишите выражения для констант нестойкости указанных комплексных ионов и формулы соединений, содержащих эти ионы. Составьте координационные формулы следующих соединений платины: PtCI₄•6NH₃; комплексных PtCl₄•4NH₃; PtCl₄•2NH₃. Координационное число платины (IV) равно шести. Напишите уравнение диссоциации этих соединений в водных растворах. Какое из соединений является комплексным неэлектролитом? Определите заряд следующих комплексных $[Cr(NH_3)5NO_3],$ $[Pt(NH_3)Cl_3],$ $[Ni(CN)_4],$ ²⁺. Ni²⁺. комплексообразователями являются Cr^{3+} , Pt комплексных Напишите формулы соединений, содержащих эти ионы. $K_3[Fe(CN)_6]_{\mu}$ Напишите уравнения диссоциации солей NH₄Fe(SO₄)₂ в водном растворе. К каждой из них прилили раствор щелочи. В каком случае выпадает осадок гидроксида железа (III)? Напишите молекулярные и ионномолекулярные уравнения реакций. Какие комплексные

Продвинутый Задание 4 *уровень*

Задание 3

Задание 4

Задание 1

Задание 2

Задание 3

Продвинутый

уровень

Базовый уровень

Вариант 7

соединения называют двойными солями? Константы нестойкости комплексных ионов $[\text{Co(NH}_3)_6]^{3+}$ $[\text{Fe(CN)}_6]^{4-}$, $[\text{Fe(CN)}_6]^{3-}$, соответственно равны 6,2 • 10 $^{-6}$, 1,0 • 10 $^{-37}$, 1,0 • 10 $^{-44}$, Какой из этих ионов является более прочным? Напишите выражения для констант нестойкости указанных комплексных ионов и формулы соединений, содержащих эти ионы.

Вариант 8

Базовый уровень Задание 1

Составьте координационные формулы следующих комплексных соединений кобальта: COCI36NH3; CoCI3 - 5NH3; C0CI34NH3. Координационное число кобальта (III) равно шести. Напишите уравнения диссоциации этих соединений в водных растворах.

Задание 2 Cr^{3+} , H_2O , Cl^- и K^- можно составить семь координационных формул комплексных соединений хрома, одна из которых $[Cr(H_2O)_6]Cl_3$. Составьте формулы других шести соединений и напишите уравнения их диссоциации в водных растворах.

Задание 3 Составьте координационные формулы следующих комплексных соединений платины (II), координационное число 95 которой равно четырем: PtC1₂•3NH₃;

Продвинутый уровень Вариант 9	Задание 4	РtCl ₂ NH ₃ KCl; PtCl ₂ 2NH ₃ . Напишите уравнения диссоциации этих соединений в водных растворах. Какое из соединений является комплексным неэлектролитом? Константы нестойкости комплексных ионов $[\text{Co(NH}_3)_6]^{3+}$ $[\text{Fe(CN)}_6]^4$, $[\text{Fe(CN)}_6]^3$, соответственно равны $6,2 \cdot 10^{-6}$, $1,0 \cdot 10^{-37}$, $1,0 \cdot 10^{-44}$, Какой из этих ионов является более прочным? Напишите выражения для констант нестойкости указанных комплексных ионов и формулы соединений, содержащих эти ионы.
Базовый уровень	Задание 1	Определите заряд комплексного иона, степень окисления и координационное число сурьмы в соединениях $Rb[SbBr_6]$; $K[SbCl_6]$; $Na[Sb(SO_4)_2]$. Как диссоциируют эти соединения в водных растворах?
	Задание 2	Составьте координационные формулы следующих комплексных соединений кобальта $3NaNO_2\cdot Co(NO_2)_3$; $CoCl_3\cdot 3NH_3\times \times 2H_2O$; $2KNO_2\cdot NH_3\cdot Co(NO_2)_6$.
	2	Координационное число кобальта (III) равно шести. Напишите уравнения диссоциации этих соединений в водных растворах.
	Задание 3	Хлорид серебра растворяется в растворах аммиака и тиосульфата натрия. Дайте этому объяснение и напишите молекулярные и ионно-молекулярные уравнения соответствующих реакций.
Продвинутый уровень	Задание 4	Константы нестойкости комплексных ионов $[\text{Co(NH}_3)_6]^{3+}$ $[\text{Fe(CN)}_6]^4$, $[\text{Fe(CN)}_6]^3$, соответственно равны $6.2 \cdot 10^{-6}$, $1.0 \cdot 10^{-37}$, $1.0 \cdot 10^{-44}$, Какой из этих ионов является более прочным? Напишите выражения для констант нестойкости указанных комплексных ионов и формулы соединений, содержащих эти ионы.
Вариант 10		содержащих эти ионы.
<i>Базовый уровень</i>	Задание 1	Составьте координационные формулы следующих комплексных соединений серебра: AgCl•2NH ₃ ; AgCN•KCN; AgNO ₂ •NaNO ₂ . Координационное число серебра равно двум. Напишите уравнения диссоциации этих соединений в водных растворах.
	Задание 2	Напишите выражения для констант нестойкости $[Ag(NH_3)_2]^+, [Fe(CN)_6]^{4-}, [PtCl_6]^2$ комплексных ионов Чему равны степень окисления и координационное число комплексообразователей в этих ионах?
	Задание 3	Какие комплексные соединения называют двойными солями? Напишите уравнения диссоциации солей $K_4[Fe(CN)_6]$ и $(NH_4)_2Fe(SO_4)_2$ в водном растворе. В каком случае выпадает осадок гидроксида железа (II), если к каждой из них прилить раствор щелочи? Напишите
Продвинутый уровень	Задание 4	молекулярное и ионно-молекулярное уравнения реакции. Константы нестойкости комплексных ионов $[\text{Co}(\text{NH}_3)_6]^{3+}$ $[\text{Fe}(\text{CN})_6]^{4-}$, $[\text{Fe}(\text{CN})_6]^{3-}$, соответственно равны $6.2 \cdot 10^{-6}$, $1.0 \cdot 10^{-37}$, $1.0 \cdot 10^{-44}$, Какой из этих ионов является более прочным? Напишите выражения для констант нестойкости указанных комплексных ионов и формулы соединений, содержащих эти ионы.

Тема 8 Вариант 1

Окислительно-восстановительные реакции

Базовый уровень	Задание 1	Исходя из степени окисления хлора в соединениях HCl, HClO ₃ , HClO ₄ , определите, какое из них является только окислителем, только восстановителем и какое может
		проявлять как окислительные, так и восстановительные свойства. Почему? На основании электронных уравнений расставьте коэффициенты в уравнении реакции, идущей по схеме:
		$KBr+KBrO_3+H_2SO_4 \rightarrow Br_2+K_2SO_4+H_2O$
	Задание 2	Реакции выражаются схемами:
		$P+HIO_3+H_2O\rightarrow H_3PO_4+HI$ $H_2S+Cl_2+H_2O\rightarrow H_2SO_4+HCl$
		Составьте электронные уравнения. Расставьте
		коэффициенты в уравнениях реакций. Для каждой реакции
		укажите, какое вещество является окислителем, какое – восстановителем; какое вещество окисляется, какое –
		восстанавливается.
	Задание 3	Исходя из степени окисления фосфора в соединениях PH_3 , H_3PO_4 , H_3PO_3 , определите, какое из них является только
		окислителем, только восстановителем и какое может проявлять как окислительные, так и восстановительные
		свойства. Почему? На основании электронных уравнений расставьте коэффициенты в уравнении реакции, идущей по
		CXEME:
Продвинутый	Задание 4	$PbS+HNO_3 \rightarrow S+Pb(NO_3)_2+NO+H_2O$ Составьте электронные уравнения и укажите, какой
уровень		процесс – окисление или восстановление – происходит при
		следующих превращениях: $As^{3-} \rightarrow As^{5+}; N^{3+} \rightarrow N^{3-}; S^{2-} \rightarrow S^{0}.$
		На основании электронных уравнений расставьте коэффициенты в уравнении реакции, идущей по схеме:
		Na ₂ SO ₃ +KMnO ₄ +H ₂ O→Na ₂ SO ₄ +MnO ₂ +KOH
Вариант 2		
Базовый уровень	Задание 1	Реакции выражаются схемами:
		$P+HNO_3+H_2O\rightarrow H_3PO_4+NO$ $KMnO_4+Na_2SO_3+KOH\rightarrow K_2MnO_4+Na_2SO_4+H_2O$
		Составьте электронные уравнения. Расставьте
		коэффициенты в уравнениях реакций. Для каждой реакции укажите, какое вещество является окислителем, какое –
		восстановителем; какое вещество окисляется, какое – восстанавливается.
	Задание 2	Реакции выражаются схемами:
		$HNO_3+Ca \rightarrow NH_4NO_3+Ca(NO_3)_2+H_2O$
		$K_2S+KMnO_4+H_2SO_4 \rightarrow S+K_2SO_4+MnSO_4+H_2O$ Составьте электронные уравнения. Расставьте коэффициен
		ты в уравнениях реакций. Для каждой реакции укажите,
		какое вещество является окислителем, какое –
		восстановителем; какое вещество окисляется, какое – восстанавливается.
	Задание 3	Исходя из степени окисления хрома, йода и серы в
		соединениях $K_2Cr_2O_7$, KI и H_2SO_3 , определите, какое из
		них является только окислителем, только восстановителем и какое может проявлять как окислительные, так и
		восстановительные свойства. Почему? На основании
		электронных уравнений расставьте коэффициенты в
		уравнении реакции, идущей по схеме: NaCrO ₂ +PbO ₂ +NaOH→Na ₂ CrO ₄ +Na ₂ PbO ₂ +H ₂ O
Продвинутый	Задание 4	Составьте электронные уравнения и укажите, какой

1200	вень
$v \nu v$	טחטסי

процесс – окисление или восстановление – происходит при

следующих превращениях:

 $Mn^{6+} \rightarrow Mn^{2+}; Cl^{5+} \rightarrow Cl^{-}; N^{3-} \rightarrow N^{5+}$

На основании электронных уравнений расставьте коэффициенты в уравнении реакции, идущей по схеме:

 $Cu_2O+HNO_3 \rightarrow Cu(NO_3)_2+NO+H_2O$

Вариант 3

Базовый уровень

Задание 1

Реакции выражаются схемами:

 $H_2S+Cl_2+H_2O\rightarrow H_2SO_4+HCl$

 $K_2Cr_2O_7+H_2S+H_2SO_4 \rightarrow S+Cr_2(SO_4)_3+K_2SO_4+H_2O$ Составьте электронные уравнения. Расставьте

коэффициенты в уравнениях реакций. Для каждой реакции укажите, какое вещество является окислителем, какое – восстановителем; какое вещество окисляется, какое –

восстанавливается.

Задание 2

Реакции выражаются схемами:

 $P+HClO_3+H_2O \rightarrow H_3PO_4+HCl$

 $H_3AsO_3+KMnO_4+H_2SO_4 \rightarrow H_3AsO_4+MnSO_4+K_2SO_4+H_2O$

Составьте электронные уравнения. Расставьте

коэффициенты в уравнениях реакций. Для каждой реакции укажите, какое вещество является окислителем, какое — восстановителем; какое вещество окисляется, какое —

восстанавливается.

Задание 3

Реакции выражаются схемами:

 $NaCrO_3+Br_2+NaOH \rightarrow Na_2CrO_4+NaBr+H_2O$

 $FeS+HNO_3 \rightarrow Fe(NO_3)_2+S+NO+H_2O$

Составьте электронные уравнения. Расставьте

коэффициенты в уравнениях реакций. Для каждой реакции укажите, какое вещество является окислителем, какое — восстановителем; какое вещество окисляется, какое —

восстанавливается.

Продвинутый уровень Задание 4

Реакции выражаются схемами:

 $HNO_3+Zn \rightarrow N_2O+Zn(NO_3)_2+H_2O$

 $FeSO_4+KClO_3+H_2SO_4 \longrightarrow Fe_2(SO_4)_3+KCl+H_2O$ Составьте электронные уравнения. Расставьте

коэффициенты в уравнениях реакций. Для каждой реакции укажите, какое вещество является окислителем, какое — восстановителем; какое вещество окисляется, какое —

восстанавливается.

Вариант 4

Базовый уровень

Задание 1

Реакции выражаются схемами:

KClO₃+Na₂SO₃→KCl+Na₂SO₄

 $KMnO_4+HBr\rightarrow Br_2+KBr+MnBr_2+H_2O$

Составьте электронные уравнения. Расставьте

коэффициенты в уравнениях реакций. Для каждой реакции укажите, какое вещество является окислителем, какое – восстановителем; какое вещество окисляется, какое –

восстанавливается.

Задание 2

Реакции выражаются схемами:

 $K_2Cr_2O_7+HCl \rightarrow Cl_2+CrCl_3+KCl+H_2O$ $Au+HNO_3+HCl \rightarrow AuCl_3+NO+H_2O$

Составьте электронные уравнения. Расставьте

коэффициенты в уравнениях реакций. Для каждой реакции укажите, какое вещество является окислителем, какое — восстановителем; какое вещество окисляется, какое —

восстанавливается.

Задание 3

Реакции выражаются схемами:

$HCl+CrO_3\rightarrow Cl_2+CrCl_3+H_2O$
$Cd+KMnO_4+H_2SO_4\rightarrow CdSO_4+MnSO_4+K_2SO_4+H_2O$
Составьте электронные уравнения. Расставьте
коэффициенты в уравнениях реакций. Для каждой реакции
укажите, какое вещество является окислителем, какое –
восстановителем; какое вещество окисляется, какое –
восстанавливается.
Могут ли происходить окислительно-восстановительные
реакции между веществами: а) NH ₃ и KMnO ₄ ;
б) HNO ₂ и HI; в) HCl и H ₂ Se? Почему? На основании
электронных уравнений расставьте коэффициенты в
уравнении реакции, идущей по схеме:
$KMnO_4 + KNO_2 + H_2SO_4 \longrightarrow MnSO_4 + KNO_3 + K_2SO_4 + H_2O$
Реакции выражаются схемами:
$Cr_2O_3+KClO_3+KOH\rightarrow K_2CrO_4+KCl+H_2O$
$MnSO_4+PbO_2+HNO_3 \rightarrow HMnO_4+Pb(NO_3)_2+PbSO_4+H_2O$
Составьте электронные уравнения. Расставьте
коэффициенты в уравнениях реакций. Для каждой реакции
укажите, какое вещество является окислителем, какое –
восстановителем; какое вещество окисляется, какое -
восстанавливается.
Реакции выражаются схемами:
$H_2SO_3+HClO_3\rightarrow H_2SO_4+HCl$
$FeSO_4+K_2Cr_2O_7+H_2SO_4 \rightarrow Fe_2(SO_4)_3+Cr_2(SO_4)_3+K_2SO_4+H_2O_4$
Составьте электронные уравнения. Расставьте
коэффициенты в уравнениях реакций. Для каждой реакции
укажите, какое вещество является окислителем, какое –
восстановителем; какое вещество окисляется, какое –
восстанавливается.
Реакции выражаются схемами:
$I_2+CI_2+H_2O\rightarrow HIO_3+HCI$
$K_2Cr_2O_7+H_3PO_3+H_2SO_4\rightarrow Cr_2(SO_4)_3+H_3PO_4+K_2SO_4+H_2O_4$
Составьте электронные уравнения. Расставьте
коэффициенты в уравнениях реакций. Для каждой реакции
укажите, какое вещество является окислителем, какое –
восстановителем; какое вещество окисляется, какое -

Задание 3

Задание 2

Задание 4

Задание 1

И

восстанавливается.

Продвинутый уровень

Продвинутый

уровень

Базовый уровень

Вариант 5

Задание 4

Могут ли происходить окислительно-восстановительные реакции между веществами: а) РН₃ и НВг; б) К₂Сг₂О₇ и

 H_3PO_3 ; в) HNO₃ и H_2S ? Почему? На основании электронных уравнений расставьте коэффициенты в уравнении реакции, идущей по схеме:

 $AsH_3+HNO_3\rightarrow H_3AsO_4+NO_2+H_2O$

Вариант 6

Задание 1 Базовый уровень

Какие соединения и простые вещества могут проявлять только окислительные свойства? Выберите такие вещества из предложенного перечня: NH_3 , CO, SO_2 , K_2MnO_4 , Cl_2 , Составьте уравнение электронного расставьте коэффициенты в уравнении реакции: $HNO_3 + H_2S = H_2SO_4 + NO + H_2O.$

Задание 2 Определите степени окисления всех компонентов, входящих в состав следующих соединений: HCl, Cl₂,

 $HClO_2$, $HClO_3$, Cl_2O_7 . Какие из веществ являются только окислителями, только восстановителями, и окислителями восстановителями? Расставьте коэффициенты

уравнении реакции:

	Задание 3	$KClO_3 \rightarrow KCl + KClO_4.$ Укажите окислитель и восстановитель. оставьте электронные уравнения и подберите коэффициенты ионно-электронным методом в реакции $KMnO_4 + KNO_2 + H_2SO_4 = K_2SO_4 + MnSO_4 + KNO_3 + H_2O_4 = K_2SO_4 + MnSO_4 + KNO_5 + H_2O_4 = K_2SO_4 + MnSO_4 + KNO_5 + H_2O_5 +$
Продвинутый уровень	Задание 4	Почему азотистая кислота может проявлять как окислительные, так и восстановительные свойства? Составьте уравнения реакций HNO_2 : а) с бромной водой; б) с HI ; в) с $KMnO_4$. Какую функцию выполняет азотистая кислота в этих реакциях?
Вариант 7		Kilonota Botha poakajima.
Базовый уровень	Задание 1	Определите методом электронного баланса коэффициенты в уравнениях окислительно-восстановительных реакций: $Zn + HNO_3 = Zn(NO_3)_2 + NH_4NO_3 + H_2O$ $Zn + H_2SO_{4(\text{конц})} = ZnSO_4 + SO_2 + H_2O$
	Задание 2	Уравняйте следующие OBP, используя метод электронного баланса. Укажите степени окисления атомов, которые являются окислителями и восстановителями. a) $MnO_2 + Na_2O_2 = Na_2MnO_4$ б) $(NH_4)_2Cr_2O_7 = N_2 + Cr_2O_3 + H_2O$ в) $Al_{(тв)} + AlCl_{3(тв)} = 3AlCl_{(r)}$
	Задание 3	Уравняйте реакции методом электронно-ионного баланса, добавляя при необходимости в правую часть уравнений ионы H^+ , OH^- и (или) молекулы H_2O . Укажите окислитель и восстановитель в левой части уравнения. а) $TlBr_3 + 2Ag_{(TB)} \rightarrow TlBr_{(TB)} + 2AgBr_{(TB)}$ б) $H_2O_2 + K_2Cr_2O_7 + H_2SO_4 \rightarrow Cr^{3+} + \dots$ в) $K_2Cr_2O_7 + HI \rightarrow Cr^{3+} + I_3$
Продвинутый уровень	Задание 4	Какие из приведенных реакций являются внутримолекулярными? Расставьте коэффициенты в уравнениях реакций. Укажите восстановитель, окислитель. а) $KNO_3 = KNO_2 + O_2$; б) $Mq + N_2 = Mq_3N_2$; в) $KClO_3 = KCl + O_2$.
Вариант 8		
Базовый уровень	Задание 1	Уравняйте следующие OBP, используя метод электронного баланса. Укажите степени окисления атомов, которые являются окислителями и восстановителями. a) $Fe + H_2O = Fe_3O_4 + H_2$ б) $NH_4NO_3 = N_2O + H_2O$ в) $S_{(тв)} + HI_{(r)} = H_2S_{(r)} + I_{2(r)}$
	Задание 2	Уравняйте реакции методом электронно-ионного баланса, добавляя при необходимости в правую часть уравнений ионы H^+ , OH^- и (или) молекулы H_2O . Укажите окислитель и восстановитель в левой части уравнения. а) $Al + NaOH \rightarrow Na[Al(H_2O)_2(OH)_4] + H_2$ б) $Na_4V_6O_{17} + KI + H_2SO_4 \rightarrow V_2(SO_4)_3 + I_2 + \dots$ в) $K_2S_2O_8 + MnSO_4 \rightarrow SO_4^{-2-} + MnO_4^{-1}$
	Запацие 3	Реакция взаимолействия пермацгацат-иона с пероксилом

Задание 3 Реакция взаимодействия перманганат-иона с пероксидом водорода может быть записана несколькими уравнениями с различными коэффициентами:

a)
$$5H_2O_2 + 2KMnO_4 + 3H_2SO_4 = 2MnSO_4 + 5O_2 + K_2SO_4 + 8H_2O$$

6)
$$7H_2O_2 + 2KMnO_4 + 3H_2SO_4 = 2MnSO_4 + 6O_2 + K_2SO_4 + 10H_2O$$

Укажите причину и напишите хотя бы ещё одно уравнение.

Продвинутый уровень	Задание 4	Какие ОВР относятся к реакциям диспропорционирования? Расставьте коэффициенты в реакциях: a) $Cl_2 + KOH = KCl + KClO_3 + H_2O$; б) $KClO_3 = KCl + KClO_4$.
Вариант 9 Базовый уровень	Задание 1	Уравняйте следующие OBP, используя метод электронного баланса. Укажите степени окисления атомов, которые являются окислителями и восстановителями. a) $Al + Fe_3O_4 = Fe + Al_2O_3$ б) $NH_4NO_2 = N_2 + H_2O$ в) $N_2O_{4(ж)} + N_2H_{4(ж)} = N_{2(r)} + H_2O_{(r)}$
	Задание 2	Уравняйте реакции методом электронно-ионного баланса, добавляя при необходимости в правую часть уравнений ионы H^+ , OH^- и (или) молекулы H_2O . Укажите окислитель и восстановитель в левой части уравнения. а) $NaI_3 + Na_2S_2O_3 \rightarrow \Gamma^- + S_4O_6^{-2-}$ б) $Si + NaOH + H_2O \rightarrow Na_2SiO_3 + H_2$
а) $KOH + CuCl_2 \rightarrow KCl + Cu(r)$ ж) $Cu(OH)_2 \rightarrow CuO + H_2O$ б) $KBr + Cl_2 \rightarrow KCl + Br_2$ в) $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2\uparrow$ г) $Fe(OH)_3 \rightarrow Fe_2O_3 + H_2O$ д) $NaNO_3 \rightarrow NaNO_2 + O_2\uparrow$ и) $Pb(NO_3)_2 \rightarrow PbO + NO_2 + O_2\uparrow$		1. Какие из следующих реакций являются OBP a) $KOH + CuCl_2 \rightarrow KCl + Cu(OH)_2$ ж) $Cu(OH)_2 \rightarrow CuO + H_2O$ б) $KBr + Cl_2 \rightarrow KCl + Br_2$ в) $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2\uparrow$ г) $Fe(OH)_3 \rightarrow Fe_2O_3 + H_2O$
Продвинутый уровень	Задание 4	Можно ли в качестве окислителя в кислой среде использовать $K_2Cr_2O_7$ в следующих процессах при стандартных условиях: а) $2F^2e^-=F_2$, $E^0=2,85$ В б) $2Cl^2e^-=Cl_2$, $E^0=1,36$ В в) $2Br^2e^-=Br_2$, $E^0=1,06$ В г) $2I^2e^-=I_2$, $E^0=0,54$ В Стандартный окислительно-восстановительный потенциал системы $Cr_2O_7^{2-}+14H^++6e^-=2Cr^{3+}+7H_2O$ равен $E^0=1,33$ В
Вариант 10		C12O7 + 1411 + 0C = 2C1 + 7112O pascr E = 1,33 B
Базовый уровень	Задание 1	Соду можно получить двумя способами, представленными схемами:
	Задание 2	ОВ реакции. Уравняйте реакции методом электронно-ионного баланса, добавляя при необходимости в правую часть уравнений ионы H^+ , OH^- и (или) молекулы H_2O . Укажите окислитель и восстановитель в левой части уравнения. а) $KIO_3 + H_3AsO_3 + HCl = ICl^2 + H_3AsO_4$ б) $XeO_3 + KOH + O_3 = XeO_6^{4-} + O_2$ в) $Ca + H_2O = Ca(OH)_2 + H_2$
	Задание 3	Окисление магния азотной кислотой протекает с выделением газа N_2 Опо реакции

Определить стехиометрические коэффициенты.

Продвинутый уровень

Базовый уровень

Задание 4

Вычислите окислительно-восстановительный потенциал для системы

 $MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$ Если $C(MnO_4^-)=10^{-5} M$, $C(Mn^{2+})=10^{-2} M$, $C(H^+)=0.2 M$.

Тема 9 Вариант 1

Задание 1

Задание 2

Задание 3

Основные положения электрохимии.

В два сосуда с голубым раствором медного купороса поместили в первый цинковую пластинку, а во второй серебряную. В каком сосуде цвет раствора постепенно пропадает? Почему? Составьте электронные и молекулярное уравнения соответствующей реакции.

При каком условии будет работать гальванический элемент, электроды которого сделаны из одного и того же металла? Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, в котором один никелевый электрод находится в 0,001 М растворе, а другой такой же электрод — в 0,01 М растворе сульфата никеля.

Электролиз раствора Na₂SO₄ проводили в течение 5 ч при силе тока 7 А. Составьте электронные уравнения процессов, происходящих на электродах. Какая масса воды при этом разложилась и чему равен объем газов (н.у.), выделившихся на катоде и аноде?

Продвинутый Задание 4 *уровень*

Составьте электронные уравнения процессов, происходящих на электродах при электролизе раствора КОН. Чему равна сила тока, если в течение 1 ч 15 мин 20 с на аноде выделилось 6,4 г газа? Сколько литров газа (н.у.) выделилось при этом на катоде?

Вариант 2

Базовый уровень Задание 1

Увеличится, уменьшится или останется без изменения масса цинковой пластинки при взаимодействии ее с растворами: а) $CuSO_4$; б) $MgSO_4$; в) $Pb(NO_3)_2$? Почему? Составьте электронные и молекулярные уравнения соответствующих реакций.

Задание 2 Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из свинцовой и магниевой пластин, опущенных в растворы своих солей с концентрацией [Pb²⁺]=[Mg²⁺]=0,01 моль/л. Изменится ли ЭДС этого элемента если концентрацию каждого из ионов увеличить в одинаковое число раз?

Задание 3 Электролиз раствора нитрата серебра проводили при силе тока 2 А в течение 4 ч. Составьте электронные уравнения процессов, происходящих на электродах. Какая масса серебра выделилась на катоде и каков объем газа (н.у.), выделившегося на аноде?

Продвинутый Задание 4 *уровень*

При электролизе раствора соли кадмия израсходовано 3434 Кл электричества. Выделилось 2 г кадмия. Чему равна эквивалентная масса кадмия?

Вариант 3

Базовый уровень Задание 1

При какой концентрации ионов Zn^{2+} (в моль/л) потенциал цинкового электрода будет на 0.015 В меньше его стандартного электродного потенциала?

	Задание 2	Составьте схемы двух гальванических элементов, в одном из которых никель является катодом, а в другом — анодом. Напишите для каждого из этих элементов электронные уравнения реакций, протекающих на катоде и на аноде.
	Задание 3	Электролиз раствора сульфата некоторого металла проводили при силе тока 6 А в течение 45 мин, в результате чего на катоде выделилось 5,49 г металла. Вычислите эквивалентную массу металла.
Продвинутый уровень	Задание 4	Составьте электронные уравнения процессов, происходящих на угольных электродах при электролизе раствора Na_2SO_4 . Вычислите массу вещества, выделяющегося на катоде, если на аноде выделяется 1,12 л газа (н.у.). Какая масса H_2SO_4 образуется при этом возле анода?
Вариант 4		
Базовый уровень	Задание 1	Увеличится, уменьшится или останется без изменения масса кадмиевой пластинки при взаимодействии ее с растворами: а) $AgNO_3$; б) $ZnSO_4$; в) $NiSO_4$? Почему? Составьте электронные и молекулярные уравнения соответствующих реакций.
	Задание 2	Железная и серебряная пластины соединены внешним проводником и погружены в раствор серной кислоты. Составьте схему данного гальванического элемента и напишите электронные уравнения процессов, происходящих на аноде и на катоде.
	Задание 3	Насколько уменьшится масса серебряного анода, если электролиз раствора AgNO ₃ проводить при силе тока 2 A в течение 38 мин 20 с? Составьте электронные уравнения процессов, происходящих на графитовых электродах.
Продвинутый уровень	Задание 4	При электролизе растворов MgSO ₄ и ZnCl ₂ , соединенных последовательно с источником тока, на одном из катодов выделилось 0,25 г водорода. Какая масса вещества выделится на другом катоде; на анодах?
Вариант 5		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Базовый уровень	Задание 1	Марганцевый электрод в растворе его соли имеет потенциал $-1,23$ В. Вычислите концентрацию ионов Mn^{2+} (в моль/л).
	Задание 2	Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из пластин кадмия и магния, опущенных в растворы своих солей с концентрацией $[Mg^{2+}]=[Cd^{2+}]=1$ моль/л. Изменится ли значение ЭДС, если
	Задание 3	концентрацию каждого из ионов понизить до 0,01 моль/л? Электролиз раствора сульфата цинка проводили в течение 5 ч, в результате чего выделилось 6 л кислорода (н.у.). Составьте уравнения электродных процессов и вычислите силу тока.
Продвинутый уровень	Задание 4	При электролизе соли трехвалентного металла при силе тока 1,5 А в течение 30 мин на катоде выделилось 1,071 г металла. Вычислите атомную массу металла.
Вариант 6	n .	_
Базовый уровень	Задание 1	Потенциал серебряного электрода в растворе $AgNO_3$ составил 95% от значения его стандартного электродного потенциала. Чему равна концентрация ионов Ag^+ (в моль/д)?

 Ag^{+} (в моль/л)?

Задание 2

Составьте схему гальванического элемента, состоящего из пластин цинка и железа, погруженных в растворы их

Продвинутый	Задание 3	солей. Напишите электронные уравнения процессов, протекающих на аноде и на катоде. Какой концентрации надо было бы взять ионы железа (моль/л), чтобы ЭДС элемента стала равной нулю, если [Zn ²⁺]=0,001 моль/л? Электролиз раствора CuSO ₄ проводили с медным анодом в течение 4 ч при силе тока 50 А. При этом выделилось 224 г меди. Вычислите выход по току (отношение массы выделившегося вещества к теоретически возможной). Составьте электронные уравнения процессов, происходящих на электродах в случае медного и угольного анода. Составьте электронные уравнения процессов,
уровень Вариант 7		происходящих на угольных электродах при электролизе раствора $CuCl_2$. Вычислите массу меди, выделившейся на катоде, если на аноде выделилось 560 мл газа (н.у.).
Базовый уровень	Задание 1	Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС медно-кадмиевого гальванического элемента, в котором
	Задание 2	$[Cd^{2+}]=0,8$ моль/л, а $[Cu^{2+}]=0,01$ моль/л. Составьте схему гальванического элемента, в основе которого лежит реакция, протекающая по уравнению:
		$Ni+Pb(NO_3)_2=Ni(NO_3)_2+Pb$
		Напишите электронные уравнения анодного и катодного процессов. Вычислите ЭДС этого элемента, если $[Ni^{2+}]=0,01$ моль/л, $[Pb^{2+}]=0,0001$ моль/л.
	Задание 3	Электролиз раствора NaI проводили при силе тока 6 A в течение 2,5 ч. Составьте электронные уравнения процессов, происходящих на угольных электродах, и вычислите массу вещества, выделившегося на катоде и аноде?
Продвинутый уровень	Задание 4	Составьте электронные уравнения процессов, происходящих на графитовых электродах при электролизе раствора КВг. Какая масса вещества выделяется на катоде и аноде, если электролиз проводить в течение 1 ч 35 мин при силе тока 15 А?
Вариант 8	21	
Базовый уровень	Задание 1	Составьте схемы двух гальванических элементов, в одном из которых медь была бы катодом, а в другом — анодом. Напишите для каждого из этих элементов электронные уравнения реакций, протекающих на катоде и на аноде.
	Задание 2	Электролиз раствора K_2SO_4 проводили при силе тока 5 A в течение 3 ч. Составьте электронные уравнения процессов, происходящих на электродах. Какая масса воды при этом разложилась и чему равен объем газов (н.у.), выделившихся на катоде и аноде?
	Задание 3	Составьте электронные уравнения процессов, происходящих на угольных электродах при электролизе раствора AgNO ₃ . Если электролиз проводить с серебряным анодом, то его масса уменьшается на 5,4 г. Определите расход электричества при этом.
Продвинутый уровень Вариант 9	Задание 4	Какие химические процессы протекают на электродах при зарядке и разрядке железо-никелевого аккумулятора?
Базовый уровень	Задание 1	При какой концентрации ионов Cu^{2+} (моль/л) значение

потенциала медного электрода становится стандартному потенциалу водородного электрода? Задание 2 При электролизе соли некоторого металла в течение 1,5 ч при силе тока 1,8 А на катоде выделилось 1,75 г этого металла. Вычислите эквивалентную массу металла. Задание 3 Электролиз раствора CuSO₄ проводили в течение 15 мин при силе тока 2,5 А. Выделилось 0,72 г меди. Составьте электронные уравнения процессов, происходящих на электродах в случае медного И угольного анода. Вычислите выход ПО току (отношение массы выделившегося вещества к теоретически возможной). Какие химические процессы протекают на электродах при Продвинутый Задание 4 зарядке и разрядке кадмий-никелевого аккумулятора? уровень Вариант 10 Задание 1 Какой гальванический Базовый уровень элемент называется концентрационным? Составьте схему, напишите электронные уравнения электродных процессов вычислите ЭДС гальванического элемента, состоящего из серебряных электродов, опущенных: первый в 0,01 н., а второй в 0,1 н. растворы AgNO₃. Задание 2 При электролизе раствора CuSO₄ на аноде выделилось 168 см³ газа (н.у.). Составьте электронные уравнения процессов, происходящих на электродах, и вычислите, какая масса меди выделилась на катоде. Залание 3 Составьте электронные уравнения процессов, происходящих на графитовых электродах при электролизе расплавов и водных растворов NaCl и КОН. Сколько литров (н.у.) газа выделится на аноде при электролизе гидроксида калия, если электролиз проводить в течение 30 мин при силе тока 0,5 А? Какие химические процессы протекают на электродах при Продвинутый Задание 4 уровень зарядке и разрядке свинцового аккумулятора?

1. Критерии оценивания компетенций

Оценка «отлично» студенту, полностью освоившему все компетенции, если он твердо знает материал, грамотно и по существу излагает его, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения. Как правило, такие студенты демонстрируют понимание взаимосвязей основных понятий дисциплины, проявляют творческие способности в понимании, изложении и использовании учебно-программного материала

Оценка «хорошо» выставляется студенту, если он в недостаточной мере освоил все компетенции, но обнаруживает полное знание учебного материала, успешно выполняющий предусмотренные рабочей программой задания, усвоивший основную литературу. При этом студент должен продемонстрировать систематический характер знаний дисциплины и способность к их самостоятельному обновлению.

Оценка «удовлетворительно» выставляется студенту, частично и поверхностно освоившему компетенции, если он обнаруживает знания дисциплине в объеме, достаточном для дальнейшей учебы и предстоящей работы по профессии, справляющийся с выполнением заданий и знакомый с основной литературой, предусмотренной рабочей программой дисциплины.

Оценка «неудовлетворительно» выставляется студенту, если он не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы.

2. Описание шкалы оценивания

Максимально возможный балл за весь текущий контроль устанавливается равным **55.** Текущее контрольное мероприятие считается сданным, если студент получил за него не менее 60% от установленного для этого контроля максимального балла. Рейтинговый балл, выставляемый студенту за текущее контрольное мероприятие, сданное студентом в установленные графиком контрольных мероприятий сроки, определяется следующим образом:

Уровень выполнения контрольного	Рейтинговый балл (в % от максимального
задания	балла за контрольное задание)
Отличный	100
Хороший	80
Удовлетворительный	60
Неудовлетворительный	0

3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедура проведения данного оценочного мероприятия включает в себя: написание и защиту контрольной работы.

Предлагаемые студенту задания позволяют проверить компетенции ОПК-1, ОПК-2, ОПК -3, ПК-18. Принципиальные отличия заданий базового уровня от повышенного заключатся в том, что они носят более глубоких характер.

Для подготовки к данному оценочному мероприятию необходимо: 15 ч. Для подготовки необходимо изучить литературу, решить предлагаемые задачи, согласно варианта.

При подготовке к ответу студенту предоставляется право пользования тетрадью, с решенными заданиями.

При проверке задания, оцениваются

- степень соответствия объема и содержания контрольной работы теме, правильности и точности в решении задач;
- самостоятельность мышления и творческий подход к решению задач;
- логику и четкость изложения материала;
- обоснованность основных положений контрольной работы;
- знание литературы по разработанной теме;
- качество оформления работы;
- правильность и полноту ответов на вопросы в ходе защиты контрольной работы.

Оценочный лист

Наименова	Индикаторы	2	3	4	5	Примеча
ние		ба	бал	балла	бал	ние
компетенци		ЛЛ	ла		ла	
И		a				
ОПК-1	знать основные законы естественнонаучных					
	дисциплин					
	уметь использовать основные законы					
	естественнонаучных дисциплин в профессиональной					
	деятельности					
	владеет способностью и готовностью использовать					
	основные законы естественнонаучных дисциплин в					
	профессиональной деятельности					
ОПК-2	Знатьсовременную физическую картину мира,					
	пространственно-временные закономерности,					
	строение вещества для понимания окружающего					

	мира и явлений природы; Уметь			
	использовать знания о современной физической			
	картине мира, законах природы, пространственно-			
	временных закономерностях, строение вещества на			
	практике; Владеть навыками оценки экологической			
	обстановки в мире			
ОПК -3	Знать: строение вещества, природу химической связи			
	в различных классах химических соединений;			
	Уметь: использовать знания о строении вещества,			
	природе химической связи в различных классах			
	химических соединений для понимания свойств			
	материалов и механизма химических процессов,			
	протекающих в окружающем мире;			
	Владеть:готовностью использовать знания о			
	строении вещества, природе химической связи в			
	различных классах химических соединений для			
	понимания свойств материалов и механизма			
	химических процессов, протекающих в окружающем			
	мире			
ПК-18	Знание: свойств химических элементов, соединений и			
	материалов; Умение: использовать знание свойств			
	химических элементов, соединений и материалов на			
	их основе для решения задач профессиональной			
	деятельности;Навыки:владеть готовностью			
	использовать знание свойств химических элементов,			
	соединений и материалов на их основе для решения			
	задач профессиональной деятельности;			
Составител				
	(подпись)			

Составитель		Т.С. Чередниченко
	(подпись)	
		К.С. Сыпко
	(подпись)	
« »	201 г.	